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Abstract

We study learnability in the online learning model. We define several complexity measures which cap-
ture the difficulty of learning in a sequential manner. Among these measures are analogues of Rademacher
complexity, covering numbers and fat shattering dimension from statistical learning theory. Relationship
among these complexity measures, their connection to online learning, and tools for bounding them are
provided. In the setting of supervised learning, finiteness of the introduced scale-sensitive parameters is
shown to be equivalent to learnability. The complexities we define also ensure uniform convergence for
non-i.i.d. data, extending the uniform Glivenko-Cantelli type results. We conclude by showing online
learnability for an array of examples.

1 Introduction

In the online learning framework, the learner is faced with a sequence of data appearing at discrete time
intervals. In contrast to the classical “batch” learning scenario where the learner is being evaluated after the
sequence is completely revealed, in the online framework the learner is evaluated at every round. Furthermore,
in the batch scenario the data source is typically assumed to be i.i.d. with an unknown distribution, while
in the online framework we relax or eliminate any stochastic assumptions on the data source. As such, the
online learning problem can be phrased as a repeated two-player game between the learner (player) and the
adversary (Nature).

Let F be a class of functions and X some set. The Online Learning Model is defined as the following
T -round interaction between the learner and the adversary: On round t = 1, . . . , T , the learner chooses
ft ∈ F , the adversary picks xt ∈ X , and the learner suffers loss ft(xt). At the end of T rounds we define
regret

R(f1:T , x1:T ) =

T∑
t=1

ft(xt)− inf
f∈F

T∑
t=1

f(xt)

as the difference between the cumulative loss of the player as compared to the cumulative loss of the best fixed
comparator. For the given pair (F ,X ), the problem is said to be online learnable if there exists an algorithm
for the learner such that regret grows sublinearly. Learnability is closely related to Hannan consistency
[14, 10].
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There has been a lot of interest in a particular setting of the online learning model, called online convex
optimization. In this setting, we write xt(ft) as the loss incurred by the learner, and the assumption is made
that the function xt is convex in its argument. The particular convexity structure enables the development
of optimization-based algorithms for learner’s choices. Learnability and precise rates of growth of regret have
been shown in a number of recent papers (e.g. [41, 32, 5, 1]).

The online learning model also subsumes the prediction setting. In the latter, the learner’s choice of a Y-
valued function gt leads to the loss of `(gt(zt), yt) according to a fixed loss function ` : Y × Y 7→ R. It is
evident that the choice of the learner is equivalently written as ft(x) = `(gt(z), y), and xt = (zt, yt) is the
choice of the adversary. In Section 6 we discuss the prediction setting in more detail.

In the “batch” learning scenario, data {(xi, yi)}Ti=1 is presented as an i.i.d. draw from a fixed distribution
over some product X ×Y. Learnability results have been extensively studied in the PAC framework [36] and
its agnostic extensions [15, 19]. It is well-known that learnability in the binary case (that is, Y = {−1,+1})
is completely characterized by finiteness of the Vapnik-Chervonenkis combinatorial dimension of the function
class [40, 38]. In the real-valued case, a number of combinatorial quantities have been proposed: P -dimension
[28], V -dimension [39], as well as the scale-sensitive versions Pγ-dimension [19, 6] and Vγ-dimension [3]. The
last two dimensions were shown to be characterizing learnability [3] and uniform convergence of means to
expectations for function classes.

In contrast to the classical learning setting, there has been surprisingly little work on characterizing learn-
ability for the online learning framework. Littlestone [24] has shown that, in the setting of prediction of
binary outcomes, a certain combinatorial property of the binary-valued function class characterizes learn-
ability in the realizable case (that is, when the outcomes presented by the adversary are given according to
some function in the class F). The result has been extended to the non-realizable case by Shai Ben-David,
Dávid Pál and Shai Shalev-Shwartz [8] who named this combinatorial quantity the Littlestone’s dimension.
Coincident with [8], minimax analysis of online convex optimization yielded new insights into the value of
the game, its minimax dual representation, as well as algorithm-independent upper and lower bounds [1, 34].
In this paper, we build upon these results and the findings of [8] to develop a theory of online learning.

We show that in the online learning model, a notion which we call Sequential Rademacher complexity allows
us to easily prove learnability for a vast array of problems. The role of this complexity is similar to the role of
the Rademacher complexity in statistical learning theory. Next, we extend Littlestone’s dimension to the real-
valued case. We show that finiteness of this scale-sensitive version, which we call the fat-shattering dimension,
is necessary and sufficient for learnability in the prediction setting. Extending the binary-valued result of
[8], we introduce a generic algorithm which plays the role similar to that of empirical risk minimization
for i.i.d. data: if the problem is learnable in the supervised setting, then it is learnable by this algorithm.
Along the way we develop analogues of Massart’s finite class lemma, the Dudley integral upper bound on
the Sequential Rademacher complexity, appropriately defined packing and covering numbers, and even an
analogue of the Sauer-Shelah combinatorial lemma. We also introduce a generalization of the uniform law
of large numbers for non-i.i.d. distributions and show that finiteness of the fat-shattering dimension implies
this convergence.

Many of the results come with more work than their counterparts in statistical learning theory. In particular,
instead of training sets we have to work with trees, making the results somewhat involved. While the spirit
of the online theory is that it provides a “temporal” generalization of the “batch” learning problem, not all
the results from statistical learning theory transfer to our setting. For instance, two distinct notions of a
packing set exist for trees, and these notions can be seen to coincide in “batch” learning. The fact that many
notions of statistical learning theory can be extended to the online learning model is indeed remarkable.
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2 Preliminaries

By phrasing the online learning model as a repeated game and considering its minimax value, we naturally
arrive at an important object in combinatorial game theory: trees. Unless specified, all trees considered in
this paper are rooted binary trees with equal-depth paths from the root to the leaves. While it is useful
to have the tree picture in mind when reading the paper, it is also necessary to precisely define trees as
mathematical objects. We opt for the following definition.

Definition 1 (Trees). Given some set Z, a Z-valued tree of depth T is a sequence (z1, . . . , zT ) of T mappings
zi : {±1}i−1 7→ Z. The root of the tree z is the constant function z1 ∈ Z.

Armed with this definition, we can talk about various operations on trees. For a function f : Z 7→ U , f(x)
denotes the U -valued tree defined by the mappings (f ◦x1, . . . , f ◦xT ). Analogously, for f : Z ×Z 7→ U , the
U-valued tree f(x,x′) is defined as mappings (f(x1,x

′
1), . . . , f(xT ,x

′
T )). In particular, this defines the usual

binary arithmetic operations on real-valued trees. Furthermore, for a class of functions F and a tree x, the
projection of F onto x is F(x) = {f(x) : f ∈ F}.

Definition 2 (Path). A path of length T is a sequence ε = (ε1, . . . , εT−1) ∈ {±1}T−1.

We shall abuse notation by referring to xi(ε1, . . . , εi−1) by xi(ε). Clearly xi only depends on the first i− 1
elements of ε. We will also refer to ε = (ε1, . . . , εT ) ∈ {±1}T as a path in a tree of depth T even though the
value of εT is inconsequential. Next we define the notion of subtrees.

Definition 3 (Subtrees). The left subtree z` of z at the root is defined as T − 1 mappings (z`1, . . . , z
`
T−1)

with z`i(ε) = zi+1({−1} × ε) for ε ∈ {±1}T−1. The right subtree zr is defined analogously by conditioning
on the first coordinate of zi+1 to be +1.

Given two subtrees z, v of the same depth T − 1 and a constant mapping w1, we can join the two subtrees
to obtain a new set of mappings (w1, . . . ,wT ) as follows. The root is the constant mapping w1. For
i ∈ {2, . . . , T} and ε ∈ {±1}T , wi(ε) = zi−1(ε) if ε1 = −1 and wi(ε) = vi−1(ε) if ε1 = +1.

In the sequel, we will need to talk about the values given by the tree x over all the paths. Formally, let
Img(x) = x

(
{±1}T

)
= {xt(ε) : t ∈ [T ], ε ∈ {±1}T } be the image of the mappings of x.

Let us also introduce some notation not related to trees. We denote a sequence of the form (ya, . . . , yb),
where a ≤ b, by simply writing ya:b . The set of all functions from X to Y is denoted by YX , and the
t-fold product X × . . .× X is denoted by X t. For any T ∈ N, [T ] denotes the set {1, . . . , T}. A conditional
distribution is written as Et [A] = E [A|Gt], where Gt is an appropriate filtration which will be specified.
Whenever a supremum (infimum) is written in the form supa without a being quantified, it is assumed that
a ranges over the set of all possible values which will be understood from the context.

For the sake of readability, almost all the proofs are deferred to the appendix.

3 Value of the Game

Fix the sets F and X and consider the online learning model stated in the introduction. We assume that
F is a subset of a separable metric space. Let Q be the set of probability distributions on F . Assume that
Q is weakly compact. We consider randomized learners who predict a distribution qt ∈ Q on every round.
Formally, define a learner’s strategy π as a sequence of mappings πt : X t−1 × F t−1 7→ Q for each t ∈ [T ].
We define the value of the game as

VT (F ,X ) = inf
q1∈Q

sup
x1∈X

Ef1∼q1 · · · inf
qT∈Q

sup
xT∈X

EfT∼qT

[
T∑
t=1

ft(xt)− inf
f∈F

T∑
t=1

f(xt)

]
(1)
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where ft has distribution qt. We consider here the adaptive adversary who gets to choose each xt based on
the history of moves f1:t−1 and x1:t−1.

Note that our assumption that F is a subset of a separable metric space implies that Q is tight and
Prokhorov’s theorem states that compactness of Q under weak topology is equivalent to tightness [35].
Compactness under weak topology allows us to appeal to Theorem 1 stated below, which is adapted for our
needs from [1].

Theorem 1. Let F and X be the sets of moves for the two players, satisfying the necessary conditions for
the minimax theorem to hold. Denote by Q and P the sets of probability distributions (mixed strategies) on
F and X , respectively. Then

VT (F ,X ) = inf
q1∈Q

sup
x1∈X

Ef1∼q1 . . . inf
qT∈Q

sup
xT∈X

EfT∼qT

[
T∑
t=1

ft(xt)− inf
f∈F

T∑
t=1

f(xt)

]

= sup
p1

Ex1∼p1 . . . sup
p1

Ex1∼p1

[
T∑
t=1

inf
ft∈F

Ext∼pt [ft(xt)]− inf
f∈F

T∑
t=1

f(xt)

]
. (2)

The question of learnability in the online learning model is now reduced to the study of VT (F ,X ), taking
Eq. (2) as the starting point. In particular, under our definition, showing that the value grows sublinearly
with T is equivalent to showing learnability.

Definition 4. A class F is said to be online learnable with respect to the given X if

lim sup
T→∞

VT (F ,X )

T
= 0 .

The rest of the paper is aimed at understanding the value of the game VT (F ,X ) for various function classes
F . Since complexity of F is the focus of the paper, we shall often write VT (F), and the dependence on X
will be implicit.

One of the key notions introduced in this paper is the complexity which we term Sequential Rademacher
complexity. A natural generalization of Rademacher complexity [21, 7, 26], the sequential analogue possesses
many of the nice properties of its classical cousin. The properties are proved in Section 7 and then used to
show learnability for many of the examples in Section 8. The first step, however, is to show that Sequential
Rademacher complexity upper bounds the value of the game. This is the subject of the next section.

4 Random Averages

We propose the following definition. The key difference from the classical notion is the dependence of the
sequence of data on the sequence of signs (Rademacher random variables). As shown in the sequel, this
dependence captures the sequential nature of the problem.

Definition 5. The Sequential Rademacher Complexity of a function class F ⊆ RX is defined as

RT (F) = sup
x

Eε

[
sup
f∈F

T∑
t=1

εtf(xt(ε))

]

where the outer supremum is taken over all X -valued trees of depth T and ε = (ε1, . . . , εT ) is a sequence of
i.i.d. Rademacher random variables.
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In statistical learning, Rademacher complexity is shown to control uniform deviations of means and ex-
pectations, and this control is key for learnability in the “batch” setting. We now show that Sequential
Rademacher complexity upper-bounds the value of the game, suggesting its importance for online learning
(see Section 6 for a lower bound).

Theorem 2. The minimax value of a randomized game is bounded as

VT (F) ≤ 2RT (F)

Proof. From Eq. (2),

VT (F) = sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
T∑
t=1

inf
ft∈F

Ext∼pt [ft(xt)]− inf
f∈F

T∑
t=1

f(xt)

]
(3)

= sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
sup
f∈F

{
T∑
t=1

inf
ft∈F

Ext∼pt [ft(xt)]−
T∑
t=1

f(xt)

}]

≤ sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
sup
f∈F

{
T∑
t=1

Ext∼pt [f(xt)]−
T∑
t=1

f(xt)

}]
(4)

The last step, in fact, is the first time we deviated from keeping equalities. The upper bound is obtained by
replacing each infimum by a particular choice f . Now renaming variables we have,

VT (F) = sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
sup
f∈F

{
T∑
t=1

Ex′t∼pt [f(x′t)]−
T∑
t=1

f(xt)

}]

≤ sup
p1

Ex1∼p1 . . . sup
pT

ExT∼pT

[
Ex′1∼p1 . . .Ex′T∼pT sup

f∈F

{
T∑
t=1

f(x′t)−
T∑
t=1

f(xt)

}]

≤ sup
p1

Ex1,x′1∼p1 . . . sup
pT

ExT ,x′T∼pT

[
sup
f∈F

{
T∑
t=1

f(x′t)−
T∑
t=1

f(xt)

}]
.

where the last two steps are using Jensen inequality for the supremum.

