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Abstract

Neural motor prostheses (NMPs) require the accurate decoding of motor cortical
population activity for the control of an artificial motor system. Previous work
on cortical decoding for NMPs has focused on the recovery of hand kinematics.
Human NMPs however may require the control of computer cursors or robotic
devices with very different physical and dynamical properties. Here we show
that the firing rates of cells in the primary motor cortex of non-human primates
can be used to control the parameters of an artificial physical system exhibiting
realistic dynamics. The model represents 2D hand motion in terms of a point mass
connected to a system of idealized springs. The nonlinear spring coefficients are
estimated from the firing rates of neurons in the motor cortex. We evaluate linear
and a nonlinear decoding algorithms using neural recordings from two monkeys
performing two different tasks. We found that the decoded spring coefficients
produced accurate hand trajectories compared with state-of-the-art methods for
direct decoding of hand kinematics. Furthermore, using a physically-based system
produced decoded movements that were more “natural” in that their frequency
spectrum more closely matched that of natural hand movements.

1 Introduction

Neural motor prostheses (NMPs) aim to restore lost motor function to people with intact cerebral
motor areas who, through disease or injury, have lost the ability to control their limbs. Central
to these devices is a method for decoding the firing activity of motor cortical neurons to produce
a voluntary control signal. A number of groups have recently demonstrated the real-time neural
control of 2D or 3D computer cursors or simple robotic limbs in monkeys [1, 13, 18, 20, 22] and
humans [6]. Previous work on decoding motor cortical signals however has focused on modeling
the relationship between neural firing rates and simple hand kinematics including hand direction,
speed, position, velocity, or acceleration [2, 4, 8, 10].

While the relationship between neural firing rates and hand kinematics is well established in able-
bodied monkeys, the situation of a human NMP is quite different. For a paralyzed human, the NMP
represents an artificial motor system with different physical properties than the intact human motor
system. In particular, a human NMP may involve the control of devices as different as computer
cursors or robotic wheelchairs. It remains an open question whether motor cortical neurons can
successfully control such varied systems with dynamics that are quite different from human limbs.

Here we propose a model that makes a first step toward neural control of novel artificial motor
systems. We show that motor cortical firing rates can be nonlinearly related to the parameters of
an idealized physical system. This provides an important proof-of-concept for human NMPs. Our
model decodes the dynamics of hand movement directly from the neural activity. Ultimately, such a



model should reflect the actuator being controlled. For a biological actuator this means the activation
of individual muscles; for a robotic one, the forces and torques produced by the motors in the system.

A model incorporating direct cortical control of dynamics has been proposed in [19]. There are two
major distinctions between that work and ours. First, we consider the task of controlling an artificial
system, rather than the subject’s real limb. Second, applying the model in [19] in practice would re-
quire constructing a very complex biomechanical model and controlling its many degrees of freedom
with a limited neural bandwidth. Here we propose a much simpler approach, that does not attempt
to accurately model the musculoskeletal structure of the arm. Instead, it provides a computationally
effective framework to model the dynamics of the limb moving in two dimensional plane. Our ap-
proach is inspired by the recent work of Hinton and Nair [5], that suggested a generative model for
images of handwritten digits. In that work, observed images were assumed to have been generated
by a pen connected to a set of springs, the trajectory of the pen controlled by varying the stiffness of
the springs according to a digit-specific “motor program”. The goal was to infer the motor program
from an observed image, in order to classify the digit. In the context of neural decoding, the image
observation is replaced with the recorded neural signal, from which we need to recover the “motor
program”, and thus the intended movement. This is where the parallels between our work and [5]
end. One particularly important difference is that the neural decoder may be learned in a supervised
procedure, where the groud truth for the movement associated with a given neural signal is known.

An advantage of this spring-based model (SBM) over previous kinematics-based decoding methods
is that the realistic dynamics of the model produce smoother recovered movement. We show that
the motions are more natural in that they better match the power spectrum of true hand movements.
This suggests that the control of a physical system (even an artificial one) may prove more natural
for a human NMP.

