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Abstract
Even in statically typed languages it is useful to have certain invari-
ants checked dynamically. Findler and Felleisen gave an algorithm
for dynamically checking expressive higher-order types called con-
tracts. If we postulate soundness (in the sense that whenever a term
is accused of violating its contract it really does fail to satisfy it),
then their algorithm implies a semantics for contracts. Unfortu-
nately, the implicit nature of the resulting model makes it rather
unwieldy.

In this paper we demonstrate that a direct approach yields es-
sentially the same semantics without having to refer to contract-
checking in its definition. The so-defined model largely coincides
with intuition, but it does expose some peculiarities in its inter-
pretation of predicate contracts where a notion of safety (which
we define in the paper) “leaks” into the semantics of Findler and
Felleisen’s original unrestricted predicate contracts.

This counter-intuitive aspect of the semantics can be avoided by
changing the language, replacing unrestricted predicate contracts
with a restricted version. The corresponding loss in expressive
power can be recovered by also providing a way of explicitly ex-
pressing safety as a contract—either in ad-hoc fashion or, e.g., by
including general recursive contracts.

Categories and Subject Descriptors: D.3.1 Programming Lan-
guages: Formal Definitions and Theory — semantics

General Terms: Languages, Theory, Verification

Keywords: contracts, predicates, safety

1 Introduction
Static types can serve as a powerful tool for expressing program
invariants that a compiler can verify. Yet, many invariants a com-
piler cannot enforce. It is therefore useful to allow for dynamic
checks of runtime properties of programs, regardless of whether
the language is statically typed or not. Many languages have mech-
anisms for reporting abnormal situations that arise at runtime. For
example, in the ML programming language [13, 12] one typically
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raises an exception when an intended program invariant is violated.
While these mechanisms enable people to program defensively in
an ad-hoc manner, they are an inappropriate basis for designing,
implementing, and composing program components.

Findler and Felleisen introduced the notion of contracts [9] as a
more systematic way of expressing and monitoring runtime invari-
ants. Contracts are a form of types too expressive for static verifica-
tion, but an implementation such as the DrScheme system [8, 5] can
provide a meaningful way of checking contracts dynamically. The
contract checker automatically raises exceptions called contract ex-
ceptions.

Once an exception indicates the violation of an intended invariant
one would like to identify the part of the program (the module) that
is actually in error. Thus, a raised contract exception should blame a
specific contract declaration. To be somewhat more concrete, con-
sider a program of the form

let x1 : t1 = e1 in . . . let xn : tn = en in xn

where each ti is a closed contract expression acting as the interface
of module ei. Findler and Felleisen give an algorithm for assign-
ing blame to one of the ei in the case when a contract exception is
raised. Intuitively, this means that ei does not satisfy contract ti, but
the concept of contract satisfaction had not actually been defined
formally. Still, we can view the algorithm as implying a seman-
tics of contracts. In particular, we can say e satisfies t unless there
is some program for which the algorithm claims otherwise. More
formally, let [[t]]FF be the set of values that the Findler-Felleisen
contract checking algorithm cannot blame for violating t.

It is important to show that the Findler-Felleisen algorithm is cor-
rect. This means that when the algorithm blames a contract decla-
ration, that contract declaration is actually wrong. [[·]]FF as infor-
mally defined above makes correctness vacuously true, because a
declaration is “wrong” by definition if the algorithm blames it. A
more meaningful notion of correctness must be based on an inde-
pendent definition of the meaning of contracts, preferably defined
in a mostly compositional manner, for example the one we give in
this paper.

A compositional semantics is desirable because the structure of
[[·]]FF is not at all obvious. With just the informal definition given
above, an answer to the question “Does e satisfy t?” is difficult
because it requires consideration of all possible contexts for e. In-
deed, some aspects of [[·]]FF do turn out to be counterintuitive. An
important part of the Findler-Felleisen contract language are pred-
icate contracts, here written 〈φ〉, which are checked by applying
their predicate φ to the value in question. An exception is raised
if the result is not true. In particular, checking 〈λx.1〉, where the
predicate is always true, is a no-op. One might expect every value
to satisfy 〈λx.1〉 and, consequently, the identity function λx.x to
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x,y, . . . ∈ Var ::= x | y | . . . i, j, . . . ∈ I ::= 0 | 1 | . . .
F ::= + | − |<|≤| . . .

elements common to both external and internal languages

te ∈ T e ::= int | safe | Te Var→ T e | 〈T e;λVar.P e〉
φe ∈ P e ::= P0

e|(P e Var)

P0
e ⊂ Ee closed predicate terms

ee ∈ Ee ::= Var | I | λVar.Ee | (Ee Ee) | F(Ee, . . . ,Ee)

p ∈ P ::= Var | let Var : Te = Ee in P

Figure 1. External language

t ∈ T ::= int | safe | T
Var→ T | 〈T ;λVar.P 〉

φ∈ P ::= P0|(P Var)⊥
P0 ⊂ E closed predicate terms

ξ ∈ X ::= ⊥ | �0 | �1 | �2 | . . .
e ∈ E ::= Var | I | λVar.E | (E E)X | FX (E, . . . ,E) |

(W X ,X
T E) | E?X E

Figure 2. Internal language

C e
ξ (i;Γ) = i

C e
ξ (x;Γ) = x ;x �∈ domain(Γ)

C e
ξ (x;Γ) = (W ξ,ξ′

t x) ;Γ(x) = (ξ′,t)

C e
ξ ((ee

1 ee
2);Γ) = (C e

ξ (ee
1;Γ) C e

ξ (ee
2;Γ))

ξ

C e
ξ (λx.ee) = λx.C e

ξ (ee;Γ |�=x)

C e
ξ ( f (ee

1, . . . ,e
e
k);Γ) = fξ(C

e
ξ (ee

1;Γ), . . . ,C e
ξ (ee

k ;Γ))

C t(int) = int

C t(safe) = safe

C t(te
1

x→ te
2) = C t(te

1) x→ C t(te
2)

C t(〈te;λx.ee〉) = 〈C t(te);λx.C e
⊥(ee; /0)〉

C p(x;Γ) = (W ⊥,ξ
t x) Γ(x) = (ξ,t)

C p(let x : te = ee
1 in ee

2;Γ) = ((λx.e2) e1)⊥
where e1 = C e

�i (ee
1;Γ); e2 = C p(ee

2;Γ,x �→ (�i,C t (te)));
i uniquely identifies the module named x

Figure 3. Translation from external to internal language.

satisfy (int → int) → 〈λx.1〉. (Every legal argument would be a
legal result.) But DrScheme disagrees. When evaluating the fol-
lowing example (translated to Scheme) in DrScheme, the identity f
is blamed for violating (int → int) → 〈λx.1〉:

let f : (int → int) → 〈λx.1〉 = λy.y in
(( f λz.z) λw.w)

We account for this effect by interpreting 〈λx.1〉 as the set of safe
values (see Section 2.9). Not all values satisfying int→ int are safe,
justifying the claim that the identity violates (int → int) → 〈λx.1〉.
As a non-trivial theorem we prove that the Findler-Felleisen algo-
rithm is sound and complete with respect to our semantics. Sound-
ness and completeness together mean that this semantics is equiva-
lent to [[·]]FF.

For a given interpretation [[·]] of contracts, we call the contract
checking algorithm sound if blame on a module ei is explained
by the fact that ei violates one of it contract interfaces. If ei is
closed this says that its evaluation result (written [[ei]]) is not in
[[ti]]. If ei contains free references to variables xj (with j < i) it
means that there are values v1 ∈ [[t1]], . . . ,vi−1 ∈ [[ti−1]] such that
ei[v j/x j] j=1...i−1 produces a result that is not in [[ti]].1 Soundness
relative to [[·]] can be stated as ∀t.[[t]]⊆ [[t]]FF.

Conversely, we say that the algorithm is complete with respect to
the semantics if the contract checker can detect every interface vi-
olation in at least one context. Concretely, let e have free variables
x1, . . . ,xi−1. If there are values v1, . . . ,vi−1 satisfying t1, . . . ,ti−1
such that the result of e[vj/x j] j=1...i−1 is not in [[t]], then there are

1As usual, we write A[B/x] for the term A′ obtained from A by
substituting B in a capture-free manner for all free occurrences of x
in A.

terms e1, . . . ,ei−1 and some p such that running the algorithm on
let x1 : t1 = e1 in . . .

let xi−1 : ti−1 = ei−1 in
let xi : t = e in p

results in e being blamed. Completeness relative to [[·]] can be
stated as ∀t.[[t]]⊇ [[t]]FF. Soundness and completeness together im-
ply [[·]] = [[·]]FF.

