
Regularized Regression
under Quadratic Loss, Logistic Loss,

Sigmoidal Loss, and Hinge Loss

Here we considerthe problem of learning binary classiers. We assume a set
X of possible inputs and we are interested in classifying inputs into one of
two classes. For example we might be interesting in predicting whether a given
persion is going to vote democratic or republican. We assume a function Φ which
assigns a feature vector to each element of x — we assume that for x ∈ X we have
Φ(x) ∈ Rd. For 1 ≤ i ≤ d we let Φi(x) be the ith coordinate value of Φ(x). For
example, for a person x we might have that Φ(x) is a vector specifying income,
age, gender, years of education, and other properties. Discrete properties can
be represented by binary valued fetures (indicator functions). For example, for
each state of the United states we can have a component Φi(x) which is 1 if
x lives in that state and 0 otherwise. We assume that we have training data
consisting of labeled inputs where, for convenience, we assume that the labels
are all either −1 or 1.

S = 〈x1, yy〉, . . . , 〈xT , yT 〉
xt ∈ X
yt ∈ {−1, 1}

Our objective is to use the training data to construct a predictor f(x) which
predicts y from x. Here we will be interested in predictors of the following form
where β ∈ Rd is a parameter vector to be learned from the training data.

fβ(x) = sign(β · Φ(x)) (1)

We are then interested in learning a parameter vector β from the training data.
We first define the margin mt(β) as follows.

mt(β) = yt(β · Φ(xt)) (2)

The parameter vector β will usually be clear from context and we will usually
write mt instead of mt(β). Note that we have mt ≥ 0 if and only if yt =
sign(β ·Φ(xt)) = fβ(xt). If mt > 0 it is the “margin of safety” by which fβ(xt)
is correct. If mt ≤ 0 then mt is a measure of the margin by which fβ(xt) is
wrong.

Here we are interested in setting β using the following formula.

β∗ = argmin
β

T∑
t=1

L(mt(β)) + λ||β||2 (3)

The function L in (3) is called the loss function. We will consider four
commonly used loss functions and some motivations for each. In practice the
value of λ is tuned so as to maximize the empiricle performance of the resulting
value of β∗ on holdout data (holdout data is labeled data not used as part of
the training data).

1

1 Quadratic Loss: Ridge Regression

For quadratic loss (also called L2 loss) we define L(mt) as follows.

L(mt) = (mt − 1)2 (4)
= (yt(β · Φ(x))− y2

t)2

= y2
t (β · Φ(x)− yt)2

= (β · Φ(x)− yt)2

So the general equation (3), under quadratic loss (4), is the same as ridge
regression when we have yt ∈ {−1, 1}.

Ridge regression in the general case with y ∈ R has a simple probabilistic
motivation. We can model P (y|x, β) as a Gaussian.

P (y|x, β) =
1
Z1

exp(− (y − β · Φ(x))2

2σ2
) (5)

We can also place a Gaussian prior on β.

P (β) =
1
Z2

e−
||β2||

γ
(6)

By taking λ = 2σ2

γ in (3) we get the following.

β∗ = argmin
β

T∑
t=1

(β · Φ(x)− yt)2 +
2σ2

γ
||β||2

= argmin
β

T∑
t=1

(β · Φ(x)− yt)2

2σ2
+
||β||2

γ2

= argmin
β

T∑
t=1

ln(1/(Z1P (yt|xt, β))) + ln(1/(Z2P (β)))

= argmin
β

T∑
t=1

ln(1/P (yt|xt, β)) + ln(1/P (β)) + T ln(1/Z1) + ln(1/Z2)

= argmin
β

T∑
t=1

ln(1/P (yt|xt, β)) + ln(1/P (β))

= argmax
β

P (β)P (y1, . . . , yT |x1, . . . , xT , β)

= argmax
β

P (β)P (x1, . . . , xT)P (y1, . . . , yT |x1, . . . , xT , β)

= argmax
β

P (β, S)

= argmax
β

P (β|S)

2

This is called a maximum a-posteriori (MAP) value for β. If we set λ = 0
in (3) then we get the maximum likelihood (ML) value for β. The ML value
maximizes P (S|β) rather than P (β)P (S|β). In practice λ is tuned with holdout
data.