By the Key Technical Lemma (see Lemma 3 below) with φ(u) = u and ∆f (xt, x
′
t) = f(x′t)− f(xt),

sup
p1

Ex1,x′1∼p1 . . . sup
pT

ExT ,x′T∼pT

[
sup
f∈F

{
T∑
t=1

f(x′t)− f(xt)

}]

≤ sup
x1,x′1

{
Eε1

[
. . . sup

xT ,x′T

{
EεT

[
sup
f∈F

T∑
t=1

εt (f(x′t)− f(xt))

]}
. . .

]}

Thus,

VT (F) ≤ sup
x1,x′1

{
Eε1

[
. . . sup

xT ,x′T

{
EεT

[
sup
f∈F

T∑
t=1

εt (f(x′t)− f(xt))

]}
. . .

]}

≤ sup
x1,x′1

{
Eε1

[
. . . sup

xT ,x′T

{
EεT

[
sup
f∈F

{
T∑
t=1

εtf(x′t)

}
+ sup
f∈F

{
T∑
t=1

−εtf(xt)

}]}
. . .

]}

= 2 sup
x1

{
Eε1

[
. . . sup

xT

{
EεT

[
sup
f∈F

{
T∑
t=1

εtf(xt)

}]}
. . .

]}
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Now, we need to move the suprema over xt’s outside. This is achieved via an idea similar to skolemization
in logic. We basically exploit the identity

Eε1:t−1

[
sup
xt

G(ε1:t−1, xt)

]
= sup

xt

Eε1:t−1
[G(ε1:t−1,xt(ε1:t−1))]

that holds for any G : {±1}t−1 × X 7→ R. On the right the supremum is over functions xt : {±1}t−1 → X .
Using this identity once, we get,

VT (F) ≤ 2 sup
x1,x2

{
Eε1,ε2

[
sup
x3

. . . sup
xT

{
EεT

[
sup
f∈F

{
ε1f(x1) + ε2f(x2(ε1)) +

T∑
t=3

εtf(xt)

}]}
. . .

]}

Now, use the identity T − 2 more times to successively move the supremums over x3, . . . , xT outside, to get

VT (F) ≤ 2 sup
x1,x2,...,xT

Eε1,...,εT

[
sup
f∈F

{
ε1f(x1) +

T∑
t=2

εtf(xt(ε1:t−1))

}]

= 2 sup
x

Eε1,...,εT

[
sup
f∈F

{
T∑
t=1

εtf(xt(ε))

}]

where the last supremum is over X -valued trees of depth T . Thus we have proved the required statement.

Theorem 2 relies on the following technical lemma, which will be used again in Section 5.3. Its proof requires
considerably more work than the classical symmetrization proof [12, 26] due to the non-i.i.d. nature of the
sequences.

Lemma 3 (Key Technical Lemma). Let (x1, . . . , xT ) ∈ X T be a sequence distributed according to D and let
(x′1, . . . , x

′
T ) ∈ X T be a tangent sequence. Let ∆f (xt, x

′
t) be a functional F 7→ R such that

∆f (xt, x
′
t) = −∆f (x′t, xt)

Let Φ(Ω) = φ
(
supf∈F Ω(f)

)
or Φ(Ω) = φ

(
supf∈F |Ω(f)|

)
, where φ : R 7→ R is some measurable real valued

function and Ω : F 7→ R. Then

sup
p1

Ex1,x′1∼p1 . . . sup
pT

ExT ,x′T∼pT

[
Φ

(
T∑
t=1

∆f (xt, x
′
t)

)]
≤ sup
x1,x

′
1

{
Eε1

[
. . . sup

xT ,x
′
T

{
EεT

[
Φ

(
T∑
t=1

εt∆f (xt, x
′
t)

)]}
. . .

]}

where ε1, . . . , εT are independent (of each other and everything else) Rademacher random variables.

5 Covering Numbers and Combinatorial Parameters

In statistical learning theory, learnability for binary classes of functions is characterized by the Vapnik-
Chervonenkis combinatorial dimension [40]. For real-valued function classes, the corresponding notions are
the scale-sensitive dimensions, such as Pγ [3, 6]. For online learning, the notion characterizing learnability
for binary prediction in the realizable case has been introduced by Littlestone [24] and extended to the
non-realizable case of binary prediction by Shai Ben-David, Dávid Pál and Shai Shalev-Shwartz [8]. Next,
we define the Littlestone’s dimension [24, 8] and propose its scale-sensitive versions for real-valued function
classes. In the sequel, these combinatorial parameters are shown to control the growth of covering numbers
on trees. In the setting of prediction, the combinatorial parameters are shown to exactly characterize
learnability (see Section 6).
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Definition 6. An X -valued tree x of depth d is shattered by a function class F ⊆ {±1}X if for all ε ∈ {±1}d,
there exists f ∈ F such that f(xt(ε)) = εt for all t ∈ [d]. The Littlestone dimension Ldim(F ,X ) is the largest
d such that F shatters an X -valued tree of depth d.

Definition 7. An X -valued tree x of depth d is α-shattered by a function class F ⊆ RX , if there exists an
R-valued tree s of depth d such that

∀ε ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], εt(f(xt(ε))− st(ε)) ≥ α/2

The tree s is called the witness to shattering. The fat-shattering dimension fatα(F ,X ) at scale α is the
largest d such that F α-shatters an X -valued tree of depth d.

With these definitions it is easy to see that fatα(F ,X ) = Ldim(F ,X ) for a binary-valued function class
F ⊆ {±1}X for any 0 < α ≤ 2.

When X and/or F is understood from the context, we will simply write fatα or fatα(F) instead of fatα(F ,X ).
Furthermore, we will write fatα(F ,x) for fatα(F , Img(x)). In other words, fatα(F ,x) is the largest d such
that F α-shatters a tree z of depth d with Img(z) ⊆ Img(x).

Let us mention that if trees x are defined by constant mappings xt(ε) = xt, the combinatorial parameters
coincide with the Vapnik-Chervonenkis dimension and with the scale-sensitive dimension Pγ . Therefore, the
notions we are studying are strict “temporal” generalizations of the VC theory.

As in statistical learning theory, the combinatorial parameters are only useful if they can be shown to capture
that aspect of F which is important for learnability. In particular, a “size” of a function class is known to
be related to complexity of learning from i.i.d. data., and the classical way to measure “size” is through a
cover or of a packing set. We propose the following definitions for online learning.

Definition 8. A set V of R-valued trees of depth T is an α-cover (with respect to `p-norm) of F ⊆ RX on
a tree x of depth T if

∀f ∈ F , ∀ε ∈ {±1}T ∃v ∈ V s.t.

(
1

T

T∑
t=1

|vt(ε)− f(xt(ε))|p
)1/p

≤ α

The covering number of a function class F on a given tree x is defined as

Np(α,F ,x) = min{|V | : V is an α− cover w.r.t. `p-norm of F on x}.

Further define Np(α,F , T ) = supxNp(α,F ,x), the maximal `p covering number of F over depth T trees.

In particular, a set V of R-valued trees of depth T is a 0-cover of F ⊆ RX on a tree x of depth T if

∀f ∈ F , ∀ε ∈ {±1}T ∃v ∈ V s.t. vt(ε) = f(xt(ε))

We denote by N (0,F ,x) the size of a smallest 0-cover on x and N (0,F , T ) = supxN (0,F ,x).

Let us discuss a subtle point. The 0-cover should not be mistaken for the size |F(x)| of the projection of F
onto the tree x, and the same care should be taken when dealing with α-covers. Let us illustrate this with
an example. Consider a tree x of depth T and suppose for simplicity that |Img(x)| = 2T − 1, i.e. the values
of x are all distinct. Suppose F consists of 2T−1 binary-valued functions defined as zero on all of Img(x)
except for a single value of Img(xT ). In plain words, each function is zero everywhere on the tree except for
a single leaf. While the projection F(x) has 2T−1 distinct trees, the size of a 0-cover is only 2. It is enough
to take an all-zero function g0 along with a function g1 which is zero on all of Img(x) except Img(xT ) (i.e.
on the leaves). It is easy to verify that g0(x) and g1(x) provide a 0-cover for F on x, and therefore, unlike
|F(x)|, the size of the cover does not grow with T . The example is encouraging: our definition of a cover
captures the fact that the function class is “simple” for any given path.

Next, we naturally propose a definition of a packing.
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Definition 9. A set V of R-valued trees of depth T is said to be α-separated if

∀v ∈ V, ∃ε ∈ {±1}T s.t. ∀w ∈ V \ {v}

(
1

T

T∑
t=1

|vt(ε)−wt(ε)|p
)1/p

> α

The packing number Dp(α,F ,x) of a function class F on a given tree x is the size of the largest α-separated
subset of {f(x) : f ∈ F}.

Definition 10. A set V of R-valued trees of depth T is said to be strongly α-separated if

∃ε ∈ {±1}T s.t. ∀v,w ∈ V,v 6= w

(
1

T

T∑
t=1

|vt(ε)−wt(ε)|p
)1/p

> α

The strong packing number Mp(α,F ,x) of a function class F on a given tree x is the size of the largest
strongly α-separated subset of {f(x) : f ∈ F}.

Note the distinction between the packing number and the strong packing number. For the former, it must
be that every member of the packing is α-separated from every other member on some path. For the latter,
there must be a path on which every member of the packing is α-separated from every other member.
This distinction does not arise in the classical scenario of “batch” learning. We observe that if a tree x
is defined by constant mappings xt = xt, the two notions of packing and strong packing coincide, i.e.
Dp(α,F ,x) = Mp(α,F ,x). The following lemma gives a relationship between covering numbers and the
two notions of packing numbers. The form of this should be familiar, except for the distinction between the
two types of packing numbers.

Lemma 4. For any F ⊆ RX , any X -valued tree x of depth T , and any α > 0

Mp(2α,F ,x) ≤ Np(α,F ,x) ≤ Dp(α,F ,x).

It is important to note that the gap between the two types of packing can be as much as 2T .

5.1 A Combinatorial Upper Bound

We now relate the combinatorial parameters introduced in the previous section to the size of a cover. In the
binary case (k = 1 below), a reader might notice a similarity of Theorems 5 and 7 to the classical results due
to Sauer [29], Shelah [33] (also, Perles and Shelah), and Vapnik and Chervonenkis [40]. There are several
approaches to proving what is often called the Sauer-Shelah lemma. We opt for the inductive-style proof
(e.g. Alon and Spencer [4]). Dealing with trees, however, requires more work than in the VC case.

Theorem 5. Let F ⊆ {0, . . . , k}X be a class of functions with fat2(F) = d. Then

N∞(1/2,F , T ) ≤
d∑
i=0

(
T

i

)
ki ≤ (ekT )

d
.

Furthermore, for T ≥ d
d∑
i=0

(
T

i

)
ki ≤

(
ekT

d

)d
.

Armed with Theorem 5, we can approach the problem of bounding the size of a cover at an α scale by a
discretization trick. For the classical case of a cover based on a set points, the discretization idea appears in
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[3, 27]. When passing from the combinatorial result to the cover at scale α in Corollary 6, it is crucial that
Theorem 5 is in terms of fat2(F) and not fat1(F). This point can be seen in the proof of Corollary 6 (also
see [27]): the discretization process can assign almost identical function values to discrete values which differ
by 1. This explains why the combinatorial result of Theorem 5 is proved for the 2-shattering dimension.

We now show that the covering numbers are bounded in terms of the fat-shattering dimension.

Corollary 6. Suppose F is a class of [−1, 1]-valued functions on X . Then for any α > 0, any T > 0, and
any X -valued tree x of depth T ,

N1(α,F ,x) ≤ N2(α,F ,x) ≤ N∞(α,F ,x) ≤
(

2eT

α

)fatα(F)

With a proof similar to Theorem 5, a bound on the 0-cover can be proved in terms of the fat1(F) combinatorial
parameter. Of particular interest is the case k = 1, when fat1(F) = Ldim(F).

Theorem 7. Let F ⊆ {0, . . . , k}X be a class of functions with fat1(F) = d. Then

N (0,F , T ) ≤
d∑
i=0

(
T

i

)
ki ≤ (ekT )

d
.

Furthermore, for T ≥ d
d∑
i=0

(
T

i

)
ki ≤

(
ekT

d

)d
.

In particular, the result holds for binary-valued function classes (k = 1), in which case fat1(F) = Ldim(F).

When bounding deviations of means from expectations uniformly over the function class, the usual approach
proceeds by a symmetrization argument [13] followed by passing to a cover of the function class and a union
bound (e.g. [26]). Alternatively, a more refined chaining analysis integrates over covering at different scales
(e.g. [37]). By following the same path, we are able to prove a number of similar results for our setting.
In the next section we present a bound similar to Massart’s finite class lemma [25, Lemma 5.2], and in the
following section this result will be used when integrating over different scales for the cover.

5.2 Finite Class Lemma and the Chaining Method

Lemma 8. For any finite set V of R-valued trees of depth T we have that

Eε

[
max
v∈V

T∑
t=1

εtvt(ε)

]
≤

√√√√2 log(|V |) max
v∈V

max
ε∈{±1}T

T∑
t=1

vt(ε)2

A simple consequence of the above lemma is that if F ⊆ [0, 1]X is a finite class, then for any given tree x we
have that

Eε

[
max
f∈F

T∑
t=1

εtf(xt(ε))

]
≤ Eε

[
max

v∈F(x)

T∑
t=1

εtvt(ε)

]
≤
√

2T log(|F|) .