The remainder of this paper is organized as follows:

In Section 2 we formally introduce our term- and contract-
languages together with a corresponding operational semantics of
terms and an interpretation [[·]] for contracts as sets of values. We
also give several definitions of safety—a concept central to this
paper—and prove them pairwise equivalent. In Section 3 we state
the central lemma and use it to sketch the proof of soundness for [[·]].
The next two sections are devoted to proofs of the central lemma:
in Section 4 we take a step back and prove it in a setting that as-
sumes all predicates in contracts to be total. This simplification al-
lows us to show the main idea of the proof without getting bogged
down in details of dealing with contracts that have effects. It also
allows us to prove that [[·]] is maximal and therefore coincides with
[[·]]FF. Section 5 then proves soundness (but not completeness) in
the general case where predicates in contracts may diverge. Before
we conclude in Section 7 we take a brief excursion and discuss the
addition of recursive contracts in Section 6. Recursive types have
various practical applications, for example, the encoding of object
types [2], but we also find that they provide yet another angle from
which to understand the notion of safety that is so central to our
proofs and our results.
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2 The formal setting
We consider programs at two different language levels: an ex-
ternal and an internal one.2 The former can be thought of as a
syntactically-sugared refinement of the latter.

2.1 Syntax
At their core, both external and internal languages (see Figures 1
and 2) consist of untyped λ-calculi with constants. As usual, there
are variables x,y, . . . ∈ Var, λ-abstractions λx.e, and applications
(e1 e2). For simplicity we restrict ourselves to integer constants
0,1, . . . ∈ I and some primitive operations like + (addition) or >
(comparison) over such integers. (In examples we often use in-
fix notation for those.) For boolean values we use the convention:
1 = true,everything else = false.

Either language makes use of a sub-language of contract expres-
sions consisting of int (the contract satisfied by all integer values);
dependent function contracts t1

x→ t2 (satisfied by functions that
take values v satisfying t1 to values satisfying t2[v/x]) and their non-
dependent special case t1 → t2; the contract safe of safe values; and
restricted predicate contracts 〈t;φ〉 (satisfied by values v also satis-
fying t such that φapplied to v yields true). The unrestricted version
of predicate contracts 〈φ〉 shown in the introduction is not explicitly
part of our languages and should be thought of as an abbreviation
for the operationally equivalent 〈safe;φ〉.
External: Programs in external form are closed terms

let x1 : te
1 = ee

1 in . . . let xn : te
n = ee

n in xn

where the ee
i are individual modules bound to “module identifiers”

xi. The module interface of ee
i is governed by contract tei . The scope

of each let-bound xi consists of everything to the right of ee
i (i.e.,

ee
i+1, . . . ,e

e
n,xn). Predicates in predicate contracts within the te

i are
taken from the expression language.

Module interfaces are the only place where contract expressions tei
can appear. Moreover, without loss of generality we require each
such contract te

i to be closed. (The effect of a free occurrence of xj
in te

i can be simulated by abstracting from xj in both ee
i (using λ)

and in te
i (using a dependent function contract).)

Internal: The internal language makes pervasive use of contract
exceptions �1,�2, . . . as well as the “pseudo-exception” ⊥. When
an exception �i is raised, the entire program immediately termi-
nates, producing �i as the final result. Raising ⊥, however, causes
the program to diverge. (We use ⊥ as a technical device to make
characterization and construction of “safe” expressions easier.)

One use of exceptions is to signal violations of language contracts:
applications of non-functions or ill-typed (i.e., non-integer in our
case) arguments to primitive operations. For this, they appear as
annotations on all applications (e1 e2)ξ and on all primitive opera-

tions fξ(e1, . . . ,ek).3

There are also two additional expression forms:

• Wrapped expressions (W ξ′,ξ
t e) represent module contracts

and are at the heart of contract checking. They act as guards
looking for evidence of violations of contract t by either e or

2In practice there often will be a third level: a statically typed
surface language. Here we assume that static types—if origi-
nally present—have been checked and erased. Appendix B briefly
touches upon the likely interaction between static types and con-
tracts. In general it suffices to assume a dynamically typed setting.

3A static type system can often eliminate the need for language
contracts, but we do not make this assumption here.

the context. If evidence for e violating t is found, then excep-
tion ξ is raised. Similarly, when it is detected that the context
tries to use e in a way that is not consistent with t, then ξ′ is
raised.

• The one-armed conditional e1?ξe2 evaluates to the value of e2

if e1 evaluates to true. If e1 does not evaluate to true, then ξ
is raised. (This form was added to make it easier to state the
operational semantics of predicate contract wrappers.)

There is no let-form in the internal language. Instead, module
boundaries and the contracts governing their interfaces are ex-
pressed using wrapped terms and function application.

2.2 From external to internal syntax
Figure 3 shows the “de-sugaring” translation from external to in-
ternal syntax. The idea is to arrange for �i to be raised when the
contract checker finds evidence for ee

i not respecting its contracts.

There are three ways in which a module ee
i of the external language

can fail to respect its contracts:
1. Its value might not satisfy its export interface te

i .
2. It might try to use x j (where x j is one of its free variables) in

a way that is not consistent with the import interface te
j .

3. It might use one of the language’s primitive operations incor-
rectly4 (trying to apply an integer, passing a non-integer or the
wrong number of arguments to one of the built-in operations).

The translation from external to internal language reflects this clas-
sification: contract exception �i appears

1. in W ξ,�i

ti which is wrapped around uses of xi,

2. in W �i,ξ
t j

which is wrapped around uses of xj within ee
i ,

3. and as an annotation on every application and built-in opera-
tion within the translation of ee

i .
The translator is given in three parts: Ce

ξ (ee;Γ) annotates appli-

cations and primitive operations within ee with exception ξ and
replaces free occurrences of variables bound in Γ with wrapped
versions of these variables; C t(te) translates external contracts to
internal ones; C p(p;Γ) translates let-expressions. Environments
Γ are used to map let-bound module identifiers to their respective
module exceptions and translated contracts. Thus, a closed external
program p is translated using C p(p; /0).

The statement of our central lemma (Lemma 5) requires that predi-
cates within contracts do not raise contract exceptions of their own.
This property, formally captured by the notion of safe contracts, is
guaranteed in part by the fact that C t(·) never inserts wrapper ex-
pressions while artificially using ⊥ for all language contracts (ap-
plications and primitive operations), thus sending the program into
an infinite loop—as opposed to having it raise an unaccounted-for
contract exception—should a predicate violate one of these.

In a practical implementation it makes sense to use a separate
�contract instead of ⊥ for this purpose, effectively putting contracts
on contract predicates. To account for �contract, most of the defi-
nitions and proofs in this paper would have to be adjusted, making
them superficially (but not intrinsically) more complicated. Since
the increased complexity does not pay off, we do not explore this
direction here.

2.3 Core semantics
We follow Felleisen and Hieb [6] and make use of evaluation con-
texts to specify the operational semantics of the internal language
(see Figure 4). Every closed expression e ∈ E that is not a value

4One can think of this as having contract wrappers on those
primitive operations (and even implement it that way).
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V ::= I | λVar.E values

V ∗ ::= V | X results

Ce ::= {·} | evaluation contexts

(Ce E)X | (V Ce)X |
FX (V, . . . ,V,Ce,E, . . . ,E) | (W X ,X

T Ce) |

Ce?X E |V?XCe

C ::= [·] | contexts

λVar.C | (C E)X | (E C)X |
FX (E, . . . ,E,C,E, . . . ,E) | (W X ,X

T C) |
C?X E | E?XC

e = ce{e′} e′ ↪→ e′′ ce[e′′]⇓nv

e⇓n+1v

fξ(i1, . . . , ik) ↪→ A( f , i1, . . . , ik)

((λx.e) v)ξ ↪→ e[v/x]

1?ξv ↪→ v

(W ξ′,ξ
int i) ↪→ i

(W ξ′,ξ
safe v) ↪→ v

(W ξ′,ξ
t1

z→t2
λx.e) ↪→ (†)

λy.(W ξ′,ξ
t2[(W⊥,ξ′

t1
y)/z]

((λx.e) (W ξ,ξ′
t1 y))⊥)

(W ξ′,ξ
〈t;λx.e〉 v) ↪→ ((λx.e) (W⊥,ξ

t v))⊥?ξ (W ξ′,ξ
t v)

v ⇓0 v

ce{(i v)� j} ⇓0 � j

ce{ f j
�(v1, . . . ,λx.e, . . . ,vk)} ⇓0 � j

ce{(W ξ,� j

int λx.e)} ⇓0 � j

ce{(W ξ,� j

t1
x→t2

i)} ⇓0 � j

ce{v?� j v′} ⇓0 � j ;v �= 1

(i v)⊥ ↪→ ((λx.(x x)⊥) λx.(x x)⊥)⊥
f⊥(v1, . . . ,λx.e, . . . ,vk) ↪→ ((λx.(x x)⊥) λx.(x x)⊥)⊥

(W ξ,⊥
int λx.e) ↪→ ((λx.(x x)⊥) λx.(x x)⊥)⊥

(W ξ,⊥
t1

x→t2
i) ↪→ ((λx.(x x)⊥) λx.(x x)⊥)⊥

v?⊥v′ ↪→ ((λx.(x x)⊥) λx.(x x)⊥)⊥ ;v �= 1

Figure 4. Operational semantics of the internal language.

v∈V has a unique decomposition into an evaluation context ce ∈Ce
and a current βv-redex e′ ∈ E; we write e = ce{e′} for this. Eval-
uation proceeds by repeatedly replacing the current redex with its
corresponding 1-step reduction until a value is reached or a contract
exception is raised.5

Evaluation immediately terminates with a non-value result of � j if
the contract exception � j gets raised at any point during evaluation.
Raising the pseudo-exception ⊥ is modeled by replacing the current
redex with an infinite loop.

