Advanced Type Systems
Homework #4

Instructor: Derek Dreyer
Assigned: February 15, 2006
Due: February 27, 2006

1 Termination in the Presence of Existentials

Prove that call-by-value System F is still terminating even when extended with existential types. This result should not be surprising, since it is well-known that existential types are encodable in System F in terms of universal types (see Section 11.3.5 in Girard’s *Proofs and Types*).

Here are the appropriate extensions:

<table>
<thead>
<tr>
<th>Types</th>
<th>τ ::= ...</th>
<th>τ′</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terms</td>
<td>e, f ::= ...</td>
<td>pack [σ, e] as τ</td>
</tr>
<tr>
<td>Values</td>
<td>v, w ::= ...</td>
<td>pack [σ, v] as τ</td>
</tr>
</tbody>
</table>

\[\Delta \vdash σ \quad \Delta; Γ \vdash e : τ[σ/α] \]

\[\Delta; Γ \vdash \text{pack} [σ, e] \text{ as } τ : α \]

\[\Delta; Γ \vdash e : τ \quad \Delta, α; Γ, x : τ \vdash e′ : τ′ \quad α \not\in \text{FV}(τ′) \]

\[\Delta; Γ \vdash \text{let } [α, x] = \text{unpack } e \text{ in } e′ : τ′ \]

\[\Delta; Γ \vdash e \sim e′ \]

\[\text{pack} [σ, e] \text{ as } τ \sim \text{pack} [σ, e′] \text{ as } τ \]

\[\text{let } [α, x] = \text{unpack } e \text{ in } f \sim \text{let } [α, x] = \text{unpack } e′ \text{ in } f \]

\[\text{let } [α, x] = \text{unpack} (\text{pack} [σ, v] \text{ as } τ) \text{ in } e \sim e[σ/α][v/x] \]

2 A Simple Parametricity Result

We are working in plain call-by-value System F. Suppose that we are given a closed value \(f\) of type \(\forall α. (α \to α) \to (α \to α)\), a closed type \(τ\), and two closed values \(v_s\) and \(v_z\) of type \(τ \to τ\) and \(τ\), respectively.

Your task is to define a set \(S\) that precisely characterizes the possible values that \(f[τ](v_s)(v_z)\) might compute to, but whose definition does NOT mention \(f\). That is, for any value \(v\), if it is possible that \(f[τ](v_s)(v_z) \sim^* v\), then \(v \in S\), and vice versa. (If I left out “and vice versa”, then you could just pick \(S\) to be the universal set.) Prove that your definition of \(S\) is correct.
3 Termination in the Presence of Constants of Arbitrary Type

Prove that call-by-value System F is still terminating even when extended with constants at every type (à la Girard). For the purpose of this problem, you can assume that the language has no base type T and no other constants beside 0 (see below). This illustrates that the existence of a value of the “false” type $\forall \alpha. \alpha$ does not break termination per se.

Here are the appropriate extensions:

$$
\begin{align*}
\text{Terms} & \quad e,f ::= \cdots \mid 0 \\
\text{Values} & \quad v,w ::= \cdots \mid 0 \mid 0[\tau] \\
\Delta; \Gamma \vdash 0 : \forall \alpha. \alpha \\
0[\sigma \rightarrow \tau](v) & \leadsto 0[\tau] \\
0[\forall \alpha. \tau][\sigma] & \leadsto 0[\tau[\sigma/\alpha]]
\end{align*}
$$

4 Using Girard’s J to Implement Recursion

For this problem, we are working in System F with full reduction, extended with Girard’s 0 and J operators. Recall the semantics of Girard’s J operator:

$$
\Delta; \Gamma \vdash J : \forall \alpha. \forall \beta. \alpha \rightarrow \beta
$$

$$
\begin{align*}
\sigma = \tau & \quad & \sigma \neq \tau & \quad \sigma \text{ and } \tau \text{ are closed} \\
J[\sigma][\tau](e) & \leadsto e & J[\sigma][\tau](e) & \leadsto 0[\tau]
\end{align*}
$$

Let us say that a closed term Y “encodes the fixed-point combinator at type τ” if: (1) Y has type $(\tau \rightarrow \tau) \rightarrow \tau$, and (2) for any closed term f of type $\tau \rightarrow \tau$, there exists a term e such that $Y(f) \leadsto e$ and $e \leadsto f(e)$.

Your task is to use Girard’s J operator to define a closed term fix such that for all closed types τ, it is the case that $\text{fix}[\tau]$ encodes the fixed-point combinator at type τ.

Hint: $Y = \lambda f. (\lambda x. f(x x))(\lambda x. f(x x))$ is the fixed-point combinator in the classical untyped λ-calculus. At least in my solution to this problem, the untyped erasure of my fix is precisely the classical Y combinator.

5 Extra Credit: The DJ Is a Real Smooth Operator

Let us say that an operator Op of type σ “satisfies the Harper-Mitchell criterion” if: (1) there exist closed terms of type σ in pure System F, and (2) adding Op to System F causes strong normalization to fail. Furthermore, let us say that Op is a “real smooth operator” if: (1) it satisfies the Harper-Mitchell criterion, and (2) for all operators Lame that satisfy the Harper-Mitchell criterion, for all closed types τ, if Lame can be used to construct a term that encodes the fixed-point operator at type τ, then so can Op. In other words, Op is real smooth if it is the most powerful operator (in terms of encoding recursion) that one can define without violating the Harper-Mitchell criterion.

Prove that there exists a real smooth operator by defining one and proving that it is real smooth. (Mine is called DJ, short for “Dreyer’s J”.)