
CMSC 35900 (Spring 2009) Large Scale Learning Lecture: 2

Random Projections

Instructors: Sham Kakade and Greg Shakhnarovich

1 The Johnson-Lindenstrauss lemma
Theorem 1.1. (Johnson-Lindenstrauss) Let ε ∈ (0, 1/2). Let Q ⊂ Rd be a set of n points and k = 20 log n

ε2 . There
exists a Lipshcitz mapping f : Rd → Rk such that for all u, v ∈ Q:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

To prove JL, we appeal to the following lemma:

Theorem 1.2. (Norm preservation) Let x ∈ Rd. Assume that the entries in A ⊂ Rk×d are sampled independently
from N(0, 1). Then,

Pr((1− ε)‖x‖2 ≤ ‖ 1√
k

Ax‖2 ≤ (1 + ε)‖x‖2) ≥ 1− 2e−(ε2−ε3)k/4

The proof of the JL just appeals to the union bound:

Proof. The proof is constructive and is an example of the probabilistic method. Choose an f which is a random
projection. Let f = 1√

k
Ax where A is a k × d matrix, where each entry is sampled i.i.d from a Gaussian N(0, 1).

Note there are O(n2) pairs of u, v ∈ Q. By the union bound,

Pr(∃u, v s.t. the following event fails: (1− ε)‖u− v‖2 ≤ ‖ 1√
k

A(u− v)‖2 ≤ (1 + ε)‖u− v‖2)

≤
∑

u,v∈Q

Pr( s.t. the following event fails: (1− ε)‖u− v‖2 ≤ ‖ 1√
k

A(u− v)‖2 ≤ (1 + ε)‖u− v‖2)

≤ 2n2e−(ε2−ε3)k/4

< 1

the last step follows if we choose k = 20
ε2 log n).

Note that that the probability of finding a map f which satisfies the desired conditions is strictly greater than 0, so
such a map must exist. (Aside: this proof technique is known as ‘the probabilistic method’ — note that the theorem is
a deterministic statement while the proof is via a probabilistic argument.)

Now let us prove the norm preservation lemma:

Proof. First let us show that for any x ∈ Rd, we have that:

E[‖ 1√
k

Ax‖2] = E[‖x‖2] .

1



To see this, let us examine the expected value of the entry [Ax]2j

E[[Ax]2j ] = E[(
d∑

i=1

Ai,jxi)2]

= E[
∑
i,i′

Ai,jAi′,jxi′xi]

= E[
∑

i

A2
i,ix

2
i ]

=
∑

i

x2
i

= ‖x‖2

and note that:

‖ 1√
k

Ax‖2 =
1
k

k∑
j=1

[Ax]2j

which proves the first claim (note that all we require for this proof is independence and unit variance in constructing
A).

Note that above shows that Z̃j = [Ax]j/‖x‖ is distributed as N(0, 1), and Z̃j are independent. We now bound the
failure probability of one side. By the union bound,

Pr(‖ 1√
k

Ax‖2 > (1 + ε)‖x‖2) = Pr(
k∑

i=1

Z̃2
i > (1 + ε)k)

= n2 Pr(χ2
k > (1 + ε)k)

(where χ2
k is the chi-squared distribution with k degrees of freedom). Now we appeal to a concentration result below,

which bounds this probability by:

≤ exp(−k

4
(ε2 − ε3))

A similar argument handles the other side (and the factor of 2 in the bound).

The following lemma for χ2- distributions was used in the above proof.

Lemma 1.3. We have that:

Pr(χ2
k ≥ (1 + ε)k) ≤ exp(−k

4
(ε2 − ε3))

Pr(χ2
k ≤ (1− ε)k) ≤ exp(−k

4
(ε2 − ε3))
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Proof. Let Z1, Z2, . . . Zk be i.i.d. N(0, 1) random variables. By Markov’s inequality,

Pr(χ2
k ≥ (1 + ε)k) = Pr(

k∑
i=1

Z2
i > (1 + ε)k)

= Pr(eλ
Pk

i=1 Z2
i > e(1+ε)kλ)

≤ E[eλ
Pk

i=1 Z2
i ]

e(1+ε)kλ

=
(E[eλZ2

1 ])k

e(1+ε)kλ

= e−(1+ε)kλ

(
1

1− 2λ

)k/2

where the last step follows from evaluating the expectation, which holds for 0 < λ ≤ 1/2 (this expectation is just the
moment generating function). Choosing λ = ε

2(1+ε) which minimizes the above expression (and is less than 1/2 as
required), we have:

Pr(χ2
k ≥ (1 + ε)k) = ((1 + ε)e−ε)

k
2 )

≤ exp(−k

4
(ε2 − ε3))

using the upper bound 1 + ε ≤ exp(ε− (ε2 − ε3)/2). The other bound is proved in a similar manner.

The following lemma shows that nothing is fundamental about using Gaussian in particular. Many distributions
with unit variance and certain boundedness properties (or higher order moment conditions) suffice.

Lemma 1.4. Assume for A ∈ R×k × d that each Ai, j is uniform on {−1, 1}. Then for any vector x ∈ Rd:

Pr(‖ 1√
k

Ax‖2 ≥ (1 + ε)‖x‖2) ≤ exp(−k

4
(ε2 − ε3))

Pr(‖ 1√
k

Ax‖2 ≤ (1− ε)‖x‖2) ≤ exp(−k

4
(ε2 − ε3))

2 Preserving Inner Products
As a simple corollary, we see that inner products are preserved under random projection.

Corollary 2.1. Let u, v ∈ Rd and that ‖u‖ ≤ 1 and ‖v‖ ≤ 1. Let f = 1√
k
Ax where A is a k × d matrix, where each

entry is sampled i.i.d from a Gaussian N(0, 1) (or from U(−1, 1)). Then,

Pr(|u · v − f(u) · f(v)| ≥ ε) ≤ 4e−(ε2−ε3)k/4

Proof. Applying Theorem 1.2 to the vectors u+ v and u− v, we have that with probability at least 1− 4e−(ε2−ε3)k/4:

(1− ε)‖u + v‖2 ≤ ‖f(u + v)‖2 ≤ (1 + ε)‖u + v‖2

(1− ε)‖u− v‖2 ≤ ‖f(u− v)‖2 ≤ (1 + ε)‖u− v‖2

Now we have:

4f(u) · f(v) = ‖f(u + v)‖2 − ‖f(u− v)‖2

≥ (1− ε)‖u + v‖2 − (1 + ε)‖u− v‖2

= 4u · v − 2ε(‖u‖2 + ‖v‖2)
≥ 4u · v − 4ε

The proof of the other direction is analogous.
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3 References
Material used was from Santosh Vempala’s monograph on random projections.
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