Convolutional Neural Networks — CNNs
CNNs

Imagenet Classification. 1000 kinds of objects.

2016 error rate is 3.0%
2017 error rate is 2.25%
A CNN
A convolution slides a filter (a kernel) across an image.

\[W \times x \rightarrow y \]

River Trail Documentation

\[
y[b, i, j, c_y] = W[\Delta i, \Delta j, c_x, c_y]x[b, i + \Delta i, j + \Delta j, c_x] \\
y[b, i, j, c_y] += B[c_y]
\]
Use Swap Rule to get Backward Method

\[
\begin{align*}
y[b, i, j, c_y] &= W[\Delta i, \Delta j, c_x, c_y]x[b, i + \Delta i, j + \Delta j, c_x] \\
W.\text{grad}[\Delta i, \Delta j, c_x, c_y] &= y.\text{grad}[b, i, j, c_y]x[b, i + \Delta i, j + \Delta j, c_x] \\
x.\text{grad}[b, i + \Delta i, j + \Delta j, c_x] &= W[\Delta i, \Delta j, c_x, c_y]y.\text{grad}[b, i, j, c_y]
\end{align*}
\]
A Convolution Class in EDF

In EDF we would define a class for convolution parameter packages.

We would then construct the computation node for the output using Python code.

\[Y = \text{Relu}(\text{Conv}(\Phi, X)). \]
If we pad the input with zeros then the input and output can have the same spatial dimensions.
Zero Padding in NumPy

In NumPy we can add a zero padding of width p to an image as follows:

\[
padded = \text{np.zeros}(W + 2*p, \ H + 2*p)
\]

\[
padded[p:W+p, \ p:H+p] = x
\]
Let x' (full square) be the padding of x (blue square). y also has the blue shape.

$$y[b, i, j, c_y] = W[\Delta i, \Delta j, c_x, c_y] x'[b, i + \Delta i, j + \Delta j, c_x] + B[c_y]$$

For padding p and a filter of width $2p + 1$, we get that y has the same spatial dimensions as x.
Strides

We can move the filter by a “stride” s for each spatial step.

$$y[b, i, j, c_y] = W[\Delta i, \Delta j, c_x, c_y]x[b, s \ast i + \Delta i, s \ast j + \Delta j, c_x] + B[c_y]$$
Max Pooling

\[y[b, i, j, c] = \max_{\Delta i, \Delta j} x[b, s \ast i + \Delta i, s \ast j + \Delta j, c] \]

This is typically done with a stride greater than one so that the image dimension is reduced.
Fully Connected (FC) Layers

We reshape $x[b, x, y, c]$ to $x[b, (x, y, c)]$ and convert to using an MLP.
Basics

- Padding
- Convolution
- Stides
- Max Pooling
- Fully Connected Layers
A Sequence of “Images”

Jonathan Hui
Alexnet

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)
VGG, Zisserman, 2014

Davi Frossard
Inception, Google, 2014
Imagenet Classification

1000 kinds of objects.

2016 error rate is 3.0%
2017 error rate is 2.25%
Appendix: Image to Column (Im2C)
Reduce convolution to matrix multiplication — more space but faster.

\[x'[b, i, j, \Delta i, \Delta j, c_x] = x[b, i + \Delta i, j + \Delta j, c_x] \]

\[y[b, i, j, c_y] \]

\[= \left(\sum_{(\Delta i, \Delta j, c_x)} W[\Delta i, \Delta j, c_x, c_y] \ast x[b, i + \Delta i, j + \Delta j, c_x] \right) + B[c_y] \]

\[= \left(\sum_{(\Delta i, \Delta j, c_x)} x'[b, i, j, \Delta i, \Delta j, c_x] \ast W[\Delta i, \Delta j, c_x, c_y] \right) + B[c_y] \]

\[= \left(\sum_{(\Delta i, \Delta j, c_x)} x'[(b, i, j), (\Delta i, \Delta j, c_x)] \ast W[(\Delta i, \Delta j, c_x), c_y] \right) + B[c_y] \]
Appendix: Dilation

We can “dilate” the filter by introducing an image step size d for each step in the filter coordinates.

$$y[b, i, j, c_y] = W[\Delta i, \Delta j, c_x, c_y]x[b, i + d \times \Delta i, j + d \times \Delta j, c_x] + B[c_y]$$
END