
Generalization Bounds

Here we consider the problem of learning from binary labels. We assume
training data D = 〈x1, y1〉, . . . 〈xN , yN 〉 with yt being one of the two values 1 or
−1. We will assume that these training pairs have been drawn independently
from a distribution (or density) ρ. Our objective is to construct a predictor for
y given x which will work well for a new pair drawn from ρ.

Here we consider a theoretical approach to understanding learning alorithms
based on provable guarantees for generalization performance. The primary ob-
jective is to gain a better understanding of choice of loss function in the linear
classification learning scheme. Ideally, theoretical analysis could be used to de-
sign a loss function leading to better generalization behavior. We will see a
theoretical analysis that directly supports probit loss.

1 The Occam Bound

The Occam bound is perhaps the simplest generalization guarantee and is the
starting point of our analysis. For this theorem we consider a countable class
H of binary predictors h : X → {−1, 1}. We will call h ∈ H a hypothesis. We
will assume a fixed language, or code, in which each hypothesis can be named.
Let |h| be the number of bits needed to name the hypothesis h. Let L01(h) and
L̂01(h) be defined as follows where I [Φ] is 1 if Φ is true and 0 otherwise.

L01(h) ≡ P〈x, y〉∼ρ
[h(x) 6= y]

L̂01(h) ≡ 1
N

N∑
t=1

I [h(xt) 6= yt]

The Occam bound states that for IID draws of N training pairs, and for
δ > 0, with probability at least 1− δ over the draw of the training data D, we
have the following.

∀h ∈ H L01(h) ≤ L̂01(h) +

√
(ln 2)|h|+ ln 1

δ

2N
(1)

This bound is uniform in the sense that, with high probability, the bound
holds for all hypotheses simultaneously.

2 Bounds as Algorithms

We can convert any uniform bound on generalization loss to a learning algorithm
by selecting the hypothesis minimizing the bound.

h∗ = argmin
h

L̂01(h) +

√
(ln 2)|h|+ ln 1

δ

2N
(2)

1

Note that, because the generalization is uniform, we get the following with
probability at least 1− δ over the draw of the training data.

L01(h∗) ≤ L̂01(h∗) +

√
(ln 2)|h∗|+ ln 1

δ

2N
(3)

If H contains a simple hypothesis that fits the training data well then we
are guaranteed to be able to make accurate predications. But of course, no such
simple rule may exist and different languages yield different classes of simple
rules.

3 Consistency

A learning algorithm will be called consistent if, in the limit of infinite data, we
have that L01(w∗) approaches lowest possible loss, i.e., the infimum over h ∈ H
of L01(h). We can show that (2) is consistent by first proving that for any δ > 0
we have the the following with probability at least 1 − δ over the draw of the
training sample.

∀h ∈ H
∣∣∣L̂01(h)− L01(h)

∣∣∣ ≤
√

(ln 2)|h|+ ln 2
δ

2N
(4)

The proof of this is similar to the proof of (1). When (1) and (4) both hold
we get the following.

L01(h∗) ≤ L̂01(h∗) +

√
(ln 2)|h∗|+ ln 1

δ

2N

≤ L̂01(h) +

√
(ln 2)|h|+ ln 1

δ

2N

≤ L01(h) + 2

√
(ln 2)|h|+ ln 2

δ

2N

L01(h∗) ≤ min
h∈H

L01(h) + 2

√
(ln 2)|h|+ ln 2

δ

2N
(5)

If we take δ = 1/N we get that as N →∞ the expected value of L01(h∗) must
approaches the infimum of L01(h) for h ∈ H. So (2) is consistent.

4 Proof of the Occam Bound

The Proof is a simple application of the following three inequalities.

• Chernoff Bound: P (L01 > L̂01 + ε) ≤ e−2Nε2

2

• Union Bound: P (∃xΦ[x]) ≤ Σx P (Φ[x])

• Kraft Inequality: Σh 2−|h| ≤ 1

We will not prove the Chernoff bound here but is worth noting that it is very
similar to the central limit theorem in one dimension. For a 0-1 (Bernoulli)
variable we have σ2 ≤ 1/4 so Nε/(2σ2) must be at least 2Nε2. The union
bound is a simple generalization of the observation that P (Φ ∨ Ψ) can be no
larger than P (Φ) + P (Ψ). The Kraft inequality holds for prefix codes — a set
of code words where no code word is a proper prefix of any other code word.
Null terminated character strings (or byte strings) are prefix codes. To prove
the Kraft inequality consider randomly generaing one bit at a time and stoping
when you have a code for a rule. Then 2−|h| = P (h).