Note that if f ∈ F is associated with an “expert”, this result combined with Theorem 2 yields a bound
given by the exponential weighted average forecaster algorithm (see [10]). In Section 8 we discuss this case
in more detail. However, as we show next, Lemma 8 goes well beyond just finite classes and can be used to
get an analog of Dudley entropy bound [11] for the online setting through a chaining argument.

9



Definition 11. The Integrated complexity of a function class F ⊆ [−1, 1]X is defined as

DT (F) = inf
α

{
4Tα+ 12

∫ 1

α

√
T log N2(δ,F , T ) dδ

}
.

To prove the next theorem, we consider covers of the class F at different scales that form a geometric
progression. We zoom into a given function f ∈ F using covering elements at successive scales. This
zooming in procedure is visualized as forming a chain that consists of links connecting elements of covers at
successive scales. The Rademacher complexity of F can then be bounded by controlling the Rademacher
complexity of the link classes, i.e. the class consisting of differences of functions from covers at neighbouring
scales. This last part of the argument is the place where our proof becomes a bit more involved than the
classical case.

Theorem 9. For any function class F ⊆ [−1, 1]X ,

RT (F) ≤ DT (F)

5.3 Finite Fat-shattering Dimension Implies Uniform Convergence

In the statistical setting it can be shown that learnability of supervised learning problem is equivalent to
the so called uniform Glivenko-Cantelli property of the class which says that empirical averages converge
to expected value of the function for any fixed distribution (samples drawn i.i.d.) and uniformly over the
function class almost surely. We define below an analogous property for dependent distributions which
requires that uniformly over function class the average value of the function converges to average conditional
expectation of the function values almost surely.

Definition 12. A function class F satisfies a Universal Uniform Convergence if for all α > 0,

lim
n→∞

sup
D

PD

[
sup
T≥n

sup
f∈F

1

T

∣∣∣∣∣
T∑
t=1

(f(xt)− Et−1[f(xt)])

∣∣∣∣∣ > α

]
= 0

where the supremum is over distributions D over infinite sequences (x1, . . . , xT , . . .)

We remark that the notion of uniform Glivenko-Cantelli classes is recovered if the supremum is taken over
i.i.d. distributions. The theorem below shows that finite fat shattering dimension at all scales is a sufficient
condition for Universal Uniform Convergence.

Theorem 10. Let F be a class of [−1, 1]-valued functions. If fatα(F) is finite for all α > 0, then F satisfies
Universal Uniform Convergence.

6 Supervised Learning

In this section we study the supervised learning problem where player picks a function ft ∈ RX at any time
t and the adversary provides input target pair (xt, yt) and the player suffers loss |ft(xt) − yt|. Note that if
F ⊆ {±1}X and each yt ∈ {±1} then the problem boils down to binary classification problem. As we are
interested in prediction, we allow ft to be outside of F .

Though we use the absolute loss in this section, it is easy to see that all the results hold (with modified
rates) for any loss `(f(x), y) which is such that for all f , x and y,

φ(`(ŷ, y)) ≤ |ŷ − y| ≤ Φ(`(ŷ, y))

10



where Φ and φ are monotonically increasing functions. For instance the squared loss is a classic example.

To formally define the value of the online supervised learning game, fix a set of labels Y ⊆ [−1, 1]. Given F ,
define the associated loss class,

FS = {(x, y) 7→ |f(x)− y| : f ∈ F} .

Now, the supervised game is obtained using the pair (FS,X × Y) and we accordingly define

VS
T (F) = VT (FS,X × Y) .

Binary classification is, of course, a special case when Y = {±1} and F ⊆ {±1}X . In that case, we simply

use VBinary
T for VS

T .

Proposition 11. For the supervised learning game played with a function class F ⊆ [−1, 1]X , for any T ≥ 1

1

4
√

2
sup
α

{
α
√
T min {fatα, T}

}
≤ 1

2
VS
T (F)

≤ RT (F) ≤ DT (F) ≤ inf
α

{
4Tα+ 12

√
T

∫ 1

α

√
fatβ log

(
2eT

β

)
dβ

}
(5)

The proposition above implies that finiteness of the fat-shattering dimension is necessary and sufficient for
learnability of a supervised game. The next theorem makes a further claim that all the complexity notions
introduced so far are within a logarithmic factor from each other whenever the problem is learnable.

Theorem 12. For any function class F ⊆ [−1, 1]X , the following statements are equivalent

1. Function class F is online learnable in the supervised setting.

2. For any α > 0, fatα(F) is finite.

Moreover, if the function class is online learnable, then the value of the supervised game VS
T (F), the Sequential

Rademacher complexity R(F), and the Integrated complexity D(F) are within a multiplicative factor of

O(log3/2 T ) of each other.

Corollary 13. For the binary classification game played with function class F we have that

K1

√
T min {Ldim(F), T} ≤ VBinary

T (F) ≤ K2

√
T Ldim(F) log T

for some universal constants K1,K2.

We wish to point out that the lower bound of Proposition 11 also holds for “improper” supervised learning
algorithms, i.e. those that simply output a prediction ŷt ∈ Y rather than a function ft ∈ F . Formally, an
improper supervised learning strategy π̃ that learns F using a class G ⊆ YX is defined as a sequence of
mappings

π̃t : (X × Y)t−1 7→ Q̃ , t ∈ [T ]

where Q̃ denotes probability distributions over G. We can define the value of the improper supervised
learning game as

ṼS
T (F ;G) = inf

q1∈Q̃
sup
x1,y1

Ef1∼q1 · · · inf
qT∈Q̃

sup
xT ,yT

EfT∼qT

[
T∑
t=1

|gt(xt)− yt| − inf
f∈F

T∑
t=1

|f(xt)− yt|

]

11



where gt has distribution qt. Note that ṼS
T (F ;F) = VS

T (F), the latter being the value of the “proper”
learning game. We say that a class F is improperly online learnable in the supervised setting if

lim sup
T→∞

ṼS
T (F ;G)

T
= 0

for some G. Since a proper learning strategy can always be used as an improper learning strategy, we trivially
have that if class is online learnable in the supervised setting then it is improperly online learnable. Because
of the above mentioned property of the lower bound of Proposition 11, we also have the non-trivial reverse
implication: if a class is improperly online learnable in the supervised setting, it is online learnable.

It is natural to ask whether being able to learn in the online model is different from learning in a batch
model (in the supervised setting). The standard example (e.g. [24, 8]) is the class of step functions on
a bounded interval, which has a VC dimension 1, but is not learnable in the online setting. Indeed, it is
possible to verify that the Littlestone’s dimension is not bounded. Interestingly, the closely-related class of
“ramp” functions (modified step functions with a Lipschitz transition between 0’s and 1’s) is learnable in
the online setting (and in the batch case). We extend this example as follows. By taking a convex hull of
step-up and step-down functions on a unit interval, we arrive at a class of functions of bounded variation,
which is learnable in the batch model, but not in the online learning model. However, the class of Lipschitz
functions of bounded variation is learnable in both models. Online learnability of the latter class is shown
with techniques analogous to Section 8.6.

6.1 Generic Algorithm

We shall now present a generic improper learning algorithm for the supervised setting that achieves a low
regret bound whenever the function class is online learnable. For any α > 0 define an α-discretization of the
[−1, 1] interval as Bα = {−1 +α/2,−1 + 3α/2, . . . ,−1 + (2k+ 1)α/2, . . .} for 0 ≤ k and (2k+ 1)α ≤ 4. Also
for any a ∈ [−1, 1] define bacα = argmin

r∈Bα
|r− a|. For a set of functions V ⊆ F , any r ∈ Bα and x ∈ X define

V (r, x) = {f ∈ V | f(x) ∈ (r − α/2, r + α/2]}

Algorithm 1 Fat-SOA Algorithm (F , α)

V1 ← F
for t = 1 to T do
Rt(x) = {r ∈ Bα : fatα(Vt(r, x)) = maxr′∈Bα fatα(Vt(r

′, x))}
For each x ∈ X , let ft(x) = 1

|Rt(x)|
∑
r∈Rt(x) r

Play ft and receive (xt, yt)
if |ft(xt)− yt| ≤ α then
Vt+1 = Vt

else
Vt+1 = Vt(bytcα, xt)

end if
end for

Lemma 14. Let F ⊆ [−1, 1]X be a function class with finite fatα(F). Suppose the learner is presented with
a sequence (x1, y1), . . . , (xT , yT ), where yt = f(xt) for some fixed f ∈ F unknown to the player. Then for
ft’s computed by the Algorithm 1 it must hold that

T∑
t=1

1 {|ft(xt)− yt| > α} ≤ fatα(F).

12



Lemma 14 proves a bound on the performance of Algorithm 1 in the realizable setting. We now provide an
algorithm for the agnostic setting. We achieve this by generating “experts” in a way similar to [8]. Using
these experts along with the exponentially weighted average (EWA) algorithm we shall provide the generic
algorithm for online supervised learning. The EWA (Algorithm 3) and its regret bound are provided in the
appendix for completeness (p. 45).

Algorithm 2 Expert (F , α, 1 ≤ i1 < . . . < iL ≤ T, Y1, . . . , YL)

V1 ← F
for t = 1 to T do
Rt(x) = {r ∈ Bα : fatα(Vt(r, x)) = maxr′∈Bα fatα(Vt(r

′, x))}
For each x ∈ X , let f ′t(x) = 1

|Rt(x)|
∑
r∈Rt(x) r

if t ∈ {i1, . . . , iL} then
∀x ∈ X , ft(x) = Yj where j is s.t. t = ij
Play ft and receive xt
Vt+1 = Vt(ft(xt), xt)

else
Play ft = f ′t and receive xt
Vt+1 = Vt

end if
end for

For each L ≤ fatα(F) and every possible choice of 1 ≤ i1 < . . . < iL ≤ T and Y1, . . . , YL ∈ Bα we generate
an expert. Denote this set of experts as ET . Each expert outputs a function ft ∈ F at every round T . Hence
each expert e ∈ ET can be seen as a sequence (e1, . . . , eT ) of mappings et : X t−1 7→ F . The total number of
unique experts is clearly

|ET | =
fatα∑
L=0

(
T

L

)
(|Bα| − 1)

L ≤
(

2T

α

)fatα

Lemma 15. For any f ∈ F there exists an expert e ∈ ET such that for any t ∈ [T ],

|f(xt)− e(x1:t−1)(xt)| ≤ α

Proof. By Lemma 14, for any function f ∈ F , the number of rounds on which |ft(xt) − f(xt)| > α for the
output of the fat-SOA algorithm ft is bounded by fatα(F). Further on each such round there are |Bα| − 1
other possibilities. For any possible such sequence of “mistakes”, there is an expert that predicts the right
label on those time steps and on the remaining time agrees with the fat-SOA algorithm for that target
function. Hence we see that there is always an expert e ∈ ET such that

|f(xt)− e(x1:t−1)(xt)| ≤ α

Theorem 16. For any α > 0 if we run the exponentially weighted average (EWA) algorithm with the set
ET of experts then the expected regret of the algorithm is bounded as

E [RT ] ≤ αT +

√
T fatα log

(
2T

α

)
Proof. For any α ≥ 0 if we run EWA with corresponding set of experts ET then we can guarantee that regret

w.r.t. best expert in the set ET is bounded by
√
T fatα log

(
2T
α

)
. However by Lemma 15 we have that the

regret of the best expert in ET w.r.t. best function in function class F is at most αT . Combining we get
the required result.
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The above theorem holds for a fixed α. To provide a regret statement that optimizes over α we consider αi’s
of form 2−i and assign weights pi = 6

π2 i
−2 to experts generated in above theorem for each αi and run EWA

on the entire set of experts with these initial weights. Hence we get the following corollary.

Corollary 17. Let F ⊆ [−1, 1]X . The expected regret of the algorithm described above is bounded as

E [RT ] ≤ inf
α

{
αT +

√
T fatα log

(
2T

α

)
+
√
T

(
3 + 2 log log

(
1

α

))}

7 Structural Results

Being able to bound complexity of a function class by a complexity of a simpler class is of great utility for
proving bounds. In statistical learning theory, such structural results are obtained through properties of
Rademacher averages [26, 7]. In particular, the contraction inequality due to Ledoux and Talagrand [23,
Corollary 3.17], allows one to pass from a composition of a Lipschitz function with a class to the function
class itself. This wonderful property permits easy convergence proofs for a vast array of problems.

We show that the notion of Sequential Rademacher complexity also enjoys many of the same properties.
In Section 8, the effectiveness of the results is illustrated on a number of examples. First, we prove the
contraction inequality.

Lemma 18. Fix a class F ⊆ RZ and a function φ : R×Z 7→ R. Assume, for all z ∈ Z, φ(·, z) is a Lipschitz
function with a constant L. Then

R(φ(F)) ≤ L ·R(F)

where φ(F) = {z 7→ φ(f(z), z) : f ∈ F}.

We remark that the lemma above encompasses the case of a Lipschitz φ : R 7→ R, as stated in [23, 7].

The next lemma bounds the Sequential Rademacher complexity for the product of function classes.