The experimental setup we consider in this paper involves an electrode array, implanted in the
arm/hand area of the MI cortex of a behaving monkey [17]. The animals are trained to control
the cursor by moving the endpoint of a two-link manipulandum constrained to a plane, much like
a human would use a computer mouse [11, 13]. Neural data and hand kinematics were recorded
from two monkeys performing two different tasks. The data was separated into training and testing
segments and we quantitatively compared a variety of popular linear and nonlinear algorithms for
decoding hand kinematics and the spring coefficients of our SBM. As expected, nonlinear meth-
ods tend to outperform linear ones. Moreover, movement reconstructed with the SBM has a power
spectrum significantly closer to that of natural movement. These results suggest that the control of
idealized physical systems with real-time nonlinear decoding algorithms may form the basis for a
practical human NMP.
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Figure 1: Sketch of the spring-based
model. The outer endpoints of the
springs are assumed to slide without
friction, so that A and B are always or-
thogonal to C and D. The rest length
is assumed to be zero for all springs.
Movement is controlled by varying the
stiffness coefficients kA, kB , kC and
kD.



2 The spring-based model

Decoding neural activity in N cells involves estimating the values of a hidden state X(t) at time
t given an observed sequence of firing rates Z(0) . . .Z(t) up to time t, with each Z(i) being a
1 × N vector. The state here is typically taken to be either hand position, velocity, etc. Methods
described in the literature can be roughly divided into two classes. Generative methods formulate the
likelihood of the observed firing rates conditioned on the state and use Bayesian inference methods
such as the Kalman filter [21] or particle filter [3] to estimate the system state from observations.
In contrast, direct (or discriminative) methods learn a function that maps firing rates over some
preceding temporal window into hand kinematics. Various methods have been explored including
linear regression [1, 13], support-vector regression [15] and neural network algorithms [12, 20].
All these previous methods have focused on direct decoding of kinematic properties of the hand
movement and have ignored the arm dynamics.

2.1 Parametrization of dynamics

Our approach to incorporating dynamics into the decoding process has been inspired by the follow-
ing model of [5], sketched out in Figure 1. Without loss of generality, let the work area (that fully
contains the movement range) be an axis-aligned square [−L,L] × [−L,L]. The endpoint of the
limb (wrist) is assumed to be connected to one end of four imaginary springs, the other end of which
is sliding with no friction along rails forming the boundaries of the “work area”. Thus, at every time
instance each spring is parallel to one of the axes. The analysis of dynamics therefore can be easily
decomposed to x and y components. Below we focus on the x component.

All four springs are assumed to have rest length of zero. Suppose that the position of the wrist at
time t is [x(t), y(t)]. Then the springs A and B apply forces determined by Hooke’s law, namely,
kA(t) (L− x(t))) and −kB(t) (x(t) + L), where kA(t) and kB(t) are the stiffness coefficients of A
and B at time t. To reflect physical constraints on movement in the real world, the model presumes
a point mass m in the center of the wrist (i.e. at the cursor location). Furthermore, it is assumed that
the movement is damped by a viscous force proportional to the instantaneous velocity, −βvx(t).
The viscosity is meant to represent both the medium resistance and the elasticity of the muscles. In
summary, according to Newton’s second law the acceleration of the hand at time t is given by

m · ax(t) = kA(t) · (L− x(t)) − kB(t) · (L + x(t))− β · vx(t), (1)

where vx(t) is the instantaneous velocity of the wrist at time t along the x axis.

Control of movement in this model is realized through varying the stiffness coefficients of the
springs: given the current position of the wrist x, the desired acceleration a is achieved by set-
ting kA(t) and kB(t) so as to solve (1). This solution is not unique, in general. We note, however,
that the physiological meaning of the k’s requires them to be non-negative, since the muscles can
not “push”. This motivates us to introduce the total stiffness constraint

kA + kB = κ, (2)

where κ is a constant chosen so that no feasible acceleration would yield negative kA or kB .

We can now recover the underlying parameters K = [kA, kB , kC , kD] for the observed movement
by applying (1) at each time step as follows. First we estimate the velocities v̂x(t) = x(t+1)−x(t)
and accelerations âx(t) = v̂x(t + 1)− v̂x(t). Then, we substitute (2) into (1), yielding

k̂A(t) =
m · âx(t) + v̂x(t) + κ · (L + x(t))

2L
. (3)

The value of kB(t) is then uniquely determined from (2). Repeating these calculations for the y-axis
produces the coefficients for springs C and D.