2 Log Loss: Logistic Regression

Log loss is the following loss function.

L(mt) = ln(1 + exp(−mt)) (7)
= ln(1/P (yy|xt, β))

P (y|x, β) =
1
Z

exp(
1
2
y(β · Φ(x))) (8)

P (yt|xt, β) =
exp(1

2mt)

exp(1
2mt) + exp(− 1/2

m t
)

=
1

1 + exp(−mt)

When we know a-priori that we have y ∈ {−1, 1}, the Gaussian assumption
(5) is clearly innappropriate and the conditional probability (8) seems more
reasonable — equation (8) gives a distribution on the two element set {−1, 1}
rather than a distribution on all the reals. As in the case of ridge regression,
logistic regression has a Bayesian interpretation. Using log loss, assuming the
prior (6), and setting λ to 1/γ in (3) yields the following.

β∗ = argmin
β

T∑
t=1

ln(1/P (yt|xt, β))) + ln(1/(Z2P (β)))

= argmin
β

T∑
t=1

ln(1/P (yt|xt, β)) + ln(1/P (β))

= argmax
β

P (β)P (y1, . . . , yT |x1, . . . , xT , β)

= argmax
β

P (β|S)

As in the case of quadratic loss, this is the MAP value of β and setting λ = 0
in (3) gives the ML value of β. In practice λ is tuned with holdout data.

3

3 0-1 Loss

One sometimes interested in minimizing the error rate.

β∗ = argmin
β

T∑
t=1

L01(mt) (9)

L01(mt) = I[mt ≤ 0] = I[fβ(xt) 6= yt]

Unfortunately, one cannot use regularization with (9). If d >> T (where
d is the dimensionality of β and Φ(x)) then there often exists a β which fits
the data exactly but that overfits — it does not predict well on new data. The
standard approach to avoiding overfitting is to require that the prediction rule
be simple. We would like to use ||β||2 as a measure of the simplicity of β. But
such regularization fails for (9). The problem is that if β achieves zero training
loss then so does εβ for arbitrarily small ε > 0. So we can achieve zero training
error with ||β|| arbitrarily small. To minimize the classification error rate on
fresh data one can replace 0-1 loss in the training formula with sigmoidal loss.

4 Sigmoidal Loss

Sigmoidal loss is the following loss function.

L(mt) =
1

1 + exp(mt)
(10)

Sigmoidal loss is similar to L01 except that it makes a continuous transi-
tion from 1 to 0 around mt = 0. Even if β s infinite dimensional, as discussed
in the notes on kernels, sigmoidal loss is “consistent” for optimizing the 0-1
error rate on fresh data. Intuitively, consistency means that the learning algo-
rithm approaches optimal behavior as the size of the training data approaches
infinity. To make this precise, recall that the sample S is a sequence of pairs
〈x1, y1〉, . . . , 〈xT , yT 〉 where 〈xt, yt〉 is drawn from a fixed distribution D on
X × {−1, 1}. We write S ∼ DT to indicate that S is a sequence of T items
drawn IID according to D. Now consider the following quantities.

4

β(S, λ) = argmin
β

 ∑
〈x, y〉∈S

1
1 + exp(y(β · Φ(x)))

+ λ||β||2

L01(β) = P〈x, y〉∼D
(fβ(x) 6= y)

L01(λ, T) = ES∼DT [L01(β(S, λ))]

We have that L01(λ, T) is the expected error rate when we learn β on a
sample of size T using regularization parameter λ. Sigmoidal loss is consistent
in the sense that, as the sample size goes to infinity and λ is tuned with holdout,
we get an optimal parameter vector β. More formally we have the following.

lim
T→∞

inf
λ

L01(T, λ) = inf
β

L01(β) (11)

For infinite dimensional β one must use regularization — unregularized train-
ing continues to overfit even as T →∞.

Unfortunately consistency does not imply any statement about the error
rate of the parameter vector β learned from a finite sample. For a variant
of sigmoidal loss a finite sample theorem is possible. It is possible to state
a generalization theorem guaranteeing the performance of a certain stochastic
classification algorithm on new data. In partcular, for any β ∈ Rd define Qβ to
be the following probability density.

