## Lecture 2: Hidden Markov Models

A hidden Markov model (HMM) consists of a set of internal states and a set of observable tokens. A run of a hidden Markov model generates a hidden state sequence $s_{1}, \ldots, s_{T}$ and a sequence of observable tokens $a_{1}, \ldots, a_{T}$.

$$
\begin{aligned}
\pi(s) & =P\left(s_{1}=s\right), \sum_{s} \pi(s)=1 \\
T(w \mid s) & =P\left(s_{t+1}=w \mid s_{t}=s\right), \sum_{w} T(w \mid s)=1 \\
O(a \mid s) & =P\left(a_{t}=a \mid s_{t}=s\right), \sum_{a} O(a \mid s)=1 \\
P\left(s_{1}, \ldots, s_{T}, a_{1}, \ldots, a_{T}\right) & =\pi\left(s_{1}\right)\left(\Pi_{t=1}^{T} O\left(a_{t} \mid s_{t}\right)\right)\left(\Pi_{t=1}^{T-1} T\left(s_{t+1} \mid s_{t}\right)\right)
\end{aligned}
$$

Applications of HMMs:

- Speech Recognition. The hidden states are word positions and the observable tokens are accoustic feature vectors.
- Part of speech tagging. The hidden states are the parts of speech (noun, verb, adjective, and so on).
- DNA sequence analysis. The hidden states might be protien secondary structure or a position in a homologous sequence.


## 1 The Viterbi Algorithm

$$
\begin{aligned}
\operatorname{Viterbi}[\mathrm{s}, \mathrm{t}] & =\max _{s_{1}, \ldots, s_{t-1}} P\left(s_{1}, \ldots, s_{t-1}, s, a_{1}, \ldots, a_{t-1}\right) \\
\text { Viterbi }[\mathrm{s}, 1] & =\pi(s)
\end{aligned}
$$

$$
\operatorname{Viterbi}[\mathrm{w}, \mathrm{t}+1]=\max _{s} \operatorname{Viterbi}[\mathrm{~s}, \mathrm{t}] \mathrm{O}\left(\mathrm{a}_{\mathrm{t}} \mid \mathrm{s}\right) \mathrm{T}(\mathrm{w} \mid \mathrm{s})
$$

$$
s_{T}^{*}=\underset{S}{\operatorname{argmax}} \operatorname{Viterbi}(\mathrm{~s}, \mathrm{~T}) \mathrm{O}\left(\mathrm{a}_{\mathrm{T}} \mid \mathrm{s}\right)
$$

The best predicessor $s_{t}$ can be recorded for each possible value of $s_{t+1}$ and the best path can be constructed by working backward from $s_{T}^{*}$ through best predicessors.

## 2 The Forward-Backward Procedure

$$
\begin{aligned}
& \text { Forward }[\mathrm{s}, \mathrm{t}]=P\left(a_{1}, \ldots, a_{t-1}, s_{t}=s\right) \\
& \text { Backward }[\mathrm{s}, \mathrm{t}]=P\left(a_{t}, \ldots, a_{T} \mid s_{t}=s\right) \\
& \text { Forward }[\mathrm{s}, 1]=\pi(s) \\
& \text { Forward }[\mathrm{w}, \mathrm{t}+1]=\sum_{s} \text { forward }[\mathrm{s}, \mathrm{t}] \mathrm{O}\left(\mathrm{a}_{\mathrm{t}} \mid \mathrm{s}\right) \mathrm{T}(\mathrm{w} \mid \mathrm{s}) \\
& \text { Backward }[\mathrm{s}, \mathrm{~T}]=O\left(a_{T} \mid s\right) \\
& \operatorname{Backward}[\mathrm{s}, \mathrm{t}]=O\left(a_{t} \mid s\right) \sum_{w} T(w \mid s) \operatorname{Backward}[s, t+1] \\
& P\left(a_{1}, \ldots, a_{T}\right)=\sum_{s} \pi(s) \operatorname{Backward}[\mathrm{s}, 1] \\
& P\left(s_{t}=s \mid a_{1}, \ldots, a_{T}\right)=\frac{\operatorname{Forward}(\mathrm{s}, \mathrm{t}) \operatorname{Backward}[\mathrm{s}, \mathrm{t}]}{P\left(a_{1}, \ldots, a_{T}\right)}
\end{aligned}
$$

## 3 Trigram Language Models

Let $\#(w)$ be the number of times that the word $w$ appears in a certain training corpus. Let $\#\left(w_{1} w_{1} 2\right)$ be the number of times that the pair of words $w_{1}{ }^{\text {b }} w_{2}$ occurs and similarly for $\#\left(w_{1}, w_{2}, w_{3}\right)$ for the triple of words $w_{1}, w_{2}, w_{3}$. Let $N$ be the total number of word occurances. A interpolated trigram model predicts the word $w_{3}$ following a given pair $w_{1}, w_{2}$ as follows.

$$
\begin{equation*}
P\left(w_{3} \mid w_{1}, w_{2}\right)=\lambda_{1}\left(\frac{\#\left(w_{1}, w_{2}, w_{3}\right)}{\#\left(w_{1}, w_{2}\right)}\right)+\lambda_{2}\left(\frac{\#\left(, w_{2}, w_{3}\right)}{\#\left(w_{2}\right)}\right)+\lambda_{3}\left(\frac{\#\left(w_{3}\right)}{N}\right) \tag{1}
\end{equation*}
$$

Here $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$ are non-negative weights which som uto one:

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}=1
$$

A weighted sum, such as (??), where the weights are non-negative and sum to one, is called a convex combination. Any convex combination of probability distributions is also a probability distribution. A convex combination of distributions is often called an interpolated model. In a trigram language model the weights $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ are usually taken to depend on some way on the pair $w_{1}, w_{2}$. This is ok since we can hold $w_{1}, w_{2}$ fixed in defining the conditional distribution $P\left(w_{3} \mid w_{1}, w_{2}\right)$.

A trigram language model defines the hiddens states used in standard HMM-based speech recognition. A hidden state is a triple of words $w_{1}, w_{2}, w_{3}$ together with a index for a position in the last word. For example "we the pe*ople" is a state specifing that the two preceeding words were "we" and "the" and that we are currently at the o in the word "people" so we should expect to be hearing an "o" sound. The state transition probabilities can be taken to be the following.

$$
\begin{gathered}
T\left(w_{1}, w_{2},\left[\alpha_{1} \ldots \alpha_{i} * \alpha_{i+1} \alpha_{i+2} \ldots \alpha_{k}\right] \mid w_{1}, w_{2},\left[\alpha_{1} \ldots \alpha_{i} * \alpha_{i+1} \alpha_{i+2} \ldots \alpha_{k}\right]\right)=1 / 2 \\
T\left(w_{1}, w_{2},\left[\alpha_{1} \ldots \alpha_{i} \alpha_{i+1} * \alpha_{i+2} \ldots \alpha_{k}\right] \mid w_{1}, w_{2},\left[\alpha_{1} \ldots \alpha_{i} * \alpha_{i+1} \ldots \alpha_{k}\right]\right)=1 / 2 \\
T\left(w_{2}, w_{3}, * w_{4} \mid w_{1}, w_{2}, w_{3} *\right)=P\left(w_{4} \mid w_{2}, w_{3}\right)
\end{gathered}
$$

The output probablities are determined by a "accoustic model" specifying the probability distribution over accoustic feature vectors given the current phoneme of the hidden state. Actually, the distribution on accoustic features is usually taken to depend on a "triphone" - the preceding phoneme, the current phoneme, and the next phoneme. Pentaphones are even used in some systems.

## 4 Problem

Suppose that we have two hidden states $A$ and $B$ and two observable symbols $a$ and $b$ and an HMM defined by the following probabilities.

$$
\begin{gathered}
\pi(A)=\pi(B)=1 / 2 \\
T(A \mid A)=T(B \mid B)=1-\epsilon \\
T(B \mid A)=T(A \mid B)=\epsilon \\
O(a \mid A)=O(b \mid B)=1-\delta \\
O(b \mid A)=O(a \mid B)=\delta
\end{gathered}
$$

Now suppose that we observe a sequence of $T$ 's. Let $F(A, t)$ abbreviate Forward $(\mathrm{A}, \mathrm{t})$ and similarly for $F(B, t)$ Give the values of $F(A, 1)$ and $F(B, 1)$ and give equation for computing $F(A, t+1)$ and $F(B, t+1)$ as a function of $F(A, t)$ and $F(B, t)$. Similarly let $B(A, t)$ abbreviate Backward(A, t). Give the values of $B(A, T)$ and $B(B, t)$ and give equation for computing $B(A, t)$ and $B(B, t)$ as a function of $F(A, t+1)$ and $F(B, t+1)$.

Extra Credit: Solve for $F(A, t), B(A, t)$ and $P\left(a_{1}, \ldots, a_{T}\right)$. Graph $P\left(s_{t}=A\right)$ as a function of $t$ for $\epsilon=\delta=1 / 4$, and $T=20$ (you should not calculate the actual numbers for $P\left(s_{t}=A\right)$ if you can see qualitatively what the graph must look like).