Lemma 19. Let F = F1 × . . .× Fk where each Fj ⊂ RX . Also let φ : Rk 7→ R be L-Lipschitz w.r.t. ‖ · ‖∞
norm. Then we have that

R(φ ◦ F) ≤ LO
(

log3/2(T )
) k∑
j=1

R(Fj)

Corollary 20. For a fixed binary function b : {±1}k 7→ {±1} and classes F1, . . . ,Fk of {±1}-valued
functions,

R(g(F1, . . . ,Fk)) ≤ O
(

log3/2(T )
) k∑
j=1

R(Fj)

In the next proposition, we summarize some useful properties of Sequential Rademacher complexity (see
[26, 7] for the results in the i.i.d. setting)

Proposition 21. Sequential Rademacher complexity satisfies the following properties.

1. If F ⊂ G, then R(F) ≤ R(G).

2. R(F) = R(conv(F)).

3. R(cF) = |c|R(F) for all c ∈ R.

4. If φ : R 7→ R is L-Lipschitz, then R(φ(F)) ≤ LR(F).

5. For any h, R(F + h) = R(F) where F + h = {f + h : f ∈ F}

14



8 Examples and Applications

8.1 Example: Linear Function Classes

Suppose FW is a class consisting of linear functions x 7→ 〈w, x〉 where the weight vector w comes from some
set W,

FW = {x 7→ 〈w, x〉 : w ∈ W} .

Often, it is possible to find a strongly convex function non-negative Ψ(w) such that Ψ(w) ≤ Ψmax <∞ for
all w ∈ W. Recall that a function Ψ : W → R is σ-strongly convex on W w.r.t. a norm ‖ · ‖ if, for all
θ ∈ [0, 1] and w1, w2 ∈ W,

Ψ(θw1 + (1− θ)w2) ≤ θΨ(w1) + (1− θ)Ψ(w2)− σ θ (1− θ)
2

‖w1 − w2‖2

We will give examples shortly but we first state a proposition that is useful to bound the Sequential
Rademacher complexity of such linear function classes.

Proposition 22. Let W be a class of weight vectors such that 0 ≤ Ψ(w) ≤ Ψmax for all w ∈ W. Suppose
that Ψ is σ-strongly convex w.r.t. a given norm ‖ · ‖. Then, we have,

RT (FW) ≤ ‖X‖?

√
2 Ψmax T

σ
,

where ‖X‖? = supx∈X ‖x‖?, the maximum dual norm of any vector in the input space.

The proof of Proposition 22 is given in the appendix. It relies on the following lemma which can be found
in [17]. There it is stated for i.i.d. mean zero Zi but the proof given works even for martingale difference
sequences.

Lemma 23. Let Ψ :W → R be σ-strongly convex w.r.t. ‖·‖. Let Zt, t ≥ 1 be a martingale difference sequence
w.r.t. some filtration {Gt}t≥1 (i.e. E [Zt | Gt−1] = 0) such that E

[
‖Zt‖2?

]
≤ V 2. Define St =

∑
s≤t Zs. Then,

Ψ?(St)− tV 2/2σ is a supermartingale. Furthermore, if infw∈W Ψ(w) ≥ 0, then

E [Ψ?(ST )] ≤ V 2 T

2σ
.

We will now show how to use the above result to derive minimax regret guarantees for online convex opti-
mization. This is a particular instance of online learning where F = K ⊆ Rd where K is a bounded closed
convex set. Suppose ‖u‖ ≤ D for all u ∈ K for some norm ‖ · ‖. The adversary’s set X consists of convex
G-Lipschitz (w.r.t. the dual norm ‖ · ‖?) functions over K:

X = Xcvx = {g : K 7→ R : g convex and G-Lipschitz w.r.t. ‖ · ‖?} .

We could directly try to bound the value VT (F ,Xcvx) by RT (F ,Xcvx) but this, in fact, cannot give a non-
trivial bound [31]. Instead, we use the lemma below to bound the value of the convex game with that of the
linear game, i.e. one in which

X = Xlin = {u 7→ 〈u, x〉 : ‖x‖? ≤ G} .

Lemma 24. Suppose F = K ⊆ Rd is a closed bounded convex set and let Xcvx,Xlin be defined as above.
Then, we have

VT (F ,Xcvx) = VT (F ,Xlin) .
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Using the above lemma in conjunction with Proposition 22 above, we can immediately conclude that

VT (F ,Xcvx) ≤ RT (F ,Xlin) ≤ G
√

2 Ψmax T/σ

for any non-negative function Ψ : K → R that is σ-strongly w.r.t. ‖ · ‖. Note that, typically, Ψmax will
depend on D. For example, in the particular case when ‖ · ‖ = ‖ · ‖? = ‖ · ‖2, we can take Ψ(u) = 1

2‖u‖
2
2

and the above regret bound becomes GD
√
T and recovers the guarantee of Zinkevich for his online gradient

descent algorithm. In general, for ‖ · ‖ = ‖ · ‖p, ‖ · ‖? = ‖ · ‖q, we can use Ψ(u) = 1
2‖u‖

2
p to get a bound of

GD
√
T/(p− 1) since Ψ is (p − 1)-strongly convex w.r.t. ‖ · ‖p. These O(

√
T ) regret rates are not new but

we rederive them to illustrate the usefulness of the tools we developed.

8.2 Example: Margin Based Regret

In the classical statistical setting, margin bounds provide guarantees on expected zero-one loss of a classifier
based on the empirical margin zero-one error. These results form the basis of the theory of large margin
classifiers (see [30, 22]). Recently, in the online setting, margin bounds have been shown through the concept
of margin via the Littlestone dimension [8]. We show that our machinery can easily lead to margin bounds
for the binary classification games for general function classes F based on their sequential Rademacher
Complexity. We use ideas from [22] to do this.

Proposition 25. For any function class F ⊂ RX bounded by 1, there exists a randomized player strategy
given by π such that for any sequence z1, . . . , zT where each zt = (xt, yt) ∈ X×{±1}, played by the adversary,

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt)yt < 0}]

]
≤ inf
γ>0

{
inf
f∈F

T∑
t=1

1 {f(xt)yt < γ}+
4

γ
RT (F) +

√
T

(
3 + log log

(
1

γ

))}

8.3 Example : Neural Networks

We provide below a bound on sequential Rademacher complexity for classic multi-layer neural networks thus
showing they are learnable in the online setting. The model of neural network we consider below and the
bounds we provide are analogous to the ones considered in the batch setting in [7]. We now consider a
k-layer 1-norm neural network. To this end let function class F1 be given by

F1 =

x 7→∑
j

w1
jxj

∣∣∣ ‖w‖1 ≤ B1


and further for each 2 ≤ i ≤ k define

Fi =

x 7→∑
j

wijσ (fj(x))
∣∣∣ ∀j fj ∈ Fi−1, ‖wi‖1 ≤ Bi


Proposition 26. Say σ : R 7→ [−1, 1] is L-Lipschitz, then

RT (Fk) ≤

(
k∏
i=1

2Bi

)
Lk−1X∞

√
2T log d

where X∞ is such that ∀x ∈ X , ‖x‖∞ ≤ X∞ and X ⊂ Rd

16



8.4 Example: Decision Trees

We consider here the supervised learning game where adversary provides instances from instance space X
and binary labels ±1 corresponding to the instances and the player plays decision trees of depth no more than
d with decision functions from set H ⊂ {±1}X of binary valued functions. The following proposition shows
that there exists a player strategy which under certain circumstances could have low regret for the supervised
learning (binary) game played with class of decision trees of depth at most d with decision functions from
H. The proposition is analogous to the one in [7] considered in the batch (classical) setting.

Proposition 27. Denote by T the class of decision trees of depth at most d with decision functions in H.
There exists a randomized player strategy π such that for any sequence of instances z1 = (x1, y1), . . . , zT =
(xT , yT ) ∈ (X × {±1})T played by the adversary,

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt) 6= yt}]

]
≤ inf
t∈T

T∑
t=1

1 {t(xt) 6= yt}

+O

(∑
l

min
(
C̃T (l), d log3/2(T ) R(H)

)
+
√
T (3 + 2 log(Nleaf))

)

where C̃T (l) denotes the number of instances which reach the leaf l and are correctly classified in the decision

tree t that minimizes
∑T
t=1 1 {t(xt) 6= yt} and let Nleaf be the number of leaves in this tree.

8.5 Example: Transductive Learning and Prediction of Individual Sequences

Let F be a class of functions from X to R. Let

N̂∞(α,F) = min
{
|G| : G ⊆ RX s.t. ∀f ∈ F ∃g ∈ G satisfying ‖f − g‖∞ ≤ α

}
. (6)

be the `∞ covering number at scale α, where the cover is pointwise on all of X . It is easy to verify that

∀T, N∞(α,F , T ) ≤ N̂∞(α,F) (7)

Indeed, let G be a minimal cover of F at scale α. We claim that the set V = {vg = g(x) : g ∈ G} of R-valued
trees is an `∞ cover of F on x. Fix any ε ∈ {±1}T and f ∈ F , and let g ∈ G be such that ‖f − g‖∞ ≤ α.
Then clearly |vgt (ε)− f(xt(ε))| for any 1 ≤ t ≤ T , which concludes the proof.

This simple observation can be applied in several situations. First, consider the problem of transductive
learning, where the set X = {z1, . . . , zn} is a finite set. To ensure online learnability, it is sufficient to

consider an assumption on the dependence of N̂∞(α,F) on α. An obvious example of such a class is a

VC-type class with N̂∞(α,F) ≤ (c/α)d for some c which can depend on n. Assume that F ⊂ [−1, 1]X .
Substituting this bound on the covering number into

DT (F) = inf
α

{
4Tα+

∫ 1

α

√
T log N2(δ,F , T ) dδ

}
and choosing α = 0, we observe that the value of the supervised game is upper bounded by 2DT (F) ≤
4
√
dT log c by Proposition 11. It is easy to see that if n is fixed and the problem is learnable in the batch

(e.g. PAC) setting, then the problem is learnable in the online transductive model.

In the transductive setting considered by Kakade and Kalai [16], it is assumed that n ≤ T and F are binary-
valued. If F is a class with VC dimension d, the Sauer-Shelah lemma ensures that the `∞ cover is smaller
than (en/d)d ≤ (eT/d)d. Using the previous argument with c = eT , we obtain a bound of 4

√
dT log(eT ) for

the value of the game, matching [16] up to a constant 2.
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We also consider the problem of prediction of individual sequences, which has been studied both in informa-
tion theory and in learning theory. In particular, in the case of binary prediction, Cesa-Bianchi and Lugosi
[9] proved upper bounds on the value of the game in terms of the (classical) Rademacher complexity and the
(classical) Dudley integral. The particular assumption made in [9] is that experts are static. That is, their
prediction only depends on the current round, not on the past information. Formally, we define static experts
as mappings f : {1, . . . , T} 7→ Y = [−1, 1], and let F denote a class of such experts. Defining X = {1, . . . , T}
puts us in the setting considered earlier with n = T . We immediately obtain 4

√
dT log(eT ), matching the

results on [9, p. 1873]. We mention that the upper bound in Theorem 4 in [9] is tighter by a log T factor
if a sharper bound on the `2 cover is considered. Finally, for the case of a finite number of experts, clearly
N̂∞ ≤ N which gives the classical O(

√
T logN) bound on the value of the game [10].

8.6 Example: Isotron

Recently, Kalai and Sastry [18] introduced a method called Isotron for learning Single Index Models (SIM).
These models generalize linear and logistic regression, generalized linear models, and classification by linear
threshold functions. For brevity, we only describe the Idealized SIM problem from [18]. In its “batch”
version, we assume that the data is revealed at once as a set {(xi, yi)}Tt=1 ∈ Rn × R where yt = u(〈w, xi〉)
for some unknown w ∈ Rn of bounded norm and an unknown non-decreasing u : R 7→ R with a bounded
Lipschitz constant. Given this data, the goal is to iteratively find the function u and the direction w, making
as few mistakes as possible. The error is measured as 1

T

∑T
t=1(fi(xt) − yt)2, where fi(x) = ui(〈wi, x〉) is

the iterative approximation found by the algorithm on the ith round. The elegant computationally efficient
method presented in [18] is motivated by Perceptron, and a natural open question posed by the authors is
whether there is an online variant of Isotron. Before even attempting a quest for such an algorithm, we can
ask a more basic question: is the (Idealized) SIM problem even learnable in the online framework? After all,
most online methods deal with convex functions, but u is only assumed to be Lipschitz and non-decreasing.
We answer the question easily with the tools we have developed.

We are interested in online learnability in the supervised setting of the following class of functions

H = {f(x, y) = (y − u(〈w, x〉))2 | u : [−1, 1] 7→ [−1, 1] 1-Lipschitz , ‖w‖2 ≤ 1} (8)

over X = B2 (the unit Euclidean ball in Rd) and Y = [−1, 1], where both u and w range over the possibilities.
In particular, we prove the result for Lipschitz, but not necessarily non-decreasing functions. It is evident
that H is a composition with three levels: the squared loss, the Lipschitz non-decreasing function, and the
linear function. The proof of the following Proposition boils down to showing that the covering number of
the class does not increase much under these compositions.

Proposition 28. The class H defined in (8) is online learnable in the supervised setting. Moreover,

VT (H,X × Y) = O(
√
T log3/2 T ).

Proof. First, by the classical result of Kolmogorov and Tihomirov [20], the class G of all bounded Lipschitz

functions has small metric entropy: log N̂∞(α,G) = Θ(1/α). For the particular class of non-decreasing
1-Lipschitz functions, it is trivial to verify that the entropy is in fact bounded by 2/α.