Evaluation of e either diverges or produces a result r (either in V or
some � j) after k steps. The latter fact is expressed by the relation
e⇓kr. The valuation function [[·]] from closed expressions to results
is defined as follows:

e⇓kr ⇒ [[e]] = r (∀k,r.¬(e⇓kr))⇒ [[e]] =⊥
It is easy to check that the full set of rules given here is exhaustive.
This means that there are no “stuck terms” in the internal language.

The meaning of built-in primitives is assumed to be given by the
semantic function A .

2.4 Contract checking
The heart of the contract checker is the set of rules dealing with

the case when the current redex is a wrapped expression (Wξ′,ξ
t v).

These rules are directed by the syntax of the contract t. If t is safe,
then the wrapper acts as an identity function; if t is int, then the
wrapper checks v for being an integer, raising ξ if it is not.

If t is a (potentially dependent) function contract t1
x→ t2, then v is

first checked for being a λ-term. If that is the case, then rule (†)

5Notice that e = ce{e′} and e′ ↪→ e′′ does not imply that substi-
tuting e′′ for {·} in ce has the form ce{e′′} since in general e′′ is not
the next current redex. For this reason we use the notation ce[e′′]
when substituting into the hole of an evaluation context (just like
we do when substituting into the hole of a general context c ∈C).

applies: the wrapper constructs a function that first accepts an argu-
ment y and wraps it using contract t1, then applies v to the wrapped
y, and finally wraps the result using contract t2 where (a wrapped
version of) the original argument y has been substituted for x. The
original exception superscripts appear in reversed order in the argu-
ment wrapper—a detail that is a crucial aspect of Findler-Felleisen-
style contract checking since it reflects the role reversal between the
producer of a value and its context. Such role reversals take place at
the domain part of function contracts, the intuition behind it being
that a value f acts as the context of any arguments that f is applied
to, whereas the context of f is supplying these argument values.
Formally, the rule follows the standard construction for projections.
Indeed, contract wrappers are idempotent, so we can view them as
retractions.6

If t is a restricted predicate contract 〈t′;φ〉, then v is wrapped using
t ′ and checked for satisfying the predicate φ.

When an arbitrary value v “meets” predicate code (which happens
when a predicate is applied to v or when v is substituted into a de-
pendent type), v gets wrapped with a special wrapper where the ex-
ception dedicated to blaming the context (i.e., the predicate code) is
⊥. This technical device is part of our effort of maintaining safety
of contracts. As hinted in Section 2.2, a practical implementation
should use some �contract instead of ⊥.

We give an operational semantics to external programs by way of
their translation into E. Thus, [[p]]e is defined to be the same as
[[C p(p; /0)]].
In the following examples, it is instructive to verify how the rule

6Unfortunately, the corresponding retracts do not coincide with
the interpretation of contracts that we would like to use, which is
why we have not pursued this direction here (but elsewhere [7]). For
example, we want λx.x : int → int to be true, but no term equivalent

to λx.x is in the image of W ξ,ξ′
int→int for any ξ,ξ′.
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e : t ⇔ [[e]] ∈ [[t]]∪{⊥}

[[int]] = {0,1, . . .}
[[safe]] = Safe

[[t1
x→ t2]] = {λy.e | ∀v ∈ [[t1 ]].e[v/y] : t2[v/x]}

[[〈t;λx.e〉]] = {v ∈ [[t]] | [[e[v/x]]] ∈ {1,⊥}}

[[te]]e = [[C t(te)]]

Figure 5. Semantics of contracts.

marked (†) in Figure 4 produces the results in cases (2) and (3):

((W �1 ,�2

int→int 0) 1) ⇓ �2 (1)

((W �1 ,�2

int→int λx.x+1) λy.y) ⇓ �1 (2)

((W �1,�2

int→int λx.λy.x) 2) ⇓ �2 (3)

((W �1 ,�2

int→int λx.x+1) 1) ⇓ 2 (4)

2.5 Semantic equivalence
We write e ∼= e′ to say that e and e′ are semantically equivalent, i.e.,
that there is no context c ∈ C that could distinguish between the
two:

([[c[e]]] ∈ [[int]]∪X ∨ [[c[e′]]] ∈ [[int]]∪X) ⇒ [[c[e′]]] = [[c[e]]]

We will also use the notation e′ ≤ e for e,e′ ∈ E (or t ≤ t ′ for t,t ′ ∈
T ) if e′ (or t ′) can be obtained from e (or t) by replacing zero or
more occurrences of � with ⊥. We write �e� and �c� to denote
the expression or context obtained from e or c by replacing every
occurrence of � (regardless of label) with ⊥ (implying �e� ≤ e).

LEMMA 1. If e′ ≤ e then the following is true:
[[e′]] =�i ⇒ [[e]] =�i [[e]] =⊥⇒ [[e′]] = ⊥ [[e]] = i ⇔ [[e′]] = i

PROOF SKETCH. By showing that the rules of the operational se-
mantics preserve the ≤ relation on terms until an exception is
raised.

2.6 Semantic interpretation of contracts
The interpretation of a contract t is some set [[t]]⊆V . A closed ex-
pression e is said to satisfy t (written e : t) if it either diverges or pro-
duces a result in [[t]]. The rules in Figure 5 define [[t]] for contracts
t ∈ T . The semantics [[·]]e for the external contract language Te is
handled by viewing it as a refinement of T . (This means that exter-
nal types are interpreted as sets of internal values. See Appendix B
for a justification.) The definition of Safe is given in Section 2.9.
Notice that the semantics of contracts invokes the operational se-
mantics for terms—reflecting the fact that contract satisfaction is
determined based on runtime behavior.

Any diverging term satisfies all contracts while a term whose eval-
uation raises some contract exception �i satisfies no contract. For-
tunately, the same is true under [[·]]FF. If e satisfies t under [[·]]FF

then (W ξ′,ξ
t v) should not raise ξ in any context c ∈C that does not

contain ξ (assuming ξ �= ξ′). However, this condition is violated if
e itself raises ξ.

2.7 Findler-Felleisen-style contract checking
We found it remarkable that contract checking works at all, i.e.,
that one can prove it sound with respect to a simple compositional
semantics. Checking higher-order contracts requires type tests at

higher-order types. Membership in [[t1 → t2]] is, however, by Rice’s
theorem [14] undecidable! The trick used by the Findler-Felleisen
algorithm is to give up on this unattainable goal and settle for less.
When a runtime error is generated, the contract checker reports that
a certain claim of the form v : t is false. However, even the ability
to do that might come as a bit of a surprise since it seems to re-
quire being able to verify claims of the form v : t1 → t2 after all.
In particular, consider proving that ¬( f : (t1 → t2) → t3). This re-
quires showing the existence of a witness v such that v : t1 → t2
and ¬(( f v) : t3). As pointed out before, we generally cannot know
whether some v satisfies t1 → t2. What we do know, however, is
that even if v was not in t1 → t2, at the time f got blamed for not
being in (t1 → t2) → t3 this fact had not yet been found out. In
other words, the argument v of f has so far behaved like a value in
t1 → t2. The idea behind the soundness proof is to show that there
is some v′ that in this particular context acts just like v but which
actually does satisfy t1 → t2. The construction of v′ is one of the
technical difficulties of the soundness proof.

Let us look at two examples: First, let t1 stand for the contract

int
i→ (〈int;λx.x < i〉 → 〈int;λx.x > 0〉)

in the program fragment:

let x1 : t1 = λi.λk.k− i in let x2 : int = ((x1 4) 3) in x2

This code will fail at runtime and report a contract violation. The ar-
guments to x1 pass their respective tests while the return value does
not, so the contract checker produces �1, accusing x1 for breaking
t1. This is correct because the arguments to x1 constitute a coun-
terexample to x1 : t1.

Take a look at this variant of the program:

let x1 : t1 = λi.λk.i−k in let x2 : int = ((x1 3) 4) in x2

The body of x1 now produces a positive number as promised, if the
arguments satisfy their contracts. The order of the arguments, how-
ever, have been inverted so that they no longer satisfy x1’s contract.
The contract checker now raises �2 because x2 abuses x1. Notice
how important it is for the argument contract to be checked before
the result contract, as otherwise the wrong exception would have
been raised.