2.2 Decoding neural activity

We now turn to our main goal: inferring the desired movement from a recorded neural signal. We
treat this as a supervised learning task. In the training stage, we take a data set in which we have
both the recorded neural signal Z(t) and the observed trajectory of hand positions X(t) associated



with that signal. From this, we can learn a mapping g from the neural signal to the desired repre-
sentation of movement. For direct kinematic decoding this means inference g : Z(t) → X(t). For
decoding with the SBM, this means inference of spring coefficients in the SBM, g : Z(t) → K(t),
followed by the calculation K(t) → X(t) as described above. The SBM formulation also requires
a preprocessing step for the training data: we need to convert the observed position trajectory X to
the trajectory through K, acording to (3).

We have focused on two ways of constructing g, described below.

Linear filter. The linear filter (LF) approach [13] consists of modeling the mapping from firing
rate to movement by a linear transformation W that is applied on a concatenated firing rate vector
for a fixed history depth l:

X(t) = x0 + WZ̃(t), (4)

where x0 is a constant (bias) term and

Z̃(t) =
[
ZT (t− l), . . . ,ZT (t)

]T
. (5)

The dimension of Z̃(t) for a recording from N channels, is 1× lN . The transformation W is fit to
the training data by solving the least squares problem, and then used at the decoding stage to predict
values of X. Application of the LF to the SBM is straightforward: the target of the mapping is in
the space of coefficients K, rather than position X.

Support vector regression. Support Vector Machines (SVM) are a widely popular learning archi-
tecture that relies on two key ideas: mapping the data into a (possibly infinite-dimensional) feature
space using a kernel function, and optimizing the bound on generalization error. In the context of
regression [16] this means using an ε-insensitive loss function, that does not penalize training errors
up to ε, to fit a linear function in the feature space. SVMs also aim at reducing model complexity
by penalizing the objective for the norm of the resulting function. The solution is finally expressed
in terms of kernel functions involving a subset of the training examples (the support vectors). The
key parameters that affect the performance of SVMs are the value of ε, the tradeoff c that governs
the penalty of training error, and parameters of the kernel function.

SVMs have been widely successful in many applications of machine learning. However, their appli-
cation to the task of neural decoding has been limited to the directional center-out task [15]. Here
we evaluate SV regression as a method for decoding more general 2D movement. Again, the SVM
formulation is readily extended to the SBM (with the target functions being components of K).

Alternative decoders. A variety of other decoding approaches has been proposed in the literature.
We conducted experiments with three additional algorithms: Kalman filter [21], Multilayer Percep-
trons [20] and Echo-state Networks, a recurrent neural network architecture [7]. The Kalman filter
uses a linear model of the mapping of neural signals to movement, while the models underlying the
other two methods are nonlinear. Our findings can be summarized as follows, for both kinematic
decoding and decoding with the spring-based model. First, nonlinear methods perform significantly
better than linear ones. Second, there was a trend for the Kalman filter to perform better than the
linear filter. Third, among nonlinear methods SVM tended to perform better than the two neural net-
work architectures. However, these latter differences could not be established with significance. In
the following section, we focus on experiments with the linear filter (the de-facto standard decoding
method today) and SVM, which achieved the overall best results in our experiments.

3 Experiments

We evaluated the performance of the proposed approach on data sets obtained from two behaving
monkeys (Macaca Mulatta). The neural signal was obtained with a Cyberkinetics microelectrode
array [9] (96 electrodes) implanted in the arm/hand area of MI cortex. The experimental animals
performed the tasks described below.

Sequential reaching movement , described in [13] Reach targets and a hand position feedback
cursor were presented on a video screen in front of the monkey. When a reach target was presented



Table 1: Details of experiments. Units: number of
distinct units identified after spike sorting. Train, test:
length of train and test sequences in seconds.