Qβ(β′) =
1
Z

exp(−1
2
||β′||2)

In other words Qβ is a isotropic (same in all directions) Gaussian of unit variance
centered at β. We consider the prediction algorithm that samples a vector β′

from Qβ and then returns the prediction fβ′(x). For technical reasons this
stochastic classifier yields a simpler theorem than a direct analysis of the error
rate of fβ . In particular we have the following theorem where ∀δS Γ(S, δ) means
that with probability at least 1− δ over the choice of the sample S we have that
Γ(S, δ) holds.

∀δS ∀β ∈ Rd Eβ′∼Qβ
[L01(β′)] ≤

(
1
T

T∑
t=1

S(mt)

)
+

√
1
2 ||β||2 + ln T+1

δ

2T

S(m) =
∫ ∞

m

1√
2π

exp(−x2/2)dx

5

In this theorem we have that S(m) is a cummulative of a Gausssian. This is
a sigmoidal function that can be viewed as a smooth approximation of 0-1 loss.

5 Convexity

The general regulalrized equation (3) has the property that if L(mt) is convex
in mt then the right hand side of (3) is convex in β and the optimization can
be done in polynommial time. To see this we note that mt(β) is linear in β. A
convex function of a linear function is convex. Hence L(mt(β)) is convex in β.
For λ ≥ 0 we have that λ||β||2 is convex. The convexity of (3) as a function of
β then follows from the fact that a sum of convex functions is convex.

Quadratic loss and log loss are both convex functions of mt. However, 0-1
loss and sigmoidal loss are not convex. Minimizing 0-1 loss is NP hard.

6 Hinge Loss: Support Vector Machines

Hinge Loss is the following.

L(mt) = max(0, 1−mt) (12)

Recall that an algorithm is consistent if it behaves optimally in the limit of
infinite training data. Hinge loss is consistent for minimizing 0-1 loss provided
that β is infinite dimensional and any function f(x) can be approximated arbi-
trarily closely by β ·Φ(x). But Hinge loss need not be consistent for optimizing
0-1 loss when d is finite. However, unlike sigmoidal loss, hinge loss is convex.
Furthermore, equation (3) under hinge loss defines a convex quadratic program
which can be solved more directly than can the optimization problem of logistic
regression. Logistic regression is often solved by gradient descent. Equation (3)
under hinge loss is called a support vector machine.

7 Rescaling the Loss Function

We now consider the case where we are interested in the error rate of the learned
vector β∗ on new data. As mentioned above, to use regularization we cannot
directly use 0-1 loss in the training formula (3). Therefore, even though we
are ultimately interested in generalization performance as measured by 0-1 loss,
the loss L used in (3) must be some other loss such as quadratic loss, log loss,
sigmoidal loss or hinge loss.

Consider equation (3) for an arbitrary loss function L. Define L′ in terms of
α, γ > 0 as follows.

L′(mt) = αL(γmt))

6

The loss function L′ is a rescaling of L involving both an arbitrary resclaling
of the margin and an arbirtrary rescaling of the loss quantity. It is possible to
show that when λ is tuned with holdout data to optimize holdout 0-1 loss, the
rescaled loss L′ performs exactly like L. To see this assume that λ is an optimal
regularization parameter for L and T . We then have the following.

β∗ = argmin
β

T∑
t=1

L(mt(β)) + λ||β||2

= argmin
β

T∑
t=1

αL(mt(β)) + αλ||β||2

= argmin
β

T∑
t=1

αL(γmt(
β

γ
)) + αλ||β||2

β′∗ = argmin
β′

T∑
t=1

αL(γmt(β′)) + αγ2λ||β′||2

= argmin
β

T∑
t=1

L′(mt) + λ′||β||2

β∗ = γβ′∗

Because β∗ and β′∗ are in the same direction, they give the same 0 − 1
loss. Hence training with L′ and λ′ will result in exactly the same 0-1 holdout
performance as training with L and λ. This suggest that the exact choice of loss
function when optimizing 0-1 holdout loss is not very critical. Two loss functions
can be made to look similar when we can rescale both the margin value and the
loss value arbitrarily. It also implies that there is no performance advantage in
generalizing Hinge loss to be of the form max(0, α− γmt) for parameters α and
γ or in generalizing sigmoidal loss to allow sigmoids of different widths.

7