Next, consider the class F = {〈w, x〉 | ‖w‖2 ≤ 1} over the Euclidean ball. By Proposition 22, RT (F) ≤√
2T . Using the lower bound of Proposition 11, fatα ≤ 64/α2 whenever α > 8/

√
T . This implies that

N∞(α,F , T ) ≤ (2eT/α)64/α
2

whenever α > 8/
√
T . Note that this bound does not depend on the ambient

dimension of X .

Next, we show that a composition of G with any small class F ⊂ [−1, 1]X also has a small cover. To this
end, suppose N∞(α,F , T ) is the covering number for F . Fix a particular tree x and let V = {v1, . . . ,vN}
be an `∞ cover of F on x at scale α. Analogously, let W = {g1, . . . , gM} be an `∞ cover of G with
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M = N̂∞(α,G). Consider the class G ◦ F = {g ◦ f : g ∈ G, f ∈ F}. The claim is that {g(v) : v ∈ V, g ∈ W}
provides an `∞ cover for G ◦ F on x. Fix any f ∈ F , g ∈ G and ε ∈ {±1}T . Let v ∈ V be such that
maxt∈[T ] |f(xt(ε)) − vt(ε)| ≤ α, and let g′ ∈ W be such that ‖g − g′‖∞ ≤ α. Then, using the fact that
functions in G are 1-Lipschitz, for any t ∈ [T ],

|g(f(xt(ε)))− g′(vt(ε))| ≤ |g(f(xt(ε)))− g′(f(xt(ε))|+ |g′(f(xt(ε))− g′(vt(ε))| ≤ 2α .

Hence, N∞(2α,G ◦ F , T ) ≤ N̂∞(α,G)×N∞(α,F , T ).

Finally, we put all the pieces together. By Lemma 18, the Sequential Rademacher complexity ofH is bounded
by 4 times the Sequential Rademacher complexity of the class

G ◦ F = {u(〈w, x〉) | u : [−1, 1] 7→ [−1, 1] is 1-Lipschitz , ‖w‖2 ≤ 1}

since the squared loss is 4-Lipschitz on the space of possible values. The latter complexity is then bounded
by

D(G ◦ F) ≤ 32
√
T + 12

∫ 1

8/
√
T

√
T log N (δ,G ◦ F , T ) dδ ≤ 32

√
T + 12

√
T

∫ 1

8/
√
T

√
2

δ
+

64

δ2
log(2eT )dδ .

We conclude that the value of the game VT (H,X × Y) = O(
√
T log3/2 T ).
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A Proofs

Proof of Theorem 1. For simplicity, denote ψ(x1:T ) = inff∈F
∑T
t=1 f(xt). The first step in the proof is

to appeal to the minimax theorem for every couple of inf and sup:

inf
q1

sup
x1

Ef1∼q1 . . . inf
qT

sup
xT

EfT∼qT

[
T∑
t=1

ft(xt)− ψ(x1:T )

]

= inf
q1∈Q

sup
p1

Ef1∼q1
x1∼p1

. . . inf
qT∈Q

sup
pT

EfT∼qT
xT∼pT

[
T∑
t=1

ft(xt)− ψ(x1:T )

]

= sup
p1

inf
q1∈Q

Ef1∼q1
x1∼p1

. . . sup
pT

inf
qT∈Q

EfT∼qT
xT∼pT

[
T∑
t=1

ft(xt)− ψ(x1:T )

]
(by Minimax theorem)

= sup
p1

inf
f1

Ex1∼p1 . . . sup
pT

inf
fT

ExT∼pT

[
T∑
t=1

ft(xt)− ψ(x1:T )

]
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From now on, it will be understood that xt has distribution pt. By moving the expectation with respect to
xT and then the infimum with respect to fT inside the expression, we arrive at

sup
p1

inf
f1

Ex1
. . . sup

pT−1

inf
fT−1

ExT−1
sup
pT

[
T−1∑
t=1

ft(xt) +

[
inf
fT

ExT fT (xT )

]
− ExTψ(x1:T )

]

= sup
p1

inf
f1

Ex1 . . . sup
pT−1

inf
fT−1

ExT−1
sup
pT

ExT

[
T−1∑
t=1

ft(xt) +

[
inf
fT

ExT fT (xT )

]
− ψ(x1:T )

]

Let us now repeat the procedure for step T − 1. The above expression is equal to

sup
p1

inf
f1

Ex1 . . . sup
pT−1

inf
fT−1

ExT−1

[
T−1∑
t=1

ft(xt) + sup
pT

ExT
[
inf
fT

ExT fT (xT )− ψ(x1:T )

]]

= sup
p1

inf
f1

Ex1
. . . sup

pT−1

[
T−2∑
t=1

ft(xt) +

[
inf
fT−1

ExT−1
fT−1

]
+ ExT−1

sup
pT

ExT
[
inf
fT

ExT fT (xT )− ψ(x1:T )

]]

= sup
p1

inf
f1

Ex1
. . . sup

pT−1

ExT−1
sup
pT

ExT

[
T−2∑
t=1

ft(xt) +

[
inf
fT−1

ExT−1
fT−1

]
+

[
inf
fT

ExT fT (xT )

]
− ψ(x1:T )

]

Continuing in this fashion for T − 2 and all the way down to t = 1 proves the theorem.

Proof of the Key Technical Lemma (Lemma 3). We start by noting that since xT , x
′
T are both drawn

from pT ,

ExT ,x′T∼pT

[
Φ

(
T∑
t=1

∆f (xt, x
′
t)

)]
= ExT ,x′T∼pT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t) + ∆f (xT , x

′
T )

)]

= Ex′T ,xT∼pT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t) + ∆f (xT , x

′
T )

)]

= ExT ,x′T∼pT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t)−∆f (xT , x

′
T )

)]
,

where the last line is by antisymmetry of ∆f . Since the first and last lines are equal, they are both equal to
their average and hence

ExT ,x′T∼pT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t)

)]
= ExT ,x′T∼pT

[
EεT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t) + εT∆f (xT , x

′
T )

)]]
.

Hence we conclude that

sup
pT

ExT ,x′T∼pT

[
Φ

(
T∑
t=1

∆f (xt, x
′
t)

)]
= sup

pT

ExT ,x′T∼pT

[
EεT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t) + εT∆f (xT , x

′
T )

)]]

≤ sup
xT ,x′T

EεT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t) + εT∆f (xT , x

′
T )

)]
.

Using the above and noting that xT−1, x
′
T−1 are both drawn from pT−1 and hence similar to previous step
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introducing Rademacher variable εT−1 we get that

sup
pT−1

ExT−1,x′T−1∼pT−1
sup
pT

ExT ,x′T∼pT

[
Φ

(
T∑
t=1

∆f (xt, x
′
t)

)]

≤ sup
pT−1

ExT−1,x′T−1∼pT−1

[
sup
xT ,x′T

EεT

[
Φ

(
T−1∑
t=1

∆f (xt, x
′
t) + εT∆f (xT , x

′
T )

)]]

= sup
pT−1

ExT−1,x′T−1∼pTEεT−1

[
sup
xT ,x′T

EεT

[
Φ

(
T−2∑
t=1

∆f (xt, x
′
t) + εT−1∆f (xT−1, x

′
T−1) + εT∆f (xT , x

′
T )

)]]

≤ sup
xT−1,x′T−1

EεT−1

[
sup
xT ,x′T

EεT

[
Φ

(
T−2∑
t=1

∆f (xt, x
′
t) + εT−1∆f (xT−1, x

′
T−1) + εT∆f (xT , x

′
T )

)]]
.

Proceeding in similar fashion introducing Rademacher variables all the way upto ε1 we finally get the required
statement that

sup
p1

Ex1,x′1∼p1 . . . sup
pT

ExT ,x′T∼pT

[
Φ

(
T∑
t=1

∆f (xt, x
′
t)

)]
≤ sup
x1,x′1

{
Eε1

[
. . . sup

xT ,x′T

{
EεT

[
Φ

(
T∑
t=1

εt∆f (xt, x
′
t)

)]}
. . .

]}

Proof of Lemma 8. For any λ > 0, we invoke Jensen’s inequality to get

M(λ) := exp

{
λEε

[
max
v∈V

T∑
t=1

εtvt(ε)

]}
≤ Eε

[
exp

{
λmax

v∈V

T∑
t=1

εtvt(ε)

}]

≤ Eε

[
max
v∈V

exp

{
λ

T∑
t=1

εtvt(ε)

}]
≤ Eε

[∑
v∈V

exp

{
λ

T∑
t=1

εtvt(ε)

}]

With the usual technique of peeling from the end,

M(λ) ≤
∑
v∈V

Eε1,...,εT

[
T∏
t=1

exp {λεtvt(ε1:t−1)}

]

=
∑
v∈V

Eε1,...,εT−1

[
T−1∏
t=1

exp {λεtvt(ε1:t−1)} ×
(

exp {λvT (ε1:T−1)}+ exp {−λvT (ε1:T−1)}
2

)]

≤
∑
v∈V

Eε1,...,εT−1

[
T−1∏
t=1

exp {λεtvt(ε1:t−1)} × exp

{
λ2vT (ε1:T−1)2

2

}]

where we used the inequality 1
2 {exp(a) + exp(−a)} ≤ exp(a2/2), valid for all a ∈ R. Peeling off the second

term is a bit more involved:

M(λ) ≤
∑
v∈V

Eε1,...,εT−2

[
T−2∏
t=1

exp {λεtvt(ε1:t−1)}×

1

2

(
exp {λvT−1(ε1:T−2)} exp

{
λ2vT ((ε1:T−2, 1))2

2

}
+ exp {−λvT−1(ε1:T−2)} exp

{
λ2vT ((ε1:T−2,−1))2

2

})]
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Consider the term inside:

1

2

(
exp {λvT−1(ε1:T−2)} exp

{
λ2vT ((ε1:T−2, 1))2

2

}
+ exp {−λvT−1(ε1:T−2)} exp

{
λ2vT ((ε1:T−2,−1))2

2

})
≤ max

εT−1

(
exp

{
λ2vT ((ε1:T−2, εT−1))2

2

})
exp {λvT−1(ε1:T−2)}+ exp {−λvT−1(ε1:T−2)}

2

≤ max
εT−1

(
exp

{
λ2vT ((ε1:T−2, εT−1))2

2

})
exp

{
λ2vT−1(ε1:T−2)2

2

}
= exp

{
λ2 maxεT−1∈{±1}

(
vT−1(ε1:T−2)2 + vT (ε1:T−1)2

)
2

}

Repeating the last steps, we show that for any i,

M(λ) ≤
∑
v∈V

Eε1,...,εi−1

[
i−1∏
t=1

exp {λεtvt(ε1:t−1)} × exp

{
λ2 maxεi...εT−1∈{±1}

∑T
t=i vt(ε1:t−1)2

2

}]

We arrive at

M(λ) ≤
∑
v∈V

exp

{
λ2 maxε1...εT−1∈{±1}

∑T
t=1 vt(ε1:t−1)2

2

}

≤ |V | exp

{
λ2 maxv∈V maxε∈{±1}T

∑T
t=1 vt(ε)

2

2

}

Taking logarithms on both sides, dividing by λ and setting λ =

√
2 log(|V |)

maxv∈V maxε∈{±1}T
∑T
t=1 vt(ε)2

we conclude

that

Eε1,...,εT

[
max
v∈V

T∑
t=1

εtvt(ε)

]
≤

√√√√2 log(|V |) max
v∈V

max
ε∈{±1}T

T∑
t=1

vt(ε)2

Proof of Lemma 4. We prove the first inequality. Let {w1, . . . ,wM} be a largest strongly 2α-separated
set of F(x) with M =Mp(2α,F ,x). Let {v1, . . . ,vN} be a smallest α-cover of F on x with N = Np(α,F ,x).
For the sake of contradiction, assume M > N . Consider a path ε ∈ {±1}T on which all the trees
{w1, . . . ,wM} are (2α)-separated. By the definition of a cover, for any wi there exists a tree vj such
that (

1

T

T∑
t=1

|vjt (ε)−wi
t(ε)|p

)1/p

≤ α.

Since M > N , there must exist distinct wi and wk, for which the covering tree vj is the same for the given
path ε. By triangle inequality, (

1

T

T∑
t=1

|wi
t(ε)−wk

t (ε)|p
)1/p

≤ 2α,

which is a contradiction. We conclude that M ≤ N .

Now, we prove the second inequality. Consider a maximal α-packing V ⊆ F(x) of size Dp(α,F ,x). Since
this is a maximal α-packing, for any f ∈ F , there is no path on which f(x) is α-separated from every member
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of the packing. In other words, for every path ε ∈ {±1}T , there is a member of the packing v ∈ V such that(
1

T

T∑
t=1

|vt(ε)− f(xt(ε))|p
)1/p

≤ α

which means that the packing V is a cover.

Proof of Theorem 5. For any d ≥ 0 and T ≥ 0, define the function

gk(d, T ) =

d∑
i=0

(
T

i

)
ki.

It is not difficult to verify that this function satisfies the recurrence

gk(d, T ) = gk(d, T − 1) + kgk(d− 1, T − 1)

for all d, T ≥ 1. To visualize this recursion, consider a k × T matrix and ask for ways to choose at most
d columns followed by a choice among the k rows for each chosen column. The task can be decomposed
into (a) making the d column choices out of the first T − 1 columns, followed by picking rows (there are
gk(d, T − 1) ways to do it) or (b) choosing d − 1 columns (followed by row choices) out of the first T − 1
columns and choosing a row for the T th column (there are kgk(d− 1, T − 1) ways to do it). This gives the
recursive formula.