Session Units Train Test
CL-sequential 49 623 140
LA-continuous 96 244 165
CL-continuous 55 448 140

the animal’s task was to move a manipulandum so that the feedback cursor moved into the target
and remained in the target for 500ms, at which time that target was extinguished and a new reach
target was presented in a different location. Target locations were drawn i.i.d. from the uniform
distribution over the screen surface. This was repeated for up to 10 targets per trial. Upon successful
completion of a trial the animal received a juice reward. Hand kinematics and neural activity were
simultaneously recorded while the animal performed the task.

Continuous tracking , described in [14] Monkey was viewing a computer screen on which a
visual target appeared in a random, but smooth, sequence of locations. The monkey was trained to
follow the target’s position with a cursor, using a manipulandum, and received a reward for each
successful trial (i.e. when the cursor remained within the target for a duration drawn for each target
randomly between 3 and 10 seconds).

The recorded neural activity was converted to spike trains by computer-assisted spike-sorting soft-
ware, and the spike counts were calculated in non-overlapping 70ms windows. The hand kinematics
(obtained by recording the 2D position of the manipulandum) were averaged within each window,
to produce an aligned representation.

3.1 Evaluation protocol

In each of the data sets, we selected a segment of the recording to train all the decoders, and a
subsequent segment to test the decoding accuracy. Tuning of parameters (the kernel parameters
of the SVM or the mass and viscosity of the spring model) was done on a held-out portion of the
training segment. We built the firing rate history matrix by concatenating for each time step the firing
rates for 15 bins. For instance, for monkey CL, continuous tracking, the dimension of the neural
signal representation was 825 (55 channels× 15 history bins). This firing rates were then normalized
so that all values would be within [-1,1]. Basic statistics of the data used in the experiments are given
in Table 1.

We considered three evaluation criteria:

Correlation coefficients (CC): between the estimated and true value for each of the two spatial
coordinates over the entire trajectory:

CC =
∑

t(xt − x̄t)(x̂t − ¯̂xt)√∑
t(xt − x̄t)2

∑
t(x̂t − ¯̂xt)2

.

Mean absolute error (MAE): in the estimated position versus the ground truth: MAE =
1
N

∑N
t=1 ‖X(t)− X̂(t)‖.

Power spectrum reconstruction : One of the objectives of a practical decoding algorithm, espe-
cially in the context of assistive technology, is to produce movement that appears “natu-
ral”. As a criterion for evaluating the degree of “naturalness” we use the similarity between
power spectrum densities of the true movement and the reconstructed one. Specifically, we
calculated the L1 norm between the energy distributions over normalized angular frequen-
cies, taken in the log domain (see Figure 2 for illustration).

3.2 Results

The reported results for SVM were obtained with quadratic kernel, k(x,y) = (x ·y+1)2; the trade-
off term c was fixed to 100, and the insensitivity parameter ε was set to 5 for the spring coefficient
and 2 for direct position decoding. The number of support vectors was between 20% and 65% of
the training set size.



Decoder CL/sequential LA/continuous CL/continuous
MAE CCx CCy MAE CCx CCy MAE CCx CCy

Linear-kinematics 5.3 0.69 0.79 5.03 0.5 0.75 6.66 0.80 0.83
Linear-SBM 5.7 0.64 0.74 5.26 0.46 0.72 6.82 0.77 0.81
SVM-kinematics 4.45 0.80 0.85 4.44 0.60 0.82 3.82 0.86 0.86
SVM-SBM 4.91 0.76 0.81 4.69 0.55 0.80 4.05 0.83 0.84

Table 2: Summary of results on the three datasets. MAE is given in cm, over workspace of roughly
30×30 cm.

Table 2 summarizes the MAE and CC measured on the test segment for each method. One obser-
vation is that SVM tends to outperform the linear filter, in line with previous observations [12, 15].
We believe that this is due to inherent nonlinearity in the underlying relationship, which is better
captured by the SVM. Moreover, it is apparent that the decoding accuracy of the SBM is on par
with that of the conventional kinematic decoding (the observed differences were not significant at
the 0.05 level, measured over the per-bin position errors).
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Figure 2: Example of power spec-
trum densities for true hand trajec-
tory (dotted black), reconstruction with
SVM-kinematics (dashed blue) and re-
construction with SVM-SBM (solid
red). Estimated using Burg’s algorithm
(pburg in Matlab, order 4). Data from
x coordinate, LA-continuous.

