
TTIC 31230, Fundamentals of Deep Learning

David McAllester, April 2017

Regularization

Over-Parameterization

Weight Decay

Dropout

Early Stopping

PAC-Bayesian Learning Theory

1

Over-Parameterization

If we have more parameters than data then we can fit any set
of labels.

“Our experiments establish that state-of-the-art con-
volutional networks for image classification trained with
stochastic gradient methods easily fit a random labeling
of the training data.”

Rethinking Generalization, Zhang et al., ICLR 2017

2

Over-Parameterization

Inception (Google’s net) on CIFAR10 can fit random labels on
the training data.

3

Using Fewer Parameters :)

2×256×64 + 9×64×64 = 69, 632

9×256×256 = 589, 824

[Kaiming He]

4

Early Stopping

During SGD one should be tracking validation loss and vali-
dation error.

A typical stopping rule (on a GPU) is to stop training when the
validation error has not improved for two or three consecutive
epochs.

5

Early Stopping

[Goodfellow et al.]

6

Early Stopping

7

L2 Regularization (Weight Decay)

Impose a prior probability on parameters

P (Φ) ∝ e−
1
2||Φ||

2

This can be used to justify L2 regularization (ridge regression
is a special case).

Φ∗ = argmin
Φ

E(x,y)∼Train loss(Φ, x, y) +
1

2
λ||Φ||2

PAC-Bayesian theory (and other theory) can be used to show
that a small value of this regularized optimization objective
guarantees generalization independent of any truth of the prior
(more later).

8

Weight Decay

∇Φ

(
E(x,y)∼Batch loss(Φ, x, y) +

1

2
λ||Φ||2

)
= Φ.grad + λΦ

Φt+1 = Φt − ηΦ.grad− γΦt

−γΦ is called weight decay where γ is the weight decay pa-
rameter.

Warning: PyTorch does +γΦ rather than −γΦ and it seems
to be standard for the decay parameter to be negative :P

9

Implicit Regularization

Consider solving linear least squares regression with SGD.

SGD maintains the invariant that Φ is a linear combination of
input vectors.

When over-parameterized the input vectors span a proper sub-
space.

For least squares regression, SGD finds the zero training error
solution minimizing ||Φ||.

But driving the training error to zero is often a mistake.

10

Dropout

Dropout can be viewed as an ensemble method.

To draw a model from the ensemble we randomly select a mask
µ with µi = 0 with probability α

µi = 1 with probability 1− α

Then we use the model (Φ, µ) with weight layers defined by

yi = Relu

∑
j

Wi,j µjxj

11

Dropout Training

Repeat:

• Select a random dropout mask µ

• Φ -= ∇Φ `(Φ, µ)

Backpropagation must use the same mask µ used in the for-
ward computation.

12

Test Time Scaling

At train time we have

yi = Relu

∑
j

Wi,j µjxj

At test time we have

yi = Relu

(1− α)
∑
j

Wi,j xj

At test time we use the “average network”.

13

Dropout for Least Squares Regression

Consider simple least square regression

Φ∗ = argmin
Φ

E(x,y) Eµ (y − Φ · (µ� x))2

= E
[
(µ� x)(µ� x)>

]−1
E [y(µ� x)]

= argmin
Φ

E(x,y)(y − (1− α)Φ · x)2 +
∑
i

1

2
(α− α2)E

[
x2
i

]
Φ2
i

In this case dropout is equivalent to a form of L2 regularization
— see Wager et al. (2013).

14

Search Over Regularization Parameters

Hyper-parameter search on Penn Tree Bank Language Model-
ing with a 4 layer LSTM.

Loss Input Drop Intra Lay Drop Learning Rate Output Drop State Drop Weight Decay

Melis et al. 2017.
Following Gal and Ghahrmani 2016, state dropout is an RNN
parameter dropout with the same mask across the sequence.

15

Early Stopping

Early stopping can limit ||Φ||— growing a large ||Φ|| can take
a long time.

Early stopping seems more related to limiting ||Φ− Φinit||

Theoretical guarantees work for ||Φ − Φinit||2 just as well as
for ||Φ||2.

This suggests replacing weight decay with

Φt+1 = Φt − ηΦ.grad− γ(Φ− Φinit)

16

Learning Theory: Nature vs. Nurture

Noam Chomsky: Natural language grammar is unlearnable
without with an innate linguistic capacity. This position is
supported by the “no free lunch theorem”.

Andrey Kolmogorov, Geoff Hinton: Universal
learning algorithms exist. This position is sup-
ported by the “free lunch theorem”.

17

The No Free Lunch Theorem

Without prior knowledge, such as universal grammar, it is im-
possible to make a prediction for an input you have not seen
in the training data.