In our second example, let t1 stand for

(int → 〈int;λx.x ≥ 0〉) → 〈int;λx.x ≥ 0〉
and consider:

let x1 : t1 = λg.((g 1)−1) in
let x2 : int = (x1 (λx.(x−1))) in

x2

Again, this is a call of a function with an argument that is not in its
stated domain, but it escapes discovery because it is itself a func-
tion and never gets applied to a value that would witness this fact.
Instead, the Findler-Felleisen algorithm detects a violation of the
range contract of x1, so the result is �1 which says that x1 does not
satisfy its contract—even though the checker has not really seen
a counterexample! Blaming x1 is nevertheless correct here since
there exist other values, for example

λx.0 ∈ [[int → 〈int;λx.x ≥ 0〉]]
that can witness the problem with x1 in precisely the same way.

2.8 Behavioral correctness
An important property of contract checking is that it must not
change the behavior of a program in an essential way. By this we
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mean that as long as no exceptions are raised, there is no other way

of operationally distinguishing between e and (W ξ′,ξ
t e):

LEMMA 2. Let e′ = (W ξ′,ξ
t e). If [[c[e′]]] = i (with i ∈ I) then

[[c[e]]] = i. Also, if [[c[e]]] = i and [[c[e′]]] ∈V, then [[c[e′]]] = i.

PROOF SKETCH. Using a bi-simulation between expressions that
contain instances of W and corresponding terms with some of these
wrappers stripped out. For brevity we omit the details of the proof
here.

2.9 Safety
The concept of safety that we use here formalizes the familiar prac-
tice of coding as defensively as possible. It means that before at-
tempting any operation that could “go wrong” the program makes
sure that it will, in fact, not go wrong. For example, a safe program
in a dynamically typed language must verify that the arguments of
+ are indeed numeric and take evasive action if they are not.7 In
the higher-order case the caveat is that one can never be sure that
an unknown function does not itself raise an exception after being
called. The definition of safety takes this into account.

Behavioral safety: An expression e is safe if and only if it is im-
possible to trigger any of its syntactically embedded contract ex-
ceptions. Thus, e must remain semantically unchanged if some or
all of its �s are replaced with ⊥:
DEFINITION 1 (SAFETY, TAKE 1).

Safe1 = {v ∈V | �v� ∼= v}

Let Safesyn = {�v� | v ∈ V} be the set of syntactically safe values,
i.e., values that do not contain syntactic occurrences of �i. From
definition 1 it is then immediately clear that Safesyn ⊆ Safe1.

Safe in syntactically safe contexts: The second definition charac-
terizes safe values as those that do not trigger a contract exception
in any syntactically safe context (i.e., contexts without syntactic oc-
currences of �):
DEFINITION 2 (SAFETY, TAKE 2).

Safe2 = {v ∈V | ∀c ∈C.[[�c�[v]]] ∈V ∪{⊥}}

Safety as a greatest fixpoint: To explicitly deal with the problem
of safety in a higher-order setting we would like to say that a func-
tion f is safe whenever the result of applying f to a safe value v
is still safe. Unfortunately, this is not a definition for precisely the
same reason that makes the interpretation of recursive types diffi-
cult. The operator whose fixpoint we are after is not monotonic. To
get around this problem we weaken the condition and say that v is
safe if it is a “flat” value (0,1, . . . in our case) or a function returning
something safe whenever applied to a syntactically safe argument.
Thus, we take Safe3 to be the greatest fixpoint νS of the monotonic
operator S :
DEFINITION 3 (SAFETY, TAKE 3).

S(Q) = {v ∈V | ∀w ∈V.[[(v �w�)⊥]] ∈ Q∪{⊥}}
Safe3 = νS

Properties of safety: All notions of safety are pairwise equivalent.

7Depending on what one considers “wrong,” even statically
typed programs must perform certain runtime tests to be safe. Ex-
ample: index range checks in subscript expressions.

LEMMA 3.

Safe1 = Safe2 = Safe3

PROOF. This follows from lemmas 10 and 11, both shown and
proved in appendix A.1.

Since the three versions of safety are equivalent we drop the sub-
script and simply write Safe. We use the subscripted version when
we want to indicate the properties of Safe that we use for a proof.

By definition, it is impossible to operationally distinguish between
a v ∈ Safe1 and the corresponding �v�. By plugging this fact into
the definition of Safe3 we conclude that Safe is also the greatest
fixpoint of Ŝ , defined as

Ŝ(Q) = {v ∈V | ∀w ∈ Q.[[(v w)⊥]] ∈ Q∪{⊥}}
This coincides with our original intuition of safe values being those
that remain safe when applied to other safe values, a fact that can
be stated as follows:
LEMMA 4. e,e′ : safe ⇒ (e e′)⊥ : safe

PROOF. Follows immediately from Safe being the greatest fixpoint
of Ŝ and [[safe]] = Safe.

3 Soundness and completeness
We would like to show that [[·]]FF and [[·]] are the same, but this
is true only if we make certain assumptions about predicates. A
sufficient condition is all predicates being total. But even without
assuming totality we can show contract checking to be sound, i.e.,
[[t]]⊆ [[t]]FF. This means that any difference between [[t]]FF and [[t]]
can always be explained by non-terminating predicate code.8 In
any case, blame assignment is sound as every blame is justified by
a corresponding contract violation:
THEOREM 1 ([[t]]⊆ [[t]]FF). If

[[let x1 : te
1 = ee

1 in . . . let xn : te
n = ee

n in xn]]e = �i

then

∃v1 ∈ [[te
1]]

e, . . . ,vi−1 ∈ [[te
i−1]]

e

such that

[[ei[v j/x j] j=1...i−1]] �∈ [[te
i ]]

e∪{⊥}
where ei = C e

�i(ee
i ; /0).

Moreover, there are ve
1, . . . ,v

e
i−1 ∈ Ee such that

C e
�i(ve

j; /0) ∼= v j

i.e.

ei[v j/x j] j=1...i−1
∼= C e

�i(ee
i [v

e
j/x j] j=1...i−1

; /0)

Furthermore, we can get a completeness result if P0 is assumed to
contain only total predicates. (For example, we could take P0 to be
the set of functions that return false if one of their arguments is not
an integer, and which otherwise compute a boolean combination
of the results of comparing its arguments with one another. Such
a class could be defined by a suitable syntactic restriction on E.)
In this case every contract violation has the potential for causing
corresponding blame:

8For example, the contract checker cannot determine that
λx.λy.y does not satisfy 〈int → int;λz.(λx.(x x) λx.(x x))〉 because
it always gets stuck in the infinite loop that is the body of the pred-
icate.
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st(ε;t)
t ∈ Tsafe

st(x1, . . . ,xk ; int)

st(x1, . . . ,xk ; safe)

st(x1, . . . ,xk ;t) λx1. · · ·λxk .λx.e ∈ Safe
st(x1, . . . ,xk ;〈t;λx.e〉)

st(x1, . . . ,xk ;t1) st(x1, . . . ,xk ,x;t2)

st(x1, . . . ,xk ;t1
x→ t2)

Figure 6. Safe contracts.

THEOREM 2 ([[t]]⊇ [[t]]FF). If all predicates in P 0 are total and
∃v1 ∈ [[te

1]]
e, . . . ,vi−1 ∈ [[te

i−1]]
e with

[[e[v j/x j] j=1...i−1]] �∈ [[te]]e∪{⊥} where e = C e
�i(ee; /0)

for some ee ∈ Ee with free variables x1, . . . ,xi−1, then there are
ee

1, . . . ,e
e
i−1 ∈ Ee and p ∈ P such that:[[
let x1 : te

1 = ee
1 in . . . let xi−1 : te

i−1 = ee
i−1 in

let xi : te = ee in p

]]e

=�i

(The ee
1, . . . ,e

e
i−1 can be picked from the set of closed expressions.)

3.1 The central lemma
Before we can state the central lemma we need to introduce a safety
restriction on contracts (Figure 6). Safety guarantees that predicates
within contracts do not raise exceptions of their own. The formula
st(x1, . . . ,xk;t) expresses that t, which may have free variables in
{x1, . . . ,xk}, is safe. A closed contract t is in Tsafe if st(ε;t) where ε
denotes the empty sequence of variables.

By slight abuse of notation, let’s write W ξ′,ξ
t for λx.(W ξ′,ξ

t x) and

W ξ′1,ξ1
t1 ◦W ξ′2,ξ2

t2 for λx.(W ξ′1,ξ1
t1 (W ξ′2,ξ2

t2 x)).

An easy induction on the structure of contract t shows that contract
wrappers have a telescoping property:

W ξ1,ξ2
t ◦W ξ3,ξ4

t = W ξ1,ξ4
t

Thus, wrappers W�i,⊥
t and W ⊥,� j

t can be seen as two “halves” of

W �i,� j

t . The central lemma states that one half coerces safe val-
ues into values satisfying the contract while the other half coerces
contract-satisfying values into safe values:9

LEMMA 5 (CENTRAL LEMMA). For any ξ ∈ X and any t ∈
Tsafe:

a. v : t ⇒ (W ⊥,ξ
t v) : safe

b. v : safe ⇒ (W ξ,⊥
t v) : t

Once again abusing notation, we can render this as:

W ⊥,ξ
t : t → safe W ξ,⊥

t : safe → t

3.2 Proof of soundness
The proof for Theorem 1 uses Lemma 5(b) to construct the required
values v1, . . . ,vi−1 and then finishes by applying Lemma 5(a).

9One is tempted to look for an embedding-projection pair here,
but notice that neither W�i ,⊥

t ◦W ⊥,� j

t = W �i,� j

t nor W ⊥,� j

t ◦W �i ,⊥
t =

W ⊥,⊥
t is an identity on a domain we are interested in.

PROOF THEOREM 1 (SKETCH). First we define a substitution σ
defined by the equation

σ(xi) = C e
�i(ee

i ; /0)[(W �i,� j

C t (t j)
σ(x j))/x j]

j=1...i−1

Let e be the expression (W⊥,�n

C t (te
n)

σ(xn)). Note that e is the let-
expansion of the original program’s internal form.

Suppose [[e]] =�i. Intuitively, there is a particular occurrence of an
exception label in e, the offending �i, which gets returned as the
exception value. We can write e as

c
[(

W � j ,�i

ti C e
�i(ee

i ; /0)[(W �i,�k

tk σ(xk))/xk]k=1...i−1

)]
such that the offending �i is not in c ∈C. Since the offending �i is
neither in c nor in any of the σ(xk), using ei = C e

�i(ee
i ; /0), we have

[[�c�
[(

W ⊥,�i

ti ei[(W
�i,⊥

tk �σ(xk)�)/xk]k=1...i−1

)]
]] =�i

Pick vk for k = 1 . . . i−1 to be (W �i,⊥
tk �σ(xk)�). By Lemma 5(b)

we find vk ∈ [[te
k ]]

e as required. Each vk has a semantically equiva-
lent external version ve

k (see Appendix B). Substituting vk into the
above equation yields

[[�c�
[(

W ⊥,�i

ti ei[vk/xk]k=1...i−1

)]
]] =�i

which means that ei[vk/xk]k=1...i−1 : [[te
i ]]

e would contradict
Lemma 5(a).

The proof sketch for Theorem 2 is shown in Section 4.2.

4 Assuming total predicates
In this section we consider the case that each ρ ∈ P0 in a predi-
cate contract 〈t;λxn.(. . . (ρ x1)⊥ . . .xn)⊥〉 is a total function from n
arbitrary values to int. This assumption implies that contracts are
always in Tsafe. Moreover, relying on Lemma 2 we can equivalently
write the operational semantics for contract wrappers in a simpler
way:

(W ξ′ ,ξ
t1

z→t2
λx.e) ↪→ λy.(W ξ′ ,ξ

t2 [y/z] ((λx.e) (W ξ,ξ′
t1 y))⊥)

(W ξ′,ξ
〈t;λx.e〉 v) ↪→ ((λx.e) v)⊥?ξ (W ξ′,ξ

t v)

4.1 A simple proof of the central lemma
We now give a proof of Lemma 5 under the assumption of totality
for predicates:

PROOF CENTRAL LEMMA. By simultaneous induction on the
structure of t. We only show the two most important cases. (All
other cases are trivial.) The first is t = t1

z→ t2 and v = λx.e:

a. Consider any syntactically safe w: By induction hypothesis

(part b.) we have (W ξ,⊥
t1 w) : t1, so using the contract on λx.e

we get ((λx.e) (W ξ,⊥
t1 w)) : t2[(W

ξ,⊥
t1 w)/z]. If this expression

diverges, then by definition it satisfies t2[w/z]. Otherwise, we
get the same result by noting that [[t2[w/z]]] must be equal to

[[t2[(W
ξ,⊥

t1 w)/z]]]. This again follows from Lemma 2 since
otherwise one of the total integer-result predicates would have

to be able to distinguish between w and (W ξ,⊥
t1 w). Using the

induction hypothesis (part a.) we find that

(W ⊥,ξ
t2[w/z] ((λx.e) (W ξ,⊥

t1 w)))

is safe. By definition of Safe3, using the (simplified) rule for

W ξ′,ξ
t1

z→t2
this means that (W ⊥,ξ

t1
z→t2

λx.e) is safe.
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b. Consider any w : t1: By induction hypothesis (part a.) we

know that (W⊥,ξ
t1 w) is safe, so by Lemma 4 we find

((λx.e) (W ⊥,ξ
t1 w))⊥ to be safe as well. By induction hypoth-

esis (part b.) this means that:

(W ξ,⊥
t2[w/z] ((λx.e) (W ⊥,ξ

t1 w))⊥) : t2[w/z]

Using our semantics for t1
z→ t2 and the corresponding (sim-

plified) operational rule we get the desired result, namely

(W ξ,⊥
t1

z→t2
λx.e) : t1

z→ t2

The other interesting case is t = 〈t′;λx.e〉:
a. Since v ∈ [[〈t ′;λx.e〉]] we also have v ∈ [[t′]] and

[[((λx.e) v)⊥]] = 1. But (W ⊥,ξ
〈t ′;λx.e〉 v) makes a transition

to ((λx.e) v)⊥?ξ(W ⊥,ξ
t ′ v) and finally evaluates to [[W⊥,ξ

t ′ v]],
which is safe by part a. of the induction hypothesis.

b. ((λx.e) v)⊥ must evaluate to an integer (by our totality as-
sumption). If that result is not 1, then

((λx.e) v)⊥?⊥(W ξ,⊥
t ′ v)

raises the ⊥ exception which is in [[t′]]. The outcome 1

makes the final result (W ξ,⊥
t ′ v), which by induction hypoth-

esis (part b.) is in [[t ′]]. Furthermore, Lemma 2 tells us that

((λx.e) (W ξ,⊥
t ′ v)) cannot evaluate to anything other than 1,

so the result is indeed in [[〈t′;λx.e〉]].
4.2 Completeness
We now show that [[·]] is maximal under the totality assumption.
First we need the following lemma:

LEMMA 6. If v : t ′ but ¬(c[v] : t), then ¬(c[(W �i,� j

t ′ v)] : t)

The proof for this is shown in appendix A.2.

PROOF THEOREM 2. To complete the proof of Theorem 2, recall
that we have v1 ∈ [[te

1]]
e, . . . ,vi−1 ∈ [[te

i−1]]
e such that

C e
�i(ee; /0)[v j/x j] j=1,...,i−1 does not satisfy C t(te). We pick

ee
1, . . . ,e

e
i−1 equivalent to �v1� . . . ,�vi−1�. (See Appendix B for how

this can be done.) Now consider the let-expansion of ee which is
equivalent to

C e
�i(ee; /0)[(W �i,� j

C t(t j)
�v j�)/x j]

j=1...i−1

It is easy to see that �v j� : t j , so according to Lemma 6 this expres-
sion, let’s call it ê, does not satisfy C t(te

i ).

What remains to be shown is the existence of a context c such that
c[(W �i+1,�i

ti ê)] evaluates to �i. From such a c one can then easily
construct a p that completes the proof, for example p = let xi+1 :
int = ((λy.0) c[xi])⊥ in xi+1. (For this we need c to be syntactically
safe. Again, see Appendix B for details.)

The construction of c proceeds by induction on the structure of ti.
We make use of the fact that the constructed context is always strict
in its hole. First we note that if evaluating ê raises an exception,
then this exception must be �i since all other available � j would,
by Theorem 1, blame one of the vj , and those do satisfy their re-
spective contracts. We now consider the case [[ê]]∈V and construct
c according to ti.

int It suffices to make c strict in its hole so that the wrapper for xi
will be evaluated, causing �i to be raised. For example, we
can simply use [·].

e " e

e′1 " e1 e′2 " e2

(e′1 e′2)⊥ " (e1 e2)ξ

e′ " e t ∈ Tsafe

(W ⊥,⊥
t e′) " e

t " t

t ′1 " t1 t ′2 " t2

t ′1
x→ t ′2 " t1

x→ t2

e′1 " e1 · · · e′k " ek

f⊥(e′1, . . . ,e
′
k) " fξ(e1, . . . ,ek)

e′ " e t′ " t

(W ⊥,ξ
t′ e′) " (W ξ′ ,ξ

t e)

e′ " e t′ " t

(W ξ′,⊥
t′ e′) " (W ξ′,ξ

t e)

t ′ " t φ′ " φ
〈t ′;φ′〉 " 〈t;φ〉

Figure 7. A partial order on expressions and contracts.

safe We pick c to be a context witnessing [[ê]] �∈ Safe2. Since
the witnessing context itself is (syntactically) safe, it must be
strict in its hole to be able to trigger the exception.