Figure 3: A 1.5 second path segment, true (circles) and reconstructed (squares). Left: SVM on
kinematics, right: SVM with SBM. Markers show position averaged in each 70ms bin. Note the
ragged form of the SVM-kinematics trajectory.

Results in Table 2, however, tell only a part of the story. Figure 3 shows, for a segment of 4.2 sec,
a typical example of the movement reconstructed with SVM on kinematics versus SVM on spring
coefficients. The accuracy in terms of deviation from ground truth is similar, however the estimate
produced by the direct kinematic decoding is significantly more “ragged”. Such discrepancy is not



necessarily reflected in the standard measures of accuracy such as CC or MAE. Quantitavely, this
can be assessed by calculating the L1 norm between the power spectrum densities of the true and
reconstructed hand trajectories. The estmated values of this quantity in our experiments are shown
in Table 3. These results reflect the relationship shown in Figure 2 (a typical case).

Table 3: Estimated L1 norm between power spectrum density of true and reconstructed trajectories.
Decoder CL-sequential LA-continuous CL-continuous

x y x y x y
Linear-kinematics 147.41 154.80 199.24 206.61 49.68 44.37
Linear-SBM 71.58 68.24 72.99 80.37 35.68 43.72
SVM-kinematics 143.78 151.35 188.65 196.14 33.96 28.44
SVM-SBM 51.45 52.31 53.05 66.20 20.83 21.15

4 Discussion

The spring-based model proposed in this paper represents a first attempt to directly incorporate
realistic physical constraints into a neural decoding model. Our experiments illustrate that the co-
efficients of an idealized physical system can be decoded from motor cortical firing rates, without
sttistically significant loss of decoding accuracy compared to more standard direct decoding of kine-
matics. An advantage of such an approach is that the physical properties of the system damp high
frequency motions resulting in decoded movements that inherently have the properties of natural
movement, with no ad-hoc smoothing.

Future work should consider more sophisticated physical models such as a simulated robotic arm
and a biophysically motivated musculoskeletal system. With the current state of the art in neural
recording and decoding, recovering the parameters of such models may be challenging. In contrast,
the approach presented here “summarizes” the effect of a more complicated system with just a few
idealized muscle-like elements.

Additional experiments are also warranted. In particular using a robotic feedback device we can
simulate the physical system of springs presented here such that the monkeys control a device with
the properties of our model. We hypothesize that the accuracy of decoding spring coefficients from
motor cortical activity in this condition will improve. This would suggest that matching the decoding
model to the physical system being controlled will improve decoding accuracy.

Finally, the real test of physically-based models will come in human NMP experiments. We plan
to test human cursor control with kinematic and physically-based decoders. We hypothesize that
the dynamics of the physically-based model will make it easier to control accurately (and perhaps
provide a more satisfying experience for the user). This could be a first step toward the neural control
of mechanical actuators in the physical world.

Acknowledgments

This work is partially supported by NIH-NINDS R01 NS 50867-01 as part of the NSF/NIH Col-
laborative Research in Computational Neuroscience Program and by the Office of Naval Research
(award N0014-04-1-082). We also thank the European Neurobotics Program FP6-IST-001917. We
thank Matthew Fellows and John Donoghue for providing data, and Reza Shadmehr for helpful
conversations.

References
[1] J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov,

P. G. Patil, C. S. Henriquez, and M. A. L. Nicolelis. Learning to control a brain-machine
interface for reaching and grasping by primates. PLoS, Biology, 1(2):001–016, 2003.

[2] D. Flament and J. Hore. Relations of motor cortex neural discharge to kinematics of passive
and active elbow movements in the monkey. Journal of Neurophysiology, 60(4):1268–1284,
1988.



[3] Y. Gao, M. J. Black, E. Bienenstock, S. Shoham, and J. P. Donoghue. Probabilistic infer-
ence of hand motion from neural activity in motor cortex. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems, pages 213–220.
MIT Press, 2002.