In what follows, we shall refer to an L∞ cover at scale 1/2 simply as a 1/2-cover. The theorem claims that
the size of a minimal 1/2-cover is at most gk(d, T ). The proof proceeds by induction on T + d.

Base: For d = 1 and T = 1, there is only one node in the tree, i.e. the tree is defined by the constant
x1 ∈ X . Functions in F can take up to k + 1 values on x1, i.e. N (0,F , 1) ≤ k + 1 (and, thus, also for
the 1/2-cover). Using the convention

(
T
0

)
= 1, we indeed verify that gk(1, 1) = 1 + k = k + 1. The same

calculation gives the base case for T = 1 and any d ∈ N. Furthermore, for any T ∈ N if d = 0, then there is
no point which is 2-shattered by F . This means that functions in F differ by at most 1 on any point of X .
Thus, there is a 1/2 cover of size 1 = gk(0, T ), verifying this base case.

Induction step: Suppose by the way of induction that the statement holds for (d, T −1) and (d−1, T −1).
Consider any tree x of depth T with fat2(F ,x) = d. Define the partition F = F0 ∪ . . . ∪ Fk with Fi = {f ∈
F : f(x1) = i} for i ∈ {0, . . . , k}, where x1 is the root of x. Let n = |{i : fat2(Fi,x) = d}|.

Suppose first, for the sake of contradiction, that fat2(Fi,x) = fat2(Fj ,x) = d for |i−j| ≥ 2. Then there exist
two trees z and v of depth d which are 2-shattered by Fi and Fj , respectively, and with Img(z), Img(v) ⊆
Img(x). Since functions within each subset Fi take on the same values on x1, we conclude that x1 /∈
Img(z),x1 /∈ Img(v). This follows immediately from the definition of shattering. We now join the two
shattered z and v trees with x1 at the root and observe that Fi ∪ Fj 2-shatters this resulting tree of depth
d+1, which is a contradiction. Indeed, the witness R-valued tree s is constructed by joining the two witnesses
for the 2-shattered trees z and v and by defining the root as s1 = (i + j)/2. It is easy to see that s is a
witness to the shattering. Given any ε ∈ {±1}d+1, there is a function f i ∈ Fi which realizes the desired
separation under the signs (ε2, . . . , εd+1) for the tree z and there is a function f j ∈ Fj which does the same
for v. Depending on ε1 = +1 or ε1 = −1, either f i or f j realize the separation over ε.

We conclude that the number of subsets of F with fat-shattering dimension equal to d cannot be more than
two (for otherwise at least two indices will be separated by 2 or more). We have three cases: n = 0, n = 1,
or n = 2, and in the last case it must be that the indices of the two subsets differ by 1.

First, consider any Fi with fat2(Fi,x) ≤ d− 1, i ∈ {0, . . . , k}. By induction, there are 1/2-covers V ` and V r

of Fi on the subtrees x` and xr, respectively, both of size at most gk(d− 1, T − 1). Informally, out of these
1/2-covers we can create a 1/2-cover V for Fi on x by pairing the 1/2-covers in V ` and V r. The resulting
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cover of Fi will be of size gk(d− 1, T − 1). Formally, consider a set of pairs (v`,vr) of trees, with v` ∈ V `,
vr ∈ V r and such that each tree in V ` and V r appears in at least one of the pairs. Clearly, this can be
done using at most gk(d − 1, T − 1) pairs, and such a pairing is not unique. We join the subtrees in every
pair (v`,vr) with a constant i as the root, thus creating a set V of trees, |V | ≤ gk(d− 1, T − 1). We claim
that V is a 1/2-cover for Fi on x. Note that all the functions in Fi take on the same value i on x1 and by
construction v1 = i for any v ∈ V . Now, consider any f ∈ Fi and ε ∈ {±1}T . Without loss of generality,
assume ε1 = −1. By assumption, there is a v` ∈ V ` such that |v`t(ε2:T ) − f(xt+1(ε1:T ))| ≤ 1/2 for any
t ∈ [T − 1]. By construction v` appears as a left subtree of at least one tree in V , which, therefore, matches
the values of f for ε1:T . The same argument holds for ε1 = +1 by finding an appropriate subtree in V r. We
conclude that V is a 1/2-cover of Fi on x, and this holds for any i ∈ {0, . . . , k} with fat2(Fi,x) ≤ d − 1.
Therefore, the total size of a 1/2-cover for the union ∪i:fat2(Fi,x)≤d−1Fi is at most (k+ 1−n)gk(d−1, T −1).
If n = 0, the induction step is proven because gk(d − 1, T − 1) ≤ gk(d, T − 1) and so the total size of the
constructed cover is at most

(k + 1)gk(d− 1, T − 1) ≤ gk(d, T − 1) + kgk(d− 1, T − 1) = gk(d, T ).

Now, consider the case n = 1 and let fat2(Fi,x) = d. An argument exactly as above yields a 1/2-cover for
Fi, and this cover is of size at most gk(d, T −1) by induction. The total 1/2-cover is therefore of size at most

gk(d, T − 1) + kgk(d− 1, T − 1) = gk(d, T ).

Lastly, for n = 2, suppose fat2(Fi,x) = fat2(Fj ,x) = d for |i − j| = 1. Let F ′ = Fi ∪ Fj . Note that
fat2(F ′,x) = d. Just as before, the 1/2-covering for x can be constructed by considering the 1/2-covers for
the two subtrees. However, when joining any (v`,vr), we take (i + j)/2 as the root. It is straightforward
to check that the resulting cover is indeed an 1/2-cover, thanks to the relation |i − j| = 1. The size of the
constructed cover is, by induction, gk(d, T −1), and the induction step follows. This concludes the induction
proof, yielding the main statement of the theorem.

Finally, the upper bound on gk(d, T ) is

d∑
i=1

(
T

i

)
ki ≤

(
kT

d

)d d∑
i=1

(
T

i

)(
d

T

)i
≤
(
kT

d

)d(
1 +

d

T

)T
≤
(
ekT

d

)d
whenever T ≥ d.

Proof of Theorem 7. The proof is very close to the proof of Theorem 5, with a few key differences. As
before, for any d ≥ 0 and T ≥ 0, define the function gk(d, T ) =

∑d
i=0

(
T
i

)
ki.

The theorem claims that the size of a minimal 0-cover is at most gk(d, T ). The proof proceeds by induction
on T + d.

Base: For d = 1 and T = 1, there is only one node in the tree, i.e. the tree is defined by the constant
x1 ∈ X . Functions in F can take up to k + 1 values on x1, i.e. N (0,F , 1) ≤ k + 1. Using the convention(
T
0

)
= 1, we indeed verify that gk(1, 1) = 1 + k = k + 1. The same calculation gives the base case for T = 1

and any d ∈ N. Furthermore, for any T ∈ N if d = 0, then there is no point which is 1-shattered by F . This
means that all functions in F are identical, proving that there is a 0-cover of size 1 = gk(0, T ).

Induction step: Suppose by the way of induction that the statement holds for (d, T −1) and (d−1, T −1).
Consider any tree x of depth T with fat1(F ,x) = d. Define the partition F = F0 ∪ . . . ∪ Fk with Fi = {f ∈
F : f(x1) = i} for i ∈ {0, . . . , k}, where x1 is the root of x.

We first argue that fat1(Fi,x) = d for at most one value i ∈ {0, . . . , k}. By the way of contradiction, suppose
we do have fat1(Fi,x) = fat1(Fj ,x) = d for i 6= j. Then there exist two trees z and v of depth d 1-shattered
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by Fi and Fj , respectively, and with Img(z), Img(v) ⊆ Img(x). Since functions within each subset Fi take
on the same values on x1, we conclude that x1 /∈ Img(z),x1 /∈ Img(v). This follows immediately from the
definition of shattering. We now join the two shattered z and v trees with x1 at the root and observe that
Fi ∪ Fj 1-shatters this resulting tree of depth d+ 1, which is a contradiction. Indeed, the witness R-valued
tree s is constructed by joining the two witnesses for the 1-shattered trees z and v and by defining the root
as s1 = (i + j)/2. It is easy to see that s is a witness to the shattering. Given any ε ∈ {±1}d+1, there is a
function f i ∈ Fi which realizes the desired separation under the signs (ε2, . . . , εd+1) for the tree z and there
is a function f j ∈ Fj which does the same for v. Depending on ε1 = +1 or ε1 = −1, either f i or f j realize
the separation over ε.

We conclude that fat1(Fi,x) = d for at most one i ∈ {0, . . . , k}. Without loss of generality, assume
fat1(F0,x) ≤ d and fat1(Fi,x) ≤ d − 1 for i ∈ {1, . . . , k}. By induction, for any Fi, i ∈ {1, . . . , k}, there
are 0-covers V ` and V r of Fi on the subtrees x` and xr, respectively, both of size at most gk(d− 1, T − 1).
Out of these 0-covers we can create a 0-cover V for Fi on x by pairing the 0-covers in V ` and V r. Formally,
consider a set of pairs (v`,vr) of trees, with v` ∈ V `, vr ∈ V r and such that each tree in V ` and V r appears
in at least one of the pairs. Clearly, this can be done using at most gk(d− 1, T − 1) pairs, and such a pairing
is not unique. We join the subtrees in every pair (v`,vr) with a constant i as the root, thus creating a set
V of trees, |V | ≤ gk(d− 1, T − 1). We claim that V is a 0-cover for Fi on x. Note that all the functions in
Fi take on the same value i on x1 and by construction v1 = i for any v ∈ V . Now, consider any f ∈ Fi
and ε ∈ {±1}T . Without loss of generality, assume ε1 = −1. By assumption, there is a v` ∈ V ` such that
v`t(ε2:T ) = f(xt+1(ε1:T )) for any t ∈ [T − 1]. By construction v` appears as a left subtree of at least one tree
in V , which, therefore, matches the values of f for ε1:T . The same argument holds for ε1 = +1 by finding an
appropriate subtree in V r. We conclude that V is a 0-cover of Fi on x, and this holds for any i ∈ {1, . . . , k}.

Therefore, the total size of a 0-cover for F1 ∪ . . .∪Fk is at most kgk(d− 1, T − 1). A similar argument yields
a 0-cover for F0 on x of size at most gk(d, T − 1) by induction. Thus, the size of the resulting 0-cover of F
on x is at most

gk(d, T − 1) + kgk(d− 1, T − 1) = gk(d, T ),

completing the induction step and yielding the main statement of the theorem.

The upper bound on gk(d, T ) appears in the proof of Theorem 5.

Proof of Corollary 6. The first two inequalities follow by simple comparison of norms. It remains to
prove the bound for the `∞ covering. For any α > 0 define an α-discretization of the [−1, 1] interval as
Bα = {−1 +α/2,−1 + 3α/2, . . . ,−1 + (2k+ 1)α/2, . . .} for 0 ≤ k and (2k+ 1)α ≤ 4. Also for any a ∈ [−1, 1]
define bacα = argmin

r∈Bα
|r−a| with ties being broken by choosing the smaller discretization point. For a function

f : X 7→ [−1, 1] let the function bfcα be defined pointwise as bf(x)cα, and let bFcα = {bfcα : f ∈ F}. First,
we prove that N∞(α,F ,x) ≤ N∞(α/2, bFcα,x). Indeed, suppose the set of trees V is a minimal α/2-cover
of bFcα on x. That is,

∀fα ∈ bFcα, ∀ε ∈ {±1}T ∃v ∈ V s.t. |vt(ε)− fα(xt(ε))| ≤ α/2

Pick any f ∈ F and let fα = bfcα. Then ‖f − fα‖∞ ≤ α/2. Then for all ε ∈ {±1}T and any t ∈ [T ]

|f(xt(ε))− vt(ε)| ≤ |f(xt(ε))− fα(xt(ε))|+ |fα(xt(ε))− vt(ε)| ≤ α,

and so V also provides an L∞ cover at scale α.