Proof: Select a predictor h uniformly at random from all
functions from X to Y and then take the data distribution to
draw pairs (x, h(x)) where x is drawn uniformly from X . No
learning algorithm can predict h(x) where x does not occur in
the training data.

18

The Free Lunch Theorem

Universal (knowledge-free) learning algorithms exists.

Let h be a C++ procedure taking an input from X and return-
ing a value in Y , where h is written using calls to prodecures in
an (arbitrarily large) code library L. Let |h| be the number of
bit in a standard compression algorithm applied to the source
code for h. We are compressing only the “main” procedure h
and not the library L.

19

The Free Lunch Theorem

Consider a loss function loss(p, x, y) such that for any C pro-
gram p and pair (x, y) we have loss(p, x, y) ∈ (0, Lmax).

Theorem: For any standard library L fixed before the draw
of the training data, we have that with probability at least
1 − δ over the draw of the training data the following holds
simultaneously for all main programs p and λ > 1/2.

E(x,y)∼Population loss(p, x, y)

≤ 1

1− 1
2λ

(
E(x,y)∼Train loss(p, x, y) +

λLmax

N

(
(ln 2)|h| + ln

1

δ

))
20

PAC-Bayesian Generalization Bounds

The free lunch theorem is a special case of a PAC-Bayesian
generalization bound.

PAC-Bayesian theory was introduced by me in 1999. The
bounds have evolved over time with contributions by Lang-
ford, Blum, Shawe-Taylor, Catoni and others.

These bounds are of increasing interest today because of their
applicability to deep networks.

21

A More General Free Lunch Theorem

Let H be a discrete (countable) hypothesis class. H might be
the collection of all C programs.

Let P be a “prior” probability distribution on H. P (h) might

be 2−8|h| where |h| is the length of h in bytes.

E(x,y)∼Population loss(h, x, y)

≤ 1

1− 1
2λ

(
E(x,y)∼Train loss(h, x, y) +

λLmax

N

(
ln

1

P (h)
+ ln

1

δ

))
22

A Finite Precision Corollary

Suppose that we parameterize a classifier with a parameter
vector Φ with d parameters and use b bits per parameter.

E(x,y)∼Population loss(Φ, x, y)

≤ 1

1− 1
2λ

(
E(x,y)∼Train loss(Φ, x, y) +

λLmax

N

(
(ln 2)db + ln

1

δ

))

23

Proof

L(h) = E(x,y)∼Pop loss(h, x, y)

L̂(h) = E(x,y)∼Train loss(h, x, y)

24

Proof

Consider Lmax = 1 and define ε(h) by

ε(h) =

√√√√2L(h)
(

ln 1
P (h)

+ ln 1
δ

)
N

.

By the relative Chernoof bound we have

PTrain∼Pop

(
L̂(h) ≤ L(h)− ε(h)

)
≤ e
−N ε(h)2

2L(h) = δP (h).

25

Proof

PTrain∼Pop

(
L̂(h) ≤ L(h)− ε(h)

)
≤ δP (h).

PTrain∼Pop

(
∃h L̂(h) ≤ L(h)− ε(h)

)
≤
∑
h

δP (h) = δ

PTrain∼Pop

(
∀h L(h) ≤ L̂(h) + ε(h)

)
≥ 1− δ

26

Proof

L(h) ≤ L̂(h) +

√√√√√√L(h)

2
(

ln 1
P (h)

+ ln 1
δ

)
N

using

√
ab = inf

λ>0

a

2λ
+
λb

2

we get

L(h) ≤ L̂(h) +
L(h)

2λ
+
λ
(

ln 1
P (h)

+ ln 1
δ

)
N

27

Proof

L(h) ≤ L̂(h) +
L(h)

2λ
+
λ
(

ln 1
P (h)

+ ln 1
δ

)
N

Solving for L(h) yields

L(h) ≤ 1

1− 1
2λ

(
L̂(h) +

λLmax

N

(
ln

1

P (h)
+ ln

1

δ

))

28

A KL Divergence Bound
Let P be any “prior” and Q be any “poterior” on any model
space.
Define

L(Q) = Eh∼Q L(h)

L̂(Q) = Eh∼Q L̂(h)

For any P and any λ > 1
2, with probability at least 1− δ over

the draw of the training data, the following holds simultane-
ously for all Q.