[4] A. Georgopoulos, A. Schwartz, and R. Kettner. Neural population coding of movement direc-
tion. Science, 233:1416–1419, 1986.

[5] G. Hinton and V. Nair. Inferring motor programs from images of handwritten digits. In Ad-
vances in Neural Information Processing Systems, pages 515–522. MIT Press, 2005.

[6] L. R. Hochberg, J. A. Mukand, G. I. Polykoff, G. M. Friehs, and J. P. Donoghue. Braingate
neuromotor prosthesis: Nature and use of neural control signals. In Society for Neuroscience
Abst. Program No. 520.17, Online, 2005.

[7] H. Jaeger. The “echo state” approach to analyzing and training recurrent neural networks.
Technical Report GMD Report 148, German National Research Institute for Computer Sci-
ence, 2001.

[8] R. Kettner, A. Schwartz, and A. Georgopoulos. Primary motor cortex and free arm movements
to visual targets in three-dimensional space. III. Positional gradients and population coding
of movement direction from various movement origins. Journal of Neuroscience, 8(8):2938–
2947, 1988.

[9] E. Maynard, C. Nordhausen, and R. Normann. The Utah intracortical electrode array: A
recording structure for potential brain-computer interfaces. Electroencephalography and Clin-
ical Neurophysiology, 102:228–239, 1997.

[10] D. Moran and A. Schwartz. Motor cortical representation of speed and direction during reach-
ing. Jrnl. of Neurophysiology, 82(5):2676–2692, 1999.

[11] L. Paninski, M. Fellows, N. Hatsopoulos, and J. P. Donoghue. Spatiotemporal tuning of motor
cortical neurons for hand position and velocity. J. of Neurophysiology, 91:515–532, 2004.

[12] Y. N. Rao, S.-P. Kim, J. Sanchez, D. Erdogmus, J. Principe, J. Carmena, M. Lebedev, and
M. Nicolelis. Learning mappings in brain-machine interfaces with echo state networks. In
IEEE Int. Conf. on Acou., Speech, and Sig. Proc., volume 5, pages 233–236, March 2005.

[13] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue. Brain-
machine interface: Instant neural control of a movement signal. Nature, 416:141–142, 2002.

[14] S. Shoham, L. M. Paninsky, M. R. Fellows, N. G. Hatsopoulos, J.P. Donoghue, and R. A.
Normann. Statistical encoding model for a primary motor cortical brain-machine interface.
IEEE Transactions on Biomedical Engineering, 52(7):1312–1322, 2005.

[15] L. Shpigelman, K. Crammerr, R. Paz, E. Vaadia, and Y. Singer. A temporal kernel-based
model for tracking hand-movements from neural activities. In Advances in Neural Information
Processing Systems, Vancouver, BC, December 2005.

[16] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Comput-
ing, 14:199–222, 2004.

[17] S. Suner, M. R. Fellows, C. Vargas-Irwin, G. K. Nakata, and J. P. Donoghue. Reliability
of signals from a chronically implanted, silicon-based electrode array in non-human primate
primary motor cortex. IEEE Trans. on Neural Systems and Rehab. Eng., 13(4):524–541, 2005.

[18] D. Taylor, S. Helms Tillery, and A. Schwartz. Direct cortical control of 3D neuroprosthetic
devices. Science, 296(5574):1829–1832, 2002.

[19] E. Todorov. Direct cortical control of muscle activation in voluntary arm movements: a model.
Nature Neuroscience, 3(4):391–398, April 2000.

[20] J. Wessberg, C. Stambaugh, J. Kralik, Laubach M. Beck, P., J. Chapin, J. Kim, S. Biggs,
M. Srinivasan, and M. Nicolelis. Real-time prediction of hand trajectory by ensembles of
cortical neurons in primates. Nature, 408:361–365, 2000.

[21] W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J Black. Bayesian population decoding
of motor cortical activity using a Kalman filter. Neural Computation, 18(1):80–118, 2006.

[22] W. Wu, A. Shaikhouni, J. P. Donoghue, and M. J. Black. Closed-loop neural control of cursor
motion using a Kalman filter. In Proc. IEEE Engineering in Medicine and Biology Society,
pages 4126–4129, Sep 2004.