〈t;φ〉 We use the induction hypothesis, construct the c′ correspond-
ing to t, and make c = c′. Because of totality, φapplied to [[ê]]
must be either true or false. If it is false, the wrapper will trig-
ger �i (because c is strict in its hole). If the predicate returns
true, then [[ê]] must violate t, so by induction hypothesis c will
cause �i to be raised.

t1
x→ t2 If [[ê]] is of the form λy.e′, then there must be some v ∈ [[t1]]

such that ((λy.e′) v)⊥ does not satisfy t2[v/x]. By Lemma 6

this means that ((λy.e′) (W �i,�i+1

t1 v))⊥ also violates t2[v/x].
Using the induction hypothesis for this contract-expression
combination, we pick a c′ in such a way that

c′[(W �i+1,�i

t2[v/x] ((λy.e′) (W �i,�i+1

t1 v))⊥)]

raises �i. But then c′[((W �i+1,�i

t1
x→t2

λy.e′) �v�)
⊥
] will also trig-

ger �i. This means that we can pick c to be c′[([·] �v�)⊥]. If
ê does not evaluate to λy.e′, then any strict c such as [·] will
do.

This concludes our demonstration that—given totality of
predicates—our semantics for contracts [[·]] is the same as [[·]]FF.

5 Not assuming total predicates
In the absence of totality, there are two potential problems with
predicates in contracts: they might diverge, or they might raise con-
tract exceptions of their own. We cannot completely avoid either
problem. However, by maintaining the safety of contracts we man-
age to contain the damage well enough to keep soundness intact.
As hinted earlier, contract safety relies on details in the translation
of external types (C t(·), where ⊥ is used as the exception annota-
tion on predicate code; see Section 2.2) and the way the operational
semantics inserts wrappers that raise ⊥ when predicate code mis-
behaves (see Section 2.4).

Without totality, neither the simplifications of the operational rules
used in Section 4 nor conclusions such as

[[t2[w/z]]] = [[t2[(W
ξ,⊥

t1 w)/z]]]

are true. To prove Lemma 5 under these conditions, we have to
strengthen the induction hypothesis, using a partial order " on
terms and contract expressions. The definition of this relation,
which is a generalization of the ≤ introduced in Section 2, is shown
in Figure 7. Roughly, we say e′ " e (or t ′ " t) if e′ (or t ′) can be ob-
tained from e (or t) by turning some or all occurrences of � into ⊥
and, at the same time, inserting zero or more wrappers of the form
W ⊥,⊥

t̂ where t̂ ∈ Tsafe.

196



Using this relation we can state a generalization of Lemmas 1 and 2
as follows:

LEMMA 7. If e′ " e and [[e′]] = i for some i∈ I, then [[e]] = i. Also,
if [[e]] = i and [[e′]] ∈V, then [[e′]] = i.

The proof for this proceeds like that for Lemma 2 (using a bi-
simulation between terms related via "). We omit the details here
and just point out that the basic idea is to have e′ either diverge or,
as long as it does not diverge, behave exactly like e.

5.1 The stronger version of the central lemma
Now we are ready to state the stronger version of Lemma 5:

LEMMA 8 (STRONGER VERSION OF CENTRAL LEMMA). For
any ξ ∈ X, any t′ ∈ Tsafe, and t such that t′ " t

a. v : t ⇒ [[(W ⊥,ξ
t ′ v)]] : safe

b. v : safe ⇒ [[(W ξ,⊥
t ′ v)]] : t

PROOF. As in the proof given in Section 4 we only consider the
two most important cases.

t1
z→ t2,λx.e By definition, we have t′1 " t1,t ′2 " t2.

a. Using the fact that t′2[(W
⊥,⊥

t ′1
v)/z] " t2[(W

ξ,⊥
t ′1

v)/z]
we need to show that the result of applying

(W ⊥,ξ
t ′1

z→t ′2
λx.e)

to a safe value v is safe. This can be seen as follows:

(W ⊥,ξ
t ′2[(W ⊥,⊥

t ′1
v)/z]

((λx.e)

t1︷ ︸︸ ︷
(W ξ,⊥

t ′1

safe︷︸︸︷
v ))︸ ︷︷ ︸

t2[(W ξ,⊥
t ′1

v)/z]

)

︸ ︷︷ ︸
safe

For this, from inside-out, we are using the assumption
about v, the induction hypothesis (b.), the assumption
about the contract on λx.e, and the induction hypothesis
(a.).

b. Let v be a value in t1. Then, by induction hypothesis

(a.), (W ⊥,ξ
t ′1

v) is safe, so by definition of Safe1 it is, in

fact, equal to (W⊥,⊥
t ′1

v), which means that we have:

t ′2[(W
⊥,ξ

t ′1
v)/z]∼= t ′2[(W

⊥,⊥
t ′1

v)/z] " t2[v/z]

Using this we need to show that the result of applying

(W ξ,⊥
t ′1

z→t ′2
λx.e) to v satisfies t2[v/z], which can be seen

from the following:

(W ξ,⊥
t ′2[(W ⊥,ξ

t ′1
v)/z]

((λx.e)

safe︷ ︸︸ ︷
(W ⊥,ξ

t ′1

t1︷︸︸︷
v ))︸ ︷︷ ︸

safe

)

︸ ︷︷ ︸
t2[v/z]

Again, from inside-out, we used the contract satisfac-
tion assumption about v, induction hypothesis (a.), the
safety assumption about λx.e, and induction hypothesis
(b.).

Remark: Notice that under the assumption of t′1
z→ t ′2 being in

Tsafe we find that all contracts in wrapper expressions are also
in Tsafe.

〈t;φ〉 By definition we have t′ " t and φ′ " φ.

a. Let v ∈ [[〈t;φ〉]], which means that v ∈ [[t]] and [[(φv)]] ∈
{⊥,1}. Consider (W ⊥,ξ

〈t ′;φ′〉 v) which expands into

(φ′ (W ⊥,ξ
t ′

t︷︸︸︷
v )︸ ︷︷ ︸

safe

)

︸ ︷︷ ︸
safe

?ξ(W ⊥,ξ
t ′

t︷︸︸︷
v )︸ ︷︷ ︸

safe

As before, the annotations show the conclusions we can
draw from induction hypotheses and contract satisfac-
tion assumptions. The only way the shown expression

might not be safe is by having (φ′ (W ⊥,ξ
t ′ v)), which by

the properties of safety is the same as (φ′ (W ⊥,⊥
t ′ v)),

yielding a proper value other than 1. By Lemma 7 this
would imply that (φv) also returns a value other than 1,
and that contradicts the assumptions.

b. Let v ∈ Safe and consider (W ξ,⊥
〈t ′;φ′〉 v) which expands

into

(φ′

safe︷ ︸︸ ︷
(W ⊥,⊥

t ′

safe︷︸︸︷
v ))︸ ︷︷ ︸

safe

?⊥(W ξ,⊥
t ′ v)

Clearly, if the final value here is not ⊥, then it must be
true that

[[(φ′ (W ⊥,⊥
t ′ v))]] = 1

and the result is (W ξ,⊥
t ′ v). But in that case, since φ′ " φ

by Lemma 7 we also have [[(φ (W ξ,⊥
t ′ v))]] = 1, which

means that the value satisfies 〈t;φ〉.
Lemma 5 is implied by Lemma 8. As a result, we have a proof
for Theorem 1 (stating the soundness of contract checking) even in
the more general setting where contract predicates might not termi-
nate, and where the substitution of unsafe terms into predicate terms
can cause contract exceptions from predicate code. The key here is
to carefully control the latter effect: contract exceptions raised by
predicate code always correctly point to genuine contract violations
in other parts of the program.

6 Recursive contracts
Adding recursive contracts µα.t to the contract language and ac-
counting for this change in the operational semantics is relatively
straightforward.10 Here are the changes:

TyVar ::= α | β | . . .
T e ::= . . . | µTyVar.Te | T e ∨T e

T ::= . . . | µTyVar.T | T ∨T

C t(µα.te) = µα.C t (te)
C t(te

1 ∨ te
2) = C t(te

1)∨C t (te
2)

10We also add a form of sum contracts t1 ∨ t2 where [[t1]] and
[[t2]] are recursively separable (meaning there is a computable total
predicate on V which is true for all of [[t1]] and false for all of [[t2]]).
Such sums are sometimes called tidy sums.
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(W ξ′,ξ
µα.t v) ↪→ (W ξ′,ξ

t[µα.t/α] v)

(W ξ′,ξ
t1∨t2 v) ↪→

{
(W ξ′,ξ

t1 v) : if v ∈ [[t1]]
(W ξ′,ξ

t2 v) : if v �∈ [[t1]]

Because of the rule in the operational semantics that identifies
µα.F(α) with F(µα.F(α)) (where F is a contract function), struc-
tural induction on contract expression breaks down in the presence
of recursive contracts. If we could restrict F to covariant contract
functions, then we would be able to salvage the situation using co-
induction. For many uses of recursive contracts this is sufficient.
However, there are useful applications of recursive types (and con-
tracts) where F is not covariant. For example, several popular en-
codings of object types have this property.