To prove the Occam bound we define a hypothesis h to be “bad” (relative
to the training data) if it violates the theorem. More specificaly we have the
following.

bad(h) ≡

 L01(h) > L̂01(h) +

√
(ln 2)|h|+ ln 1

δ

2N

P (bad(h)) ≤ e−2mε2

= δ2−|h|

P (∃h bad(h)) ≤
∑

hδ2−|h|

= δ
∑

h2−|h| ≤ δ

5 A Bayesian Interpretation

Let P range over probability distributions on rules. Define |h|P as follows.

|h|P = log2

1
P (h)

The proof of the Occam bound can be easily modified to prove the following
— we simply replace the Kraft inequality with

∑
h P (h) = 1. We get that with

probability at least 1 − δ over the draw o the training data we have that the
following holds.

∀h ∈ H L01(h) ≤ L̂01(h) +

√
(ln 2)|h|P + ln 1

δ

2N
(6)

This is now a “Bayesian” theorem in the sense that it is based on an arbitrary
“prior”. Note that the theorem holds for any prior independent of whether the
prior is in any sense “correct”.

3

6 The PAC-Bayesian Theorem

We now consider a bound that can be used for continous (uncountable) hy-
pothesis spaces. Let H be a (possibly continuous) hypothesis space. As in the
Occam bound, we fix a “prior” distribution (or density) P on H. We do not
require that the prior is “correct”. Rather than consider individual hypotheses,
we now consider selecting a posterior distribution (or density) Q on H. We
define L01(Q) and L̂01(Q) as follows.

L(Q) = E[h∼Q] [L01(h)] = P
h∼Q, 〈x, y〉∼ρ

[h(x) 6= y]

L̂01(Q) =
1
N

N∑
t=1

Ph∼Q [h(xt) 6= yt]

These error rates correspond to a prediction process in which we first select
a rule h according to the distribution Q and then use h to make the prediction.

The PAC-Bayesian bound states that with probability at least 1−δ over the
draw of the training data we have the following.

∀Q L01(Q) ≤ L̂01(Q) +

√
KL(Q||P) + ln 4N

δ

2N − 1
(7)

The “prior” P expresses the “learning bias”. It is analogous to the choice of
the coding language defining |h| in earling theorems — recall that any prior P
on a discrete hypothesis space defines a coding length |h|P . Here (ln 2)|h|P is
replaced by KL(Q||P) where the “posterior” Q replaces the rule h.

It is interesting to note that (7) can be viewed as a generalization of (1).
Suppose that H is discrete (countable) with P (h) > 0 for each h ∈ H. Let Qh

be the posterior that has all mass put on rule h.

Qh(g) =
{

1 if g = h
0 otherwise

The posterior Qh satisfies the following.

KL(Qh||P) =
∑

g

Qh(g) ln
Qh(g)
P (g)

= Qh(h) ln
Qh(h)
P (h)

= ln
1

P (h)
= (ln 2)|h|P

We then have that (7) is a version of (1) where we have traded a little
tightness for greater generality.

4

7 Proof of the PAC-Bayesian Theorem

This section is under construction. It is suggested that you skip to the next
section.

To prove the PAC-Bayesian bound we first define ∆(h) to be the following
random variable.

∆(h) = |L01(h)− L̂01h|

A Chernoff bound:
P (∆(h) > ε) ≤ 2e−2mε2

Lemma (stated without proof):

E [S ∼ Dn] e(2m−1)∆(h)2 ≤ 4m

Therefore:
E [S ∼ Dn] E [h ∼ P] e(2m−1)∆(h)2 ≤ 4m

Therefore (the lemma):

∀δS E [h ∼ P] e(2m−1)∆(h)2 ≤ 4m

δ

E[h∼P]

[
e(2m−1)∆(h)2

]
≤ 4m

δ
(the lemma)

E[h∼Q]

[
P (h)
Q(h)

e(2m−1)∆(h)2
]

≤ 4m

δ

ln E[h∼Q]

[
P (h)
Q(h)

e(2m−1)∆(h)2
]

≤ ln
4m

δ

E[h∼Q]

[
(2m− 1)∆(h)2 + ln

P (h)
Q(h)

]
≤ ln

4m

δ
(Jensen’s inequality)

E[h∼Q]

[
∆(h)2

]
≤

KL(Q||P) + ln 4m
δ

2m− 1

|L01(Q)− L̂01(Q)| ≤

√
KL(Q||P) + ln 4m

δ

2m− 1

5

8 A Margin Bound

We can use the PAC-Bayesian theorem to prove a generalization bound for a
variant of Lprobit-L2 regression, also known as probit regression.

We take the prior to be the multivariant Gaussian N (0, I) and we consider
a family of posteriors Qw where each posterior is defined by a weight vector w.

P = N (0, I) (8)
Qw = N (w, I) (9)

The Gaussian prior P correspnds to L2 regularization. By the PAC-Bayesian
theorem we have that with probabilty at least 1−δ over the draw of the training
data the following holds simultaneously for all w ∈ RD.

