1. Consider a graph structured factor graph with V possible values at each node and where each node has K neighbors. Give the order of run time of a single iteration of belief propagation as a function of V and N. Explain your answer.

2. Consider a probabilistic context free grammar (PCFG) in Chomsky normal form so that every production has the form $X \rightarrow YZ$ or $X \rightarrow a$ where X, Y and Z are nonterminal symbols and a is a terminal symbol. Suppose we assign a value $V(X \rightarrow XY)$ and $V(X \rightarrow a)$ to every production. Given a string x of terminal symbols we want to find the parse tree of x of largest value, i.e., such that the sum of the value of all productions in the parse tree is maximized.

 a. Consider a more traditional PCFG where each production has a probability $P(X \rightarrow YZ)$ such that for each nonterminal X the sum of the probabilities of the productions from that nonterminal equals 1. Define the value function V on productions such that the tree of maximum value is also the tree of largest probability.

 b. Given a value function V on productions we define $V(y)$ for a parse tree y to be the sum over the productions in y of the value of that production. Define a feature map $\Phi(y)$ and a weight vector w such that $V(y) = w \cdot \Phi(y)$. The dimension of $\Phi(y)$ should be independent of the length of the string generated by y.

3. Consider a linear dynamical system define by the following parameters:

 - γ_1, P_1 — the mean and covariance of the probability distribution of the initial state y_1.
 - A, Γ — A is a linear transformation on the state vectors and Γ is a state vector covariance matrix. We have $y_{t+1} = Ay_t + \epsilon$ where ϵ is drawn from $\mathcal{N}(0, \Gamma)$.
 - C, Σ — C is a linear map from a state vector to an observation vector and Σ is an observation vector covariance matrix. We have $x_t = Cy_t + \epsilon$ where ϵ is drawn from $\mathcal{N}(0, \Sigma)$.

 a. A linear dynamical system is stable if there exists a bound b such that for arbitrarily large t we have $\mathbb{E}[\|y_t\|^2] \leq b$. Give a condition on the matrix A such that the system is stable.

 b. Now assume that the noise in the state transitions is isotropic, i.e., $\Gamma = \sigma^2 I$. Define a condition on A such that there exists a stationary distribution for the internal state. In the case where a stationary distribution exists, solve for the stationary distribution as a function of A and σ^2. Hint: The distribution is Gaussian and the eigenvectors of the covariance matrix of the stationary distribution are the same as the eigenvectors of A.