We conclude that N∞(α,F ,x) ≤ N∞(α/2, bFcα,x) = N∞(1/2,G,x) where G = 1
αbFcα. The functions of

G take on a discrete set of at most b2/αc + 1 values. Obviously, by adding a constant to all the functions
in G, we can make the set of values to be {0, . . . , b2/αc}. We now apply Theorem 5 with an upper bound∑d
i=0

(
T
i

)
ki ≤ (ekT )

d
which holds for any T > 0. This yields N∞(1/2,G,x) ≤ (2eT/α)

fat2(G).
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It remains to prove fat2(G) ≤ fatα(F), or, equivalently (by scaling) fat2α(bFcα) ≤ fatα(F). To this end,
suppose there exists an R-valued tree x of depth d = fat2α(bFcα) such that there is an witness tree s with

∀ε ∈ {±1}d, ∃fα ∈ bFcα s.t. ∀t ∈ [d], εt(fα(xt(ε))− st(ε)) ≥ α

Using the fact that for any f ∈ F and fα = bfcα we have ‖f − fα‖∞ ≤ α/2, it follows that

∀ε ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], εt(f(xt(ε))− st(ε)) ≥ α/2

That is, s is a witness to α-shattering by F . Thus for any x,

N∞(α,F ,x) ≤ N∞(α/2, bFcα,x) ≤
(

2eT

α

)fat2α(bFcα)

≤
(

2eT

α

)fatα(F)

Proof of Theorem 9. Define β0 = 1 and βj = 2−j . For a fixed tree x of depth T , let Vj be an `2-cover at
scale βj . For any path ε ∈ {±1}T and any f ∈ F , let v[f, ε]j ∈ Vj the element of the cover such that√√√√ 1

T

T∑
t=1

|v[f, ε]jt (ε)− f(xt(ε))|2 ≤ βj

By the definition such a v[f, ε]j ∈ Vj exists, and we assume for simplicity this element is unique (ties can
be broken in an arbitrary manner). Thus, f 7→ v[f, ε]j is a well-defined mapping for any fixed ε and j. As
before, v[f, ε]jt denotes the t-th mapping of v[f, ε]j . For any t ∈ [T ], we have

f(xt(ε)) = f(xt(ε))− v[f, ε]Nt (ε) +

N∑
j=1

(v[f, ε]jt (ε)− v[f, ε]j−1t (ε))

where v[f, ε]0t (ε) = 0. Hence,

Eε

[
sup
f∈F

T∑
t=1

εtf(xt(ε))

]
= Eε

[
sup
f∈F

T∑
t=1

εt

(
f(xt(ε)) − v[f, ε]Nt (ε) +

N∑
j=1

(v[f, ε]jt(ε) − v[f, ε]j−1
t (ε))

)]

= Eε

[
sup
f∈F

T∑
t=1

εt
(
f(xt(ε)) − v[f, ε]Nt (ε)

)
+

T∑
t=1

εt

(
N∑
j=1

(v[f, ε]jt(ε) − v[f, ε]j−1
t (ε))

)]

≤ Eε

[
sup
f∈F

T∑
t=1

εt
(
f(xt(ε)) − v[f, ε]Nt (ε)

)]
+ Eε

[
sup
f∈F

T∑
t=1

εt

(
N∑
j=1

(v[f, ε]jt(ε) − v[f, ε]j−1
t (ε))

)]
(9)

The first term above can be bounded via the Cauchy-Schwarz inequality as

Eε

[
sup
f∈F

T∑
t=1

εt
(
f(xt(ε))− v[f, ε]Nt (ε)

)]
≤ T Eε

[
sup
f∈F

T∑
t=1

εt√
T

(
f(xt(ε))− v[f, ε]Nt (ε)

)
√
T

]
≤ T βN .

The second term in (9) is bounded by considering successive refinements of the cover. The argument,
however, is more delicate than in the classical case, as the trees v[f, ε]j , v[f, ε]j−1 depend on the particular
path. Consider all possible pairs of vs ∈ Vj and vr ∈ Vj−1, for 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|, where we
assumed an arbitrary enumeration of elements. For each pair (vs,vr), define a real-valued tree w(s,r) by

w
(s,r)
t (ε) =

{
vst (ε)− vrt (ε) if there exists f ∈ F s.t. vs = v[f, ε]j ,vr = v[f, ε]j−1

0 otherwise.
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for all t ∈ [T ] and ε ∈ {±1}T . It is crucial that w(s,r) can be non-zero only on those paths ε for which vs

and vr are indeed the members of the covers (at successive resolutions) close to f(x(ε)) (in the `2 sense) for
some f ∈ F . It is easy to see that w(s,r) is well-defined. Let the set of trees Wj be defined as

Wj =
{

w(s,r) : 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|
}

Now, the second term in (9) can be written as

Eε

sup
f∈F

T∑
t=1

εt

N∑
j=1

(v[f, ε]jt (ε)− v[f, ε]j−1t (ε))

 ≤ N∑
j=1

Eε

[
sup
f∈F

T∑
t=1

εt(v[f, ε]jt (ε)− v[f, ε]j−1t (ε))

]

≤
N∑
j=1

Eε

[
max
w∈Wj

T∑
t=1

εtwt(ε)

]

The last inequality holds because for any j ∈ [N ], ε ∈ {±1}T and f ∈ F there is some w(s,r) ∈ Wj with
v[f, ε]j = vs, v[f, ε]j−1 = vr and

vst (ε)− vrt (ε) = w
(s,r)
t (ε) ∀t ≤ T.

Clearly, |Wj | ≤ |Vj | · |Vj−1|. To invoke Lemma 8, it remains to bound the magnitude of all w(s,r) ∈ Wj

along all paths. For this purpose, fix w(s,r) and a path ε. If there exists f ∈ F for which vs = v[f, ε]j and

vr = v[f, ε]j−1, then w
(s,r)
t (ε) = v[f, ε]jt − v[f, ε]j−1t for any t ∈ [T ]. By triangle inequality√√√√ T∑

t=1

w
(s,r)
t (ε)2 ≤

√√√√ T∑
t=1

(v[f, ε]jt (ε)− f(xt(ε)))2+

√√√√ T∑
t=1

(v[f, ε]j−1t (ε)− f(xt(ε)))2 ≤
√
T (βj+βj−1) = 3

√
Tβj .

If there exists no such f ∈ F for the given ε and (s, r), then w
(s,r)
t (ε) is zero for all t ≥ to, for some 1 ≤ to < T ,

and thus √√√√ T∑
t=1

w
(s,r)
t (ε)2 ≤

√√√√ T∑
t=1

w
(s,r)
t (ε′)2

for any other path ε′ which agrees with ε up to to. Hence, the bound√√√√ T∑
t=1

w
(s,r)
t (ε)2 ≤ 3

√
Tβj

holds for all ε ∈ {±1}T and all w(s,r) ∈Wj .

Now, back to (9), we put everything together and apply Lemma 8:

Eε

[
sup
f∈F

T∑
t=1

εtf(xt(ε))

]
≤ T βN +

√
T

N∑
j=1

3βj

√
2 log(|Vj | |Vj−1|)

≤ T βN +
√
T

N∑
j=1

6βj

√
log(|Vj |)

≤ T βN + 12
√
T

N∑
j=1

(βj − βj+1)
√

logN2(βj ,F ,x)

≤ T βN + 12

∫ β0

βN+1

√
T log N2(δ,F ,x) dδ
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where the last but one step is because 2(βj − βj+1) = βj . Now for any α > 0, pick N = sup{j : βj > 2α}.
In this case we see that by our choice of N , βN+1 ≤ 2α and so βN = 2βN+1 ≤ 4α. Also note that since
βN > 2α, βN+1 = βN

2 > α. Hence we conclude that

RT (F) ≤ inf
α

{
4Tα+ 12

∫ 1

α

√
T log N2(δ,F , T ) dδ

}

Proof of Theorem 10. Let (x′1, . . . , x
′
T ) be a sequence tangent to (x1, . . . , xT ). Recall the notation Et−1 [f(x′t)] =

E {f(x′t)|x1, . . . , xt−1}. By Chebychev’s inequality, for any f ∈ F ,

PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f(x′t)− Et−1 [f(x′t)])

∣∣∣∣∣ > α/2
∣∣∣ x1, . . . , xT] ≤ E

[(∑T
t=1 (f(x′t)− Et−1 [f(x′t)])

)2 ∣∣∣x1, . . . , xT]
T 2α2/4

=

∑T
t=1 E

[
(f(x′t)− Et−1 [f(x′t)])

2 ∣∣x1, . . . , xT ]
T 2α2/4

≤ 4T

T 2α2/4
=

16

Tα2
.

The second step is due to the fact that the cross terms are zero:

E
{

(f(x′t)− Et−1 [f(x′t)]) (f(x′s)− Es−1 [f(x′s)])
∣∣x1, . . . , xT} = 0 .

Hence

inf
f∈F

PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f(x′t)− Et−1[f(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ x1, . . . , xT
]
≥ 1− 16

Tα2

Whenever α2 ≥ 32
T we can conclude that

inf
f∈F

PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f(x′t)− Et−1[f(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ x1, . . . , xT
]
≥ 1

2

Now given a fixed x1, ..., xT let f∗ be the function that maximizes 1
T

∣∣∣∑T
t=1 (f(xt)− Et−1[f(x′t)])

∣∣∣. Note that

f∗ is a deterministic choice given x1, ..., xT . Hence

1

2
≤ inf
f∈F

PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f(x′t)− Et−1[f(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ x1, . . . , xT
]

≤ PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f∗(x′t)− Et−1[f∗(x′t)])

∣∣∣∣∣ ≤ α/2∣∣∣ x1, . . . , xT
]

Let A =
{

(x1, . . . , xT )
∣∣∣ 1T supf∈F |

∑T
t=1 f(xt)− Et−1 [f(x′t)] | > α

}
. Since the above inequality holds for any

x1, . . . , xT we can assert that

1

2
≤ PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f∗(x′t)− Et−1[f∗(x′t)])

∣∣∣∣∣ ≤ α/2∣∣∣(x1, . . . , xT ) ∈ A

]
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Hence we conclude that

1

2
PD

[
sup
f∈F

1

T

∣∣∣∣∣
T∑
t=1

(f(xt)− Et−1[f(x′t)])

∣∣∣∣∣ > α

]

≤ PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f∗(x′t)− Et−1[f∗(x′t)])

∣∣∣∣∣ ≤ α/2 ∣∣∣ (x1, . . . , xT ) ∈ A

]

× PD

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

(f(xt)− Et−1[f(x′t)])

∣∣∣∣∣ > α

]

≤ PD

[
1

T

∣∣∣∣∣
T∑
t=1

(f∗(xt)− f∗(x′t))

∣∣∣∣∣ > α/2

]

≤ PD

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

(f(xt)− f(x′t))

∣∣∣∣∣ > α/2

]

Now we apply Lemma 3 with φ(u) = 1 {u > α/2} and ∆f (xt, x
′
t) = f(xt)− f(x′t),

E

[
1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

f(xt)− f(x′t)

∣∣∣∣∣ ≥ α/2
}]

≤ sup
x1,x′1

{
Eε1

[
. . . sup

xT ,x′T

{
EεT

[
1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εt (f(xt)− f(x′t))

∣∣∣∣∣ ≥ α/2
}]}

. . .

]}
(10)

The next few steps are similar to the proof of Theorem 2. Since

sup
f∈F

∣∣∣∣∣
T∑
t=1

εt (f(xt)− f(x′t))

∣∣∣∣∣ ≤ sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(x′t)

∣∣∣∣∣
it is true that

1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εt (f(xt)− f(x′t))

∣∣∣∣∣ ≥ α/2
}
≤ 1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt)

∣∣∣∣∣ ≥ α/4
}

+ 1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(x′t)

∣∣∣∣∣ ≥ α/4
}

The right-hand side of Eq. (10) then splits into two equal parts:

sup
x1

{
Eε1

[
. . . sup

xT

{
EεT

[
1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt)

∣∣∣∣∣ ≥ α/4
}]}

. . .

]}

+ sup
x′1

{
Eε1

[
. . . sup

x′T

{
EεT

[
1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(x′t)

∣∣∣∣∣ ≥ α/4
}]}

. . .

]}

= 2 sup
x1

{
Eε1

[
. . . sup

xT

{
EεT

[
1

{
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt)

∣∣∣∣∣ ≥ α/4
}]}

. . .

]}

Moving to the tree representation,

PD

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

(f(xt)− f(x′t))

∣∣∣∣∣ > α/2

]
≤ 2 sup

x
Eε

[
1

{
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt(ε))

∣∣∣∣∣ > α/4

}]

= 2 sup
x

Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt(ε))

∣∣∣∣∣ > α/4

]
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We can now conclude that

PD

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

(f(xt)− Et−1[f(xt)])

∣∣∣∣∣ > α

]
≤ 4 sup

x
Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt(ε))

∣∣∣∣∣ > α/4

]

Fix an X -valued tree x of depth T . By assumption fatα(F) < ∞ for any α > 0. Let V be a minimum
`1-cover of F over x at scale α/8. Corollary 6 ensures that

|V | = N1(α/8,F ,x) ≤
(

16eT

α

)fatα
8

and for any f ∈ F and ε ∈ {±1}T , there exists v[f, ε] ∈ V such that

1

T

T∑
t=1

|f(xt(ε))− v[f, ε]t(ε)| ≤ α/8

on the given path ε. Hence

Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt(ε))

∣∣∣∣∣ > α/4

]

= Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εt (f(xt(ε))− v[f, ε]t(ε) + v[f, ε]t(ε))

∣∣∣∣∣ > α/4

]

≤ Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εt (f(xt(ε))− v[f, ε]t(ε))

∣∣∣∣∣+
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtv[f, ε]t(ε)

∣∣∣∣∣ > α/4

]

≤ Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtv[f, ε]t(ε)

∣∣∣∣∣ > α/8

]
For fixed ε = (ε1, . . . , εT ),

1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtv[f, ε]t(ε)

∣∣∣∣∣ > α/8 =⇒ 1

T
max
v∈V

∣∣∣∣∣
T∑
t=1

εtvt(ε)

∣∣∣∣∣ > α/8

and, therefore, for any x,

Pε

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

εtf(xt(ε))

∣∣∣∣∣ > α/4

]
≤ Pε

[
1

T
max
v∈V

∣∣∣∣∣
T∑
t=1

εtvt(ε)

∣∣∣∣∣ > α/8

]

≤
∑
v∈V

Pε

[
1

T

∣∣∣∣∣
T∑
t=1

εtvt(ε)

∣∣∣∣∣ > α/8

]
≤ 2|V |e−Tα

2/128 ≤ 2

(
16eT

α

)fatα/8

e−Tα
2/128

Hence we conclude that for any D

PD

[
1

T
sup
f∈F

∣∣∣∣∣
T∑
t=1

(f(xt)− Et−1[f(xt)])

∣∣∣∣∣ > α

]
≤ 8

(
16eT

α

)fatα/8

e−Tα
2/128

Now applying Borel-Cantelli lemma proves the required result as

∞∑
T=1

8

(
16eT

α

)fatα/8

e−Tα
2/128 <∞ .
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Proof of Proposition 11. For the upper bound, we start by using Theorem 2 to bound the value of the
game by Sequential Rademacher complexity,

VS
T (F) ≤ 2R(FS) .

