# Advanced Type Systems Homework \#3 

Instructor: Derek Dreyer

Assigned: February 1, 2006
Due: February 8, 2006

## 1 Soundness of the Extensional Equivalence Algorithm

Prove that the algorithm shown in class (and in Chapter 6 of ATTAPL) for deciding extensional equivalence of terms in the presence of Unit is sound with respect to definitional equivalence, i.e.,

$$
\text { If } \Gamma \vdash e_{1}: \tau \text { and } \Gamma \vdash e_{2}: \tau \text { and } \Gamma \vdash e_{1} \Leftrightarrow e_{2}: \tau \text {, then } \Gamma \vdash e_{1} \equiv e_{2}: \tau \text {. }
$$

Hint: You may find it useful to rely on the fact that well-formed terms in this language have unique types (assuming we annotate $\lambda$-bound variables with their types).

## 2 Completeness in the Presence of a Top Type

Suppose we add a Top type to the language considered in Chapter 6. The idea is that Top is a supertype (in the sense of subtyping) of every other type in the language, so every well-formed term can also be given type Top by subsumption. For instance, if our language supported product types (which would be a straightforward extension), the Top type might be useful for giving a "record-polymorphic" type to the snd function: snd : $\operatorname{Top} \times \tau \rightarrow \tau \stackrel{\text { def }}{=} \lambda x \cdot \pi_{2}(x)$. One could then apply snd to any term of product type whose second component had type $\tau$, without concern for the type of the first component (since it's guaranteed to be a subtype of Top).

Here are the extensions to the typing and equivalence judgments. They make use of a new subtyping judgment $\vdash \tau_{1} \leq \tau_{2}$ :

$$
\begin{gathered}
\stackrel{\vdash \tau \leq \tau}{\vdash \tau \leq \operatorname{Top} \quad \frac{\vdash \tau_{2}^{\prime} \leq \tau_{1}^{\prime} \vdash \tau_{1}^{\prime \prime} \leq \tau_{2}^{\prime \prime}}{\vdash \tau_{1}^{\prime} \rightarrow \tau_{1}^{\prime \prime} \leq \tau_{2}^{\prime} \rightarrow \tau_{2}^{\prime \prime}}} \\
\frac{\Gamma \vdash e: \sigma \vdash \sigma \leq \tau}{\Gamma \vdash e: \tau} \quad \frac{\Gamma \vdash e_{1}: \text { Top } \quad \Gamma \vdash e_{2}: \text { Top }}{\Gamma \vdash e_{1} \equiv e_{2}: \operatorname{Top}} \quad \frac{\Gamma \vdash e_{1} \equiv e_{2}: \sigma \quad \sigma \leq \tau}{\Gamma \vdash e_{1} \equiv e_{2}: \tau}
\end{gathered}
$$

Note that all terms are equivalent when considered at type Top. The reason for this is simple: if all you know about $e_{1}$ and $e_{2}$ is that they both have type Top, then there is nothing you can do with them, so there is no way to distinguish them, and thus they are extensionally equivalent.

Problem: Extend the equivalence algorithm to handle Top and extend the logical relations proof of completeness (i.e., that $\Gamma \vdash e_{1} \equiv e_{2}: \tau$ implies $\Gamma \vdash e_{1} \Leftrightarrow e_{2}: \tau$ ) accordingly.

Hint: Top is kind of like Unit, so most of the new cases will be trivial. One will be non-trivial.