There is another reason why considering recursive contracts in the
context of contract checking is useful: it provides us with a different
(but consistent!) view on the problem of how to interpret Findler
and Felleisen’s original unrestricted predicate contracts.

6.1 Indexing
We have made extensive use of structural induction, so our proofs
do not work in the presence of recursive contracts. Fortunately, it is
straightforward (although tedious) to adopt Appel and McAllester’s
indexed model of recursive types [1] and to modify proofs accord-
ingly.

In the indexed model, a contract t is interpreted as a set [[t]]idx
of indexed terms 〈k,v〉. The idea is that v is a k-approximation
of a value satisfying t, i.e., that no context c can tell in k or
fewer steps that v does not satisfy t. The original interpretation
of contracts can then be recovered as [[t]] =

T

k{v | 〈k,v〉 ∈ [[t]]idx}.
Along with this interpretation of contracts as index-value pairs goes
an indexed contract-satisfaction relation e:kt, which is defined as
e⇓ jv∧〈k− j,v〉 ∈ [[t]]idx.

Of course, an adaptation of the proof also requires an indexed model
of safety. But with recursive contracts in the language we can define
safety as a contract:

safe′ = µα.int∨ (α → α)

Although this looks suspiciously like the equation often used to
characterize the domain of untyped λ-terms [15], it should be noted
that here it does not refer to the set of all possible values but rather
a proper subset thereof. (Of course, the original untyped λ-calculus
does not have contract exceptions, so all terms are safe there.)

Significant effort in our non-indexed proofs was spent on showing
that (abusing notation)

Safe = µα.int∨ (Safesyn → α)

where Safesyn = {�w� | w ∈V} (see Lemmas 3 and 4).

Here F = Λα.int ∨ (Safesyn → α) is covariant, so co-induction
works. In the indexed proof, safety can be treated directly as a con-
tract, so no such detours are necessary. Lemma 5 can be restated
as

LEMMA 9 (CENTRAL LEMMA WITH RECURSIVE CONTRACTS).
If t ∈ Tsafe then

e:kt ⇒ (W ⊥,ξ
t e):k+1safe e:ksafe ⇒ (W ⊥,ξ

t e):k+1t

The proof for this proceeds by induction on k, using a close adapta-
tion of the techniques presented by Appel and McAllester [1]. We
omit the details here since they do not add any new insights.

6.2 Recursion, safety, and predicates
We presented our interpretation of safe as Safe in an ad-hoc fashion.
Clearly, we made the right decision since we ended up with a sound

(and under reasonable assumptions complete) model. However, we
could have motivated our choice by looking at the statement of
Lemma 5 and noting that the contract wrapper for the always-true
predicate is simply the identity. If the identity must map safe values
to values satisfying the contract and vice versa, then satisfying the
contract and being safe should better mean the same.

Still, as before, our choice is guided by our desire for a particular
theorem or lemma to hold. Although we feel that this does consti-
tute strong motivation, it still might seem like a matter of personal
taste.

The treatment of recursive contracts, together with the observa-
tion that safe is such a contract, gives yet another explanation for
[[safe]] = Safe, this time deriving this fact directly from the rest of
the existing model and not depending on any proof details.

Observe that W ξ′,ξ
µα.int∨(α→α) is an identity function. The formal

proof for this proceeds by induction on the number of unfoldings of
the recursive contract. Informally, the wrapper is clearly the iden-
tity on int. All other values are of the form λx.e where the wrapper
makes two copies of itself—one wrapped around the argument, the
other wrapped around the result. But if the copies are identities,
then so is the original.

We should consider contracts as being identical if their correspond-
ing wrappers are semantically equivalent. Thus, safe is equivalent
to µα.int∨ (α → α), showing that our choice of interpretation for
safe is more than just a trick to make the proof for Lemma 5 go
through. Another consequence of being able to define safe as a re-
cursive contract is that we can keep the full expressive power of the
original Findler-Felleisen system while dropping our ad-hoc addi-
tion of safe from the language of contracts.

As noted in the introduction, their system has unrestricted predicate
contracts 〈φ〉which are operationally equivalent to our 〈safe;φ〉. We
originally started with a hunt for the proper semantics of 〈φ〉. By
the above equivalence, the answer turns out to be {v ∈ Safe | (φv)∈
{1,⊥}} and not, as naively expected, {v ∈V | (φv) ∈ {1,⊥}}. No-
tice that “counterexamples” like that in Section 1 work in dynami-
cally typed settings such as DrScheme but not in the calculus given
in Findler and Felleisen’s paper [9] because they fail to statically
type-check there.

A contract places complementary burdens of responsibility on an
expression and its context. This is the key to understanding why
[[〈λx.1〉]] = Safe. The contract checker does nothing at all here, so
expression and context must jointly do their best at avoiding con-
tract exceptions. This idea is precisely captured by our notion of
safety.

7 Conclusions and outlook
We developed an independent model of Findler and Felleisen’s con-
tracts for higher-order functions and proved the soundness of their
contract checker. Under reasonable assumptions, it is also com-
plete. In short, the contract checker discovers all violations and
always assign blame properly.

The main technical insight from these proofs is in the simple and
apparently fundamental theoretical properties of contract wrappers
expressed in the central lemma (Lemma 5). The central lemma
shows that there is strong interaction between the semantics of con-
tracts and the notion of safety. Furthermore, the fact that Findler-
Felleisen-style unrestricted predicate contracts 〈φ〉 are operationally
equivalent to our 〈safe;φ〉 implies that the semantics of 〈φ〉 has to
mention safety. In our system we can avoid this “leakage” of the
soundness proof into contract semantics by eliminating unrestricted
predicate contracts, letting the restricted version take their place.
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The full expressiveness of the original system can be restored by
making it possible to express safety explicitly as a contract—either
using a new ad-hoc phrase like safe or via recursive contracts.

Under reasonable assumptions about predicates, our model [[·]] for
contracts is exactly equivalent to the one implied by the contract
checking algorithm. Moreover, while completeness does not stay
intact, soundness is not compromised even if we drop those ex-
tra assumptions. It should be noted, however, that this result cru-
cially relies on the fact that our language is essentially pure, the
only effects being non-termination and contract exceptions. If the
language has constructs with general effects (mutation, I/O), then
a compositional semantics that preserves soundness seems out of
reach at this point. In the calculus shown here, contracts cannot
interfere with a program’s execution other than by changing the ter-
mination behavior. To make them into a reliable debugging tool
even in the general case with arbitrary effects, one definitely needs
to preserve this property. One should be able to remove contracts
without altering the semantics of the program in an essential way.
A separate investigation of the restrictions on predicates that one
needs for this is currently under way [7].

There are several possible future directions for this work. We have
not extended the algorithm to handle polymorphism, although it
may not be difficult to use higher-order wrappers, i.e., functions
from wrappers to wrappers, to treat contracts of the form ∀α.t in-
terpreted as

T

t ′∈T [[t[t ′/α]]]. Our soundness proof is for a language
with call-by-value semantics. Since most real-world languages that
are pure (e.g., Clean [3] or Haskell [11]) are also lazy, it seems
desirable to translate our results to a lazy setting. We believe that
doing so will not be difficult.

Of course, a natural direction for further work is to implement con-
tracts in a strongly typed language such as ML or Haskell.

7.1 Program verification
It also seems possible to apply ideas from contract checking to
static program verification. In particular, symbolic evaluation of
programs with contract wrappers might be able to statically verify
that a particular contract exception �i can never be raised, i.e., that
module ee

i satisfies ti in the [[·]]FF model. Assuming completeness
this implies contract satisfaction in the [[·]] model as well.