Using the Lipschitz composition lemma (Lemma 18) with Z = X × Y and φ(t, (x, y)) = |t − y|, we have
R(FS) ≤ R(F). This is because |t − y| is 1-Lipschitz in t for any y. Hence, VS

T (F) ≤ 2R(F). We combine
Theorem 9 and Corollary 6 to obtain the upper bound.

For the lower bound, we use a construction similar to [8]. We construct a particular distribution which
induces a lower bound on regert for any algorithm. For any α ≥ 0 by definition of fat-shattering dimension,
there exists a tree x of depth d = fatα(F) that can be α-shattered by F . For simplicity, we assume T = kd
where k is some non-negative integer, and the case T ≤ d is discussed at the end of the proof. Now, define
the jth block of time Tj = {(j − 1)k + 1, . . . , jk}.

Now the strategy of Nature (Adversary) is to first pick ε̃ ∈ {±1}T independently and uniformly at random.

Further let ε ∈ {±1}d be defined as εj = sign
(∑

t∈Tj ε̃t

)
for 1 ≤ j ≤ d, the block-wise modal sign of ε̃. Now

note that by definition of α-shattering, there exists a witness tree s such that for any ε ∈ {±1}d there exists
fε ∈ F with εj(fε(xj(ε))− sj(ε)) ≥ α/2 for all 1 ≤ j ≤ d. Now let the random sequence (x1, y1), . . . , (xT , yT )
be defined by xt = xj(ε) for all t ∈ Tj and j ∈ {1, . . . , d} and yt = ε̃t. In the remainder of the proof we show
that any algorithm suffers large expected regret.

Now consider any player strategy (possibly randomized) making prediction ŷt ∈ [−1, 1] at round t. Note
that if we consider block j, yt = ε̃t is ±1 uniformly at random. This means that irrespective of what ŷt the
player plays, the expectation over ε̃t of the loss the player suffers at round t is

Eε̃t |ŷt − yt| = 1

Hence on block j, the expected loss accumulated by any player is k and so for any player strategy (possibly
randomized),

E

[
T∑
t=1

|ŷt − yt|

]
=

d∑
j=1

k = dk = T (11)

On the other hand since xt = xj(ε), we know that there always exists a function for any ε ∈ {±1}d, say fε
such that εj(fε(xj(ε))− sj(ε)) ≥ α/2. Hence

E

[
inf
f∈F

T∑
t=1

|f(xt)− yt|

]
≤

d∑
j=1

E

∑
t∈Tj

|fε(xt)− yt|


=

d∑
j=1

E

∑
t∈Tj

|fε(xj(ε))− yt|


≤

d∑
j=1

E

 max
cj∈[sj(ε)+εj α2 ,εj ]

∑
t∈Tj

|cj − yt|


where the last step is because for all of block j, fε(xj(ε)) does not depend on t and lies in the interval1

[sj(ε) + εj
α
2 , εj ] (i.e. the majority side) and so by replacing it by the maximal cj in the same interval for

that block we only make the quantity bigger. Now for a block j, define the number of labels that match
the sign of εj (the majority) as Mj =

∑
t∈Tj 1 {yt = εj}. Since yt = ε̃t ∈ {±1}, observe that the function

1We use the convention that [a, b] stands for [b, a] whenever a > b.
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g(cj) =
∑
t∈Tj |cj − yt| is linear on the interval [−1, 1] with its minimum at the majority sign εj . Hence, the

maximum over [sj(ε) + εj
α
2 , εj ] must occur at cj = sj(ε) + εj

α
2 . Substituting,

max
cj∈[sj(ε)+εj α2 ,εj ]

∑
t∈Tj

|cj − yt| = Mj

∣∣∣sj(ε) + εj
α

2
− εj

∣∣∣+ (k −Mj)
∣∣∣sj(ε) + εj

α

2
+ εj

∣∣∣
= Mj

∣∣∣εjsj(ε) +
α

2
− 1
∣∣∣+ (k −Mj)

∣∣∣εjsj(ε) +
α

2
+ 1
∣∣∣

= Mj

(
1− εjsj(ε)−

α

2

)
+ (k −Mj)

(
1 + εjsj(ε) +

α

2

)
= k + (k − 2Mj)

(
εjsj(ε) +

α

2

)
Hence,

E

[
inf
f∈F

T∑
t=1

|f(xt)− yt|

]
≤ dk +

d∑
j=1

E
[
εjsj(ε)(k − 2Mj) +

α

2
(k − 2Mj)

]

= dk +

d∑
j=1

E [εjsj(ε)(k − 2Mj)] +
α

2

d∑
j=1

E [k − 2Mj ]

Further note that k − 2Mj = −|
∑
t∈Tj ε̃t| and so εj(k − 2Mj) = −

∑
t∈Tj ε̃t and so the expectation

E [εjsj(ε)(k − 2Mj)] = E
[
Eε̃k(j−1)+1:jk

[εjsj(ε)(k − 2Mj)]
]

= 0

because sj(ε) is independent of ε̃t for t ∈ Tj . Hence we see that

E

[
inf
f∈F

T∑
t=1

|f(xt)− yt|

]
≤ dk +

α

2

d∑
j=1

E [k − 2Mj ] (12)

Combining Equations (11) and (12) we can conclude that for any player strategy,

E

[
T∑
t=1

|ŷt − yt|

]
− E

[
inf
f∈F

T∑
t=1

|f(xt)− yt|

]
≥ α

2

d∑
j=1

E [2Mj − k]

=
α

2
E

 d∑
j=1

∣∣∣∣∣∣
∑
t∈Tj

ε̃t

∣∣∣∣∣∣
 =

α

2

d∑
j=1

E

∣∣∣∣∣∣
∑
t∈Tj

ε̃t

∣∣∣∣∣∣ ≥ αd

2

√
k

2
= α

√
Td

8
= α

√
T fatα

8

by Khinchine’s inequality (e.g. [10, Lemma A.9]), yielding the theorem statement for T ≥ fatα. For the case
of T < fatα, the proof is the same with k = 1 and the depth of the shattered tree being T , yielding a lower
bound of αT/

√
8. This completes the proof.

Proof of Theorem 12. The equivalence of 1 and 2 follows directly from Proposition 11. First, suppose
that fatα is infinite for some α > 0. Then, the lower bound says that VS

T (F) ≥ αT/2
√

2 and hence
lim supT→∞ VS

T (F)/T ≥ α/2
√

2. Thus, the class F is not online learnable in the supervised setting. Now,
assume that fatα is finite for all α. Fix an ε > 0 and choose α = ε/16. Using the upper bound, we have

VS
T (F) ≤ 8Tα+ 24

√
T

∫ 1

α

√
fatβ log

(
2eT

β

)
dβ

≤ 8Tα+ 24
√
T (1− α)

√
fatα log

(
2eT

α

)
≤ εT/2 + εT/2
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for T large enough. Thus, lim supT→∞ VS
T (F)/T ≤ ε. Since ε > 0 was arbitrary, this proves that F is online

learnable in the supervised setting.

Let us now prove that if the problem is learnable, then all the complexities are close to each other. In the
upper bounds below, the following calculation will be used several times. For any b > 1 and α ∈ (0, 1)∫ 1

α

1

β

√
log(b/β)dβ =

∫ b/α

b

1

x

√
log xdx =

2

3
log3/2(x)

∣∣∣b/α
b
≤ 2

3
log3/2(b/α) (13)

where we performed a change of variable with x = b/β.

First, if fatβ = O(1/β2), the problem is simple. Indeed, choosing α = 1/
√
T , we appeal to Proposition 11

with the particular choice of α, followed by applying Eq. (13):

D(F) ≤ inf
α

{
4Tα+ 12

√
T

∫ 1

α

√
fatβ log(2eT/β) dβ

}
≤
√
T · O

(
1 +

∫ 1

1/
√
T

1

β

√
log(2eT/β) dβ

)
= O

(√
T log3/2(T )

)
,

By choosing α = 1/2 in the lower bound in Proposition 11, we conclude that for T > fat 1
2
,

1

8
√

2

√
T fat 1

2
≤ 1

2
VS
T (F) ≤ RT (F) ≤ DT (F) ≤ c

√
T log3/2(T )

for some constant c, yielding the statement of the theorem for the simple case.

Now, for the case when fatβ grows faster than 1/β2 as β decays, let α = α̂ be the solution of T = fatα. The
lower bound of Proposition 11 then becomes

cα̂
√
T fatα̂ = cα̂T ≤ VS

T (F) with c = 1/(2
√

2) (14)

Note that fatβ ≤ fatα̂ for β ≥ α̂, and the fact that fatβ grows at least as fast as 1/β2 implies that β
√

fatβ ≤
α̂
√

fatα̂. From (14),
√

fatβ ≤ V
S
T (F)

cβ
√
T

for β > α̂ and α̂ ≤ V
S
T (F)
cT . Using Eq. (13), for some absolute constant

c′,

D(F) ≤ 4T α̂+ 12
√
T

∫ 1

α̂

(
VS
T (F)

cβ
√
T

)√
log(2eT/β) dβ

≤ c′
{
VS
T (F) + VS

T (F)

∫ 1

α̂

1

β

√
log(2eT/β) dβ

}
= VS

T (F) · O
(

log3/2(T/α̂)
)

By our assumption, fatα grows at least as fast as 1/α2, and thus T/α̂ = O(T 3/2), allowing us to conclude

that DT (F) ≤ VS
T (F) · O(log3/2(T )). We conclude

DT (F) ≤ VS
T (F) · O(log3/2(T )) and VS

T (F) ≤ 2RT (F) ≤ 2DT (F).

Proof of Lemma 14. First, we claim that for any x ∈ X , fatα(Vt(r, x)) = fatα(Vt) for at most two r, r′ ∈
Bα.2 Further if there are two such r, r′ ∈ Bα then r, r′ are consecutive elements of Bα (i.e. |r − r′| = α).
Suppose, for the sake of contradiction, that fatα(Vt(r, x)) = fatα(Vt(r

′, x)) = fatα(Vt) for distinct r, r′ ∈ Bα
2The argument should be compared to the combinatorial argument in Theorem 5.
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that are not consecutive (i.e. |r − r′| ≥ 2α). Then let s = (r + r′)/2 and without loss of generality suppose
r > r′. By definition for any f ∈ Vt(r, x),

f(x) ≥ r − α/2 = (r′ + r)/2 + (r − r′)/2− α/2 ≥ s+ α/2

Also for any g ∈ Vt(r′, x) we also have,

g(x) ≤ r′ + α/2 = (r′ + r)/2 + (r′ − r)/2 + α/2 ≤ s− α/2

Let v and v′ be trees of depth fatα(Vt) α-shattered by Vt(r, x) and Vt(r
′, x), respectively. To get a contra-

diction, form a new tree of depth fatα(Vt) + 1 by joining v and v′ with the constant function x1 = x as the
root. It is straightforward that this tree is shattered by Vt(r, x) ∪ Vt(r′, x), a contradiction.

Notice that the times t ∈ [T ] for which |ft(xt)− yt| > α are exactly those times when we update current set
Vt+1. We shall show that whenever an update is made, fatα(Vt+1) < fatα(Vt) and hence claim that the total
number of times |ft(xt)− yt| > α is bounded by fatα(F).

At any round we have three possibilities. First is when fatα(Vt(r, xt)) < fatα(Vt) for all r ∈ Bα. In this case,
clearly, an update results in fatα(Vt+1) = fatα(Vt(bytcα, xt)) < fatα(Vt).

The second case is when fatα(Vt(r, xt)) = fatα(Vt) for exactly one r ∈ Bα. In this case the algorithm chooses
ft(xt) = r. If the update is made, |ft(xt)− yt| > α and thus bytcα 6= ft(xt). We can conclude that

fatα(Vt+1) = fatα(Vt(bytcα, xt)) < fatα(Vt(ft(xt), xt)) = fatα(Vt)

The final case is when fatα(Vt(r, xt)) = fatα(Vt(r
′, xt)) = fatα(Vt) and |r−r′| = α. In this case, the algorithm

chooses ft(xt) = r+r′

2 . Whenever yt falls in either of these two consecutive intervals given by r or r′, we
have |ft(xt)− yt| ≤ α, and hence no update is made. Thus, if an update is made, bytcα 6= r and bytcα 6= r′.
However, for any element or Bα other than r, r′, the fat shattering dimension is less than that of Vt. That is

fatα(Vt+1) = fatα(Vt(bytcα, xt)) < fatα(Vt(r, xt)) = fatα(Vt(r
′, xt)) = fatα(Vt).

We conclude that whenever we update, fatα(Vt+1) < fatα(Vt), and so we can conclude that algorithm’s
prediction is more than α away from yt on at most fatα(F) number of rounds.

Proof of Corollary 17. For the choice of weights pi = 6
π2 i
−2 we see from Proposition 29 that for any i,

E [RT ] ≤ αiT +

√
T fatαi log

(
2T

αi

)
+
√
T (3 + 2 log(i))

Now for any α > 0 let iα be such that α ≤ 2−iα and for any i < iα, α > 2−iα . Using the above bