Advanced Type Systems
Homework #3
Instructor: Derek Dreyer
Assigned: February 1, 2006
Due: February 8, 2006

1 Soundness of the Extensional Equivalence Algorithm

Prove that the algorithm shown in class (and in Chapter 6 of ATTAPL) for deciding extensional equivalence of terms in the presence of `Unit` is sound with respect to definitional equivalence, i.e.,

\[\text{If } \Gamma \vdash e_1 : \tau \text{ and } \Gamma \vdash e_2 : \tau \text{ and } \Gamma \vdash e_1 \Leftrightarrow e_2 : \tau, \text{ then } \Gamma \vdash e_1 \equiv e_2 : \tau. \]

\textbf{Hint:} You may find it useful to rely on the fact that well-formed terms in this language have unique types (assuming we annotate \(\lambda\)-bound variables with their types).

2 Completeness in the Presence of a `Top` Type

Suppose we add a `Top` type to the language considered in Chapter 6. The idea is that `Top` is a supertype (in the sense of subtyping) of every other type in the language, so every well-formed term can also be given type `Top` by subsumption. For instance, if our language supported product types (which would be a straightforward extension), the `Top` type might be useful for giving a “record-polymorphic” type to the `snd` function: `snd : Top \times \tau \rightarrow \tau \overset{\text{def}}{=} \lambda x.\pi_2(x)`. One could then apply `snd` to any term of product type whose second component had type \(\tau\), without concern for the type of the first component (since it’s guaranteed to be a subtype of `Top`).

Here are the extensions to the typing and equivalence judgments. They make use of a new subtyping judgment `\vdash \tau_1 \leq \tau_2`:

\[
\begin{align*}
\vdash \tau &\leq \tau \\
\vdash \tau &\leq \text{Top} \\
\Gamma &\vdash e : \sigma \quad \vdash \sigma \leq \tau \\
\Gamma &\vdash e : \tau \\
\Gamma &\vdash e_1 : \text{Top} \\
\Gamma &\vdash e_2 : \text{Top} \\
\Gamma &\vdash e_1 \equiv e_2 : \sigma \\
\vdash \sigma &\leq \tau \\
\Gamma &\vdash e_1 \equiv e_2 : \tau
\end{align*}
\]

Note that all terms are equivalent when considered at type `Top`. The reason for this is simple: if all you know about \(e_1\) and \(e_2\) is that they both have type `Top`, then there is nothing you can do with them, so there is no way to distinguish them, and thus they are extensionally equivalent.

\textbf{Problem:} Extend the equivalence algorithm to handle `Top` and extend the logical relations proof of completeness (i.e., that \(\Gamma \vdash e_1 \equiv e_2 : \tau\) implies \(\Gamma \vdash e_1 \Leftrightarrow e_2 : \tau\)) accordingly.

\textbf{Hint:} `Top` is kind of like `Unit`, so most of the new cases will be trivial. One will be non-trivial.