L01(Qw) ≤ L̂01(Qw) +

√
KL(Qw, P) + ln 4N

δ

2N − 1
(10)

We first consider KL(Qw, p).

KL(Qw, P) = KL(N (w, I),N (0, I))

= E[x∼N (w,I)]

[
ln
N (w, I)(x)
N (0, 1)(x)

]

= E[x∼N (w,I)]

[
1
2
||x||2 − 1

2
||x− w||2

]
=

1
2
E[x∼N (w,I)] [x · x− (x− w) · (x− w)]

=
1
2
E[x∼N (w,I)] [x · x− (x · x− 2x · w + w · w)]

=
1
2
E[x∼N (w,I)] [2x · w − w · w]

=
||w||2

2
(11)

We next consider L̂01(Qw). In the following we assume that feature vectors

6

have been normalized so that ||Φ(x)|| = 1.

L̂01(Qw) =
1
N

N∑
t=1

Pw′∼N (w,I) [yt(w′ · Φ(xt)) ≤ 0]

=
1
N

N∑
t=1

Pε∼N (0,I) [yt(w − ε) · Φ(xt) ≤ 0]

=
1
N

N∑
t=1

Pε∼N (0,I) [yt(ε · Φ(xt)) ≥ yt(w · Φ(xt))]

=
1
N

N∑
t=1

Pε∼N (0,1) [ytε ≥ mt(w)]

=
1
N

N∑
t=1

Pε∼N (0,1) [ε ≥ mt(w)]

=
1
N

N∑
t=1

Lprobit(mt(w)) (12)

Putting together (10), (11) and (12) we get that with probability at least
1− δ over the draw of the training data the following holds simultaneously for
all weight vectors w.

L01(Qw) ≤ 1
N

N∑
t=1

Lprobit(mt(w)) +

√
1
2 ||w||2 + ln 4N

δ

2N − 1
(13)

We can interpret (13) as the following learning algorithm.

w∗ = argmin
w

N∑
t=1

Lprobit(mt(w)) + N

√
1
2 ||w||2 + ln 4N

δ

2N − 1
(14)

This bound can be used to justify Lprobit-L2 regression. In particular, as we
show below, there exists a value of λ such that w∗ as defined by (14) satisfies
the following.

w∗ = argmin
w

N∑
t=1

Lprobit(mt(w)) +
1
2
λ||w||2 (15)

The fact that there exists a λ such that (14) and (15) agree shows that (15)
is a kind of generalization of (14). Since we typically use (15) by setting λ with
holdout data, for modestly large sample sizes (15) should perform better than
(14). The important point is that both optimizations use Lprobit.

7

To see that there exists a λ where (14) and (15) agree we first rewrite (14)
as follows.

w∗ = argmin
w

N∑
t=1

Lprobit(mt(w)) + R(||w||2) (16)

The value w∗ in both optimization problems is the vector at which the
gradiant of the quantity being minimized is zero. Now consider the gradiant of
R(||w||2) at the optimum w∗.

∇R(||w||2)|w∗ = 2R′(||w∗||2)w∗ (17)

The gradiant of the regularizer (1/2)λ||w||2 at the point w∗ is λw∗. If we set λ
equal to 2R′(||w∗||2) then we get that (15) has the same solution as (14).

9 Problems

1. The following is the “two sided” form of the Chernoff bound.

P (|L̂01(h)− L01(h)| ≥ ε) ≤ 2e−2mε2

Use this inequality (and the Union bound and Kraft inequality) to prove
that with probability at least 1− δ over the draw of the training data we have
the following.

∀h |L̂01(h)− L01(h)| ≤

√
(ln 2)|h|+ ln 2

δ

2m

2. It is sometimes convenient to use a feature map Φ satisfying the following
for j ≥ 1

Φ2j(x) = −Φ2j−1(x)

The advantage of this feature map is that we can assume without loss of gener-
ality that wi ≥ 0.

Consider a “prior” P (w) in which each parameter wi is selected indepen-
dently according to a prior density which is nonzero only for wi ≥ 0 in which
case we have P (wi) = e−wi (note that this integrates to 1). For a given param-
eter vector w define Qw to be a density on w′ as follows.

Qw(w′) =
∏D

i=1

{
0 if w′

i < wi

e−(w′
i−wi) otherwise

a. Compute KL(Qw, P).
b. Let g(m) be a function such that for any x and y ∈ {−1, 1} we have

Pw′∼Qw
[y(w′ · Φ(x)) ≤ 0] ≤ g(y(w · Φ(x)))

8

Use the PAC-Bayesian theorem to derive an upper bound on L01(Qw) in terms
of the “loss function” g(m) and your answer to part a.

c. Assuming ||Φ(x)||1 ≤ 1 for all x ∈ X , find a function g(m) satisfying the
requirement in part b.

9

