
Lecture 2: Hidden Markov Models

A hidden Markov model (HMM) consists of a set of internal states and a
set of observable tokens. A run of a hidden Markov model generates a hidden
state sequence s1, . . ., sT and a sequence of observable tokens a1, . . ., aT .

π(s) = P (s1 = s), Σ
s

π(s) = 1

T (w|s) = P (st+1 = w|st = s), Σ
w

T (w|s) = 1

O(a|s) = P (at = a|st = s), Σ
a

O(a|s) = 1

P (s1, . . . , sT , a1, . . . , aT ) = π(s1)
(
ΠT

t=1O(at|st)
) (

ΠT−1
t=1 T (st+1|st)

)
Applications of HMMs:

• Speech Recognition. The hidden states are word positions and the
observable tokens are accoustic feature vectors.

• Part of speech tagging. The hidden states are the parts of speech (noun,
verb, adjective, and so on).

• DNA sequence analysis. The hidden states might be protien secondary
structure or a position in a homologous sequence.



1 The Viterbi Algorithm

Viterbi[s, t] = max
s1,...,st−1

P (s1, . . . , st−1, s, a1, . . . , at−1)

Viterbi[s, 1] = π(s)

Viterbi[w, t + 1] = max
s

Viterbi[s, t]O(at|s)T(w|s)

s∗T = argmax
s

Viterbi(s, T)O(aT|s)

The best predicessor st can be recorded for each possible value of st+1 and
the best path can be constructed by working backward from s∗T through best
predicessors.

2 The Forward-Backward Procedure

Forward[s, t] = P (a1, . . . , at−1, st = s)

Backward[s, t] = P (at, . . . , aT | st = s)

Forward[s, 1] = π(s)

Forward[w, t + 1] =
∑
s

forward[s, t]O(at|s)T(w|s)

Backward[s, T] = O(aT |s)
Backward[s, t] = O(at|s)

∑
w

T (w|s)Backward[s, t + 1]

P (a1, . . . , aT ) =
∑
s

π(s)Backward[s, 1]

P (st = s | a1, . . . , aT ) =
Forward(s, t)Backward[s, t]

P (a1, . . . , aT )



3 Trigram Language Models

Let #(w) be the number of times that the word w appears in a certain
training corpus. Let #(w1w12) be the number of times that the pair of
words w1‘w2 occurs and similarly for #(w1, w2, w3) for the triple of words
w1, w2, w3. Let N be the total number of word occurances. A interpolated
trigram model predicts the word w3 following a given pair w1, w2 as follows.

P (w3|w1, w2) = λ1

(
#(w1, w2, w3)

#(w1, w2)

)
+ λ2

(
#(, w2, w3)

#(w2)

)
+ λ3

(
#(w3)

N

)
(1)

Here λ1, λ2, and λ3 are non-negative weights which som uto one:

λ1 + λ2 + λ3 = 1

A weighted sum, such as (??), where the weights are non-negative and sum to
one, is called a convex combination. Any convex combination of probability
distributions is also a probability distribution. A convex combination of
distributions is often called an interpolated model. In a trigram language
model the weights λ1, λ2 and λ3 are usually taken to depend on some way
on the pair w1, w2. This is ok since we can hold w1, w2 fixed in defining the
conditional distribution P (w3|w1, w2).

A trigram language model defines the hiddens states used in standard
HMM-based speech recognition. A hidden state is a triple of words w1, w2, w3

together with a index for a position in the last word. For example “we the
pe*ople” is a state specifing that the two preceeding words were “we” and
“the” and that we are currently at the o in the word “people” so we should
expect to be hearing an “o” sound. The state transition probabilities can be
taken to be the following.

T (w1, w2, [α1 . . . αi ∗ αi+1αi+2 . . . αk] | w1, w2, [α1 . . . αi ∗ αi+1αi+2 . . . αk]) = 1/2

T (w1, w2, [α1 . . . αiαi+1 ∗ αi+2 . . . αk] | w1, w2, [α1 . . . αi ∗ αi+1 . . . αk]) = 1/2

T (w2, w3, ∗w4 | w1, w2, w3∗) = P (w4|w2, w3)



The output probablities are determined by a “accoustic model” specifying
the probability distribution over accoustic feature vectors given the current
phoneme of the hidden state. Actually, the distribution on accoustic features
is usually taken to depend on a “triphone” — the preceding phoneme, the
current phoneme, and the next phoneme. Pentaphones are even used in some
systems.

4 Problem

Suppose that we have two hidden states A and B and two observable symbols
a and b and an HMM defined by the following probabilities.

π(A) = π(B) = 1/2

T (A|A) = T (B|B) = 1 − ε

T (B|A) = T (A|B) = ε

O(a|A) = O(b|B) = 1 − δ

O(b|A) = O(a|B) = δ

Now suppose that we observe a sequence of T a’s. Let F (A, t) abbrevi-
ate Forward(A, t) and similarly for F (B, t) Give the values of F (A, 1) and
F (B, 1) and give equation for computing F (A, t+1) and F (B, t+1) as a func-
tion of F (A, t) and F (B, t). Similarly let B(A, t) abbreviate Backward(A, t).
Give the values of B(A, T ) and B(B, t) and give equation for computing
B(A, t) and B(B, t) as a function of F (A, t + 1) and F (B, t + 1).

Extra Credit: Solve for F (A, t), B(A, t) and P (a1, . . . , aT ). Graph
P (st = A) as a function of t for ε = δ = 1/4, and T = 20 (you should not
calculate the actual numbers for P (st = A) if you can see qualitatively what
the graph must look like).