L(Q) ≤ 1

1− 1
2λ

(
L̂(Q) +

λLmax

N

(
KL(Q,P) + ln

1

δ

))
29

L2 Bounds

P (w) = N (0, 1)d

L(QΘ) = Eε∼N (0,1)d L(Θ + ε)

L̂(QΘ) = Eε∼N (0,1)d L̂(Θ + ε)

KL(QΘ, P) =
1

2
||Θ||2

L(QΘ) ≤ 1

1− 1
2λ

(
L̂(QΘ) +

λLmax

N

(
1

2
||Θ||2 + ln

1

δ

))
30

A Dropout Bound

KL(Qα,Φ, Qα,0) = Eµ∼Pα,ε∼N (0,1)d ln
Pα(µ)e−

1
2||µ�ε||

2

Pα(µ)e−
1
2||µ�(Φ+ε)||2

= Eµ∼Pα
1

2
||µ� Φ||2

=
1− α

2
||Φ||2

L(Qα,Φ) ≤ 1

1− 1
2λ

(
L̂(Qα,Φ) +

λLmax

N

(
1− α

2
||Φ||2 + ln

1

δ

))
31

L2 PAC-Bayesian Bounds in Action

Computing Nonvacuous Generalization Bounds for Deep (Stochas-
tic) Neural Networks with Many More Parameters than Train-
ing Data, (Dziugaite and Roy, arXiv, 2017)

The bounds are based on L2 distance of the weight
vector to the initialization.

The weight vector is retrained to minimize the
bound.

A Formal Definition of Implicit Prior

We now consider any learning algorithm A which takes train-
ing data and returns a probability distribution QA(Train) on
parameters.

define QA(Pop) = ETrain∼Pop QA(Train)

To draw Φ from QA(Pop) I first draw Train from Pop and
then draw Φ from QA(Train).

We will show that QA(Pop) is an optimal prior for A running
on Pop. We can think of QA(Pop) as an implicit prior for A.

33

Optimality of QA(Pop)
Consider an arbitrary prior P .

ETrain∼Pop KL(QA(Train), P)

= ETrain∼Pop ln
QA(Train)(h)

P (h)

= ETrain∼Pop, h∼QA(Train) ln
QA(Train)(h)

QA(Pop)(h)

+Eh∼QA(Pop) ln
QA(Pop(h))

P (h)

Optimality of QA(Pop)

ETrain∼Pop KL(QA(Train), P)

= ETrain∼Pop KL(QA(Train), QA(Pop)) + KL(QA(Pop), P)

So QA(Pop) is an optimal prior (or implicit prior) for
algorithm A.

35

An Implicit Prior Generalization Bound

For any given learning algorithm A and λ > 1
2 we have the

following with probability at least 1 − δ over the draw of the
training data.

L(QA(Train))

≤ 1

1− 1
2λ

 L̂(QA(Train))

+λLmax
N

(
KL(QA(Train), QA(Pop)) + ln 1

δ

)

36

Ensembles under Square Loss
We average k regression models

f (x) =
1

k

k∑
i=1

fi(x)

f (x)− y =
1

k

k∑
i=1

(fi(x)− y)

ε =
1

k

k∑
i=1

εi, εi = fi − y (residuals)

37

Ensembles

Assume that E
[
ε2i
]

= σ2 and E
[
εiεj
]

= σ2ρ for i 6= j.

E

1

k

∑
i

εi

2
 =

1

k2
E

∑
i

ε2i +
∑
j 6=i

εiεj

=
1

k
σ2 +

k − 1

k
σ2ρ = σ2

(
1

k
+

(
1− 1

k

)
ρ

)
If Pearson’s correlation ρ = E

[
εiεj
]
/σ2 < 1 we win.

38

Ensembles Under Log Loss

For log loss we average the probability vectors.

P (y|x) =
1

k

∑
i

Pi(y|x)

− logP is a convex function of P . For any convex `(P)
Jensen’s inequality states that

`

1

k

∑
i

Pi

 ≤ 1

k

∑
i

`(Pi)

This implies that the loss of the average model cannot be worse
(can only be better) than the average loss of the models.

39

L1 Regularization and Sparse Weights

p(Φ) ∝ e−||Φ||1 ||Φ||1 =
∑
i

|Φi|

Φ∗ = argmin
Φ

`train(Φ) + λ||Φ||1

Φ -= η∇Φ `train(Φ)

Φi -= ηλ sign(Φi) (shrinkage)

At equilibrium (sparsity is difficult to achieve with SGD)

Φi = 0 if |∂`/∂Φi| < λ
∂`/∂Φi = −λsign(Φi) otherwise

40

Sparse Activation

We can impose an L1 regularization on the activations of the
network (the output of the activation function of each neuron).

Φ∗ = argmin
Φ

`(Φ) + λ||h||1

where h is the vector of neuron activation outputs.

This will tend to make activations sparse.

41

Sparse Coding

Let W be a matrix where we view W·,i is the ith “dictionary
vector”.

For input x we can construct a k-sparse representation h(x).

h(x) = argmin
h,||h||0=k

||x−Wh||2

Note

Wh =
∑
i∈I(x)

hi W·,i |I(x)| = k

We can now replace x by its sparse code h(x).

42

END