One way of showing that �i cannot be raised is to eliminate it from
the program. (There are no operational rules that generate new ex-
ceptions.) One might hope to rely on the telescoping property of
contract wrappers, but this law is applicable only if the wrappers in
question are indexed by the same contract:

W ξ′2,ξ2
t ◦W ξ′1 ,ξ1

t = W ξ′2 ,ξ1
t

Now consider t1 and t2 with [[t1]]⊆ [[t2]]. In this case we would like
to argue that the left side of

W ξ′2,ξ2
t2 ◦W ξ′1 ,ξ1

t1

is redundant because of the “stronger” wrapper on the right. How-
ever, the right side is stronger only from the point of view of the
wrapped value while it is actually the left side that is stronger from
the context’s point of view. Thus, we cannot simply eliminate either
t1 or t2, but we can argue that neither ξ′1 nor ξ2 could ever be raised
here. It is possible to express this, e.g., as

W ξ′2,⊥
t2 ◦W ⊥,ξ1

t1

but doing so seems clumsy. A leaner notation separates the two

roles of W ξ′,ξ
t (watching the value and watching the context) by

defining each contract wrapper as the composition of two parts:

W ξ′,ξ
t = W −ξ′

t ◦W +ξ
t

Operational rules for W −ξ′
t and W +ξ

t are easy to set up. The main
idea is to alternate between W− and W + instead of swapping ex-
ception superscripts in contravariant positions. Here are the rules
(abusing notation when “raising” ξ) for a simple contract language
with only int and →:

(W +ξ
int i) → i

(W +ξ
t1→t2 λx.e) → λy.(W +ξ

t2 ((λx.e) (W −ξ
t1 y))⊥)

(W +ξ
t v) → ξ ;otherwise

(W −ξ
t1→t2 λx.e) → λy.(W−ξ

t2 ((λx.e) (W +ξ
t1 y))⊥)

(W −ξ
t v) → v ;otherwise

W − and W + commute regardless of their contract subscripts, and
assuming [[t1]]⊆ [[t2]] we have:

W +ξ′
t2 ◦W +ξ

t1 = W +ξ
t1 and W −ξ′

t2 ◦W −ξ
t1 = W −ξ′

t2

Notice that the requirements on the context expressed, by W−, are
preconditions while the requirements on the value, expressed by
W +, are postconditions. Thus, the above laws precisely capture the
fact that one has to keep the weakest precondition and the strongest
postcondition [10, 4]. Using [[t1]]⊆ [[t2]] we get

W ξ′2,ξ2
t2 ◦W ξ′1 ,ξ1

t1 = W −ξ′2
t2 ◦W +ξ2

t2 ◦W −ξ′1
t1 ◦W +ξ1

t1

= W −ξ′2
t2 ◦W −ξ′1

t1 ◦W +ξ2
t2 ◦W +ξ1

t1

= W −ξ′2
t2 ◦W +ξ1

t1

which concisely captures the idea of eliminating contract exceptions
(here ξ2 and ξ′1) that can never be raised.
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A Additional proofs
A.1 Safe1 = Safe2 = Safe3
We split this statement into two parts:

LEMMA 10. Safe1 = Safe2

PROOF ⊆. By definition we have v = �v�, so if [[�c�[v]]] = � then
also [[�c�[�v�]]] = �, but � does not even occur in �c�[�v�].
PROOF ⊇. Suppose v �= �v� and c is a witnessing context that dis-
tinguishes between the two. By Lemma 1 it must be the case that
[[c[v]]] =�i for some i. �i is generated from some particular occur-
rence of �i in either v or c, so it must also be the case that either
[[�c�[v]]] = �i or [[c[�v�]]] = �i.11 But since c is the witnessing
context for v and �v� being different, the latter is impossible. This
concludes the proof.

LEMMA 11. Safe2 = Safe3.

PROOF ⊆. Indirect: If v �∈ Safe3 then there must be a finite se-
quence of values v1, . . . ,vk such that

[[(. . . (v �v1�)⊥ . . .�vk�)⊥]] = �
but [[(. . . ([·] �v1�)⊥ . . .�vk�)⊥]] is a syntactically safe context.

PROOF ⊇. Indirect: Pick a v ∈ Safe3 \Safe2 and a corresponding
c ∈ C with �c�[v]⇓n�i for some i so that n is minimized (i.e., we
pick an unsafe but operator-safe value together with the context that
demonstrates non-membership in Safe2 in the smallest number of
evaluation steps).

The number n cannot be 0: there are no occurrences of � in �c�,
so if �c�[v]⇓0�i then also v⇓0�i, which contradicts the assumption
that v ∈ Safe3.

For the case of n > 0 there is a unique evaluation context ĉe ∈Ce and
corresponding ê∈ E such that ĉe{ê}= �c�[v] where ê is the next βv-
reduction to do in �c�[v] [6]. The proof proceeds by case analysis on
the possible shapes of ê and shows that the transition system defin-
ing the operational semantics can perform at least one step which
gives rise to another pair (v′,�c′�) with v′ ∈ Safe3 \Safe2 such that
�c′�[v′]⇓n−1�i.

If ê, which cannot be a subexpression of the value v, is a subex-
pression of �c�, this is immediately clear. The remaining cases are
those where v is a subexpression of ê. For brevity we only show the
analysis for the two most interesting situations:

1. If v = λx.b and ê = (v �v′�)⊥ for some subexpression �v′� of
�c�, then ĉe is also syntactically safe. Moreover, since v ∈
Safe3 we can consider d = b[v′/x] and find that [[d]] ∈ Safe3
as well. This means that for some k with 0 < k < n we have
d⇓kd′ and d′ ∈ Safe3. But ĉe[d′]⇓n−k−1�i, which is the con-
tradiction that we are looking for.

2. If ê = ((λx.b) v′)⊥ where v is a subexpression of v′ (v′ =
c0[v]), then b,ĉe, and c0 are syntactically safe. We know
that ĉe[b[v′/x]]⇓n−1�i. Since the value �i is generated from
some single occurrence of �i which must be within one of
the copies of v within b[v′/x], we can replace all occurrences
of � in every other copy of v by ⊥, thus rewriting b[c0[v]/x]
as �c1�[c0[v]]. This means that ĉe[�c1�[c0[v]]]⇓n−1�i, which

11Making this informal argument precise is not difficult but te-
dious. An extended version of this paper with these details included
can be obtained from the authors.

is the contradiction we are looking for since ĉe[c1[c0[·]]] is a
syntactically safe context.

A.2 Preservation of contract violation
Lemma 6 states that, under the totality assumption of Section 4, if

v : t ′ and ¬(c[v] : t) then ¬(c[(W�i,� j

t ′ v)] : t).

PROOF. By induction on the structure of t:
int Because of totality the extra wrapper cannot cause

non-termination. But by Lemma 2, if c[(W�i,� j

t ′ v)] were to
return an integer, then so would c[v].

safe We use the definition for Safe2 and consider the witnessing
context c′ where [[�c′�[c[v]]]] = �k while

[[�c′�[c[(W �i,� j

t ′ v)]]]] ∈ V ∪ {⊥}. The remainder of this
case proceeds like the proof for Lemma 2 (e.g., using bi-
simulation), showing that given totality of predicates the sec-
ond term must raise either �k or �i. (It cannot raise � j since
v satisfies t ′.)

〈t;φ〉 By Lemma 2 and totality, the results of φ have to agree in
both cases. Now use the induction hypothesis with t.

t1
x→ t2 The only non-trivial case is where c has the form λx.c′, and

by definition there has to be a w : t1 such that ¬(c′[v][w/x] :

t2[w/x]) while c′[(W �i,� j

t ′ v)][w/x] : t2[w/x]. Consider c′′ =
c′[w/x] and use the induction hypothesis with t2.

B Witness expressions
On a number of occasions, in particular in the proof of Theo-
rem 1 shown in Section 3.2 and also in the proof of Theorem 2
in Section 4.2, we construct values v ∈V , e.g., as witnesses for the
fact that some contract is being violated. Since the main theorem
is stated in terms of the external language, we need semantically
equivalent ee ∈ Ee for these v. The construction of such equivalents
is possible because all our witnesses v ∈ V are syntactically safe,
and given sufficient language support safety can be “coded up.”

A more realistic language Ee than the one we have—for simplicity
of the presentation—restricted ourselves to would have some form
of conditional that can branch on equality to 1. If the language
also comes with a mechanism for separating functions from inte-
gers, e.g., via some typecase construct, then all witnesses �v� have
an operationally equivalent counterpart in Ee. (Typecase might be
troublesome for the static type system of the surface language, but
if the surface language is indeed statically typed and “safe” in the
sense “well-typed programs do not go wrong”, then typecase is not
even needed since all of its outcomes would be statically known.)

Let us be more concrete. Suppose (tycase e1 e2 e3) evaluates to
[[e2]] if [[e1]] ∈ [[int]] and to [[e3]] if [[e1]] = λx.e′. Now consider an
application (ee

1 ee
2) and re-code it as ((λ f .(tycase f Ω ( f ee

2))) ee
1)

where Ω is a diverging term, e.g., Ω = ((λx.(x x)) λx.(x x)) and run
that through the translator C . The implicit exception inserted by the
translator ends up being “protected” by our explicit test. This means
that the result is equivalent to (e1 e2)⊥ (where e1 is the translation
of ee

1 and e2 that of ee
2). Implicit exceptions in primitive operations

can be protected in a similar fashion.

Finally, in the proof for Theorem 1 we need to be able to represent

wrappers of the form W⊥,⊥
t and W �i,⊥

t . Given conditionals and
typecase, coding up a wrapper in a type-directed fashion is straight-
forward. Raising ⊥ just means going into an infinite loop. Raising
�i can be simulated by, e.g., evaluating (0 0). Since the overall
expression gets translated using Ce

�i(·; /0) (see Theorem 1), the ex-
ception annotation on (0 0) will indeed be �i.
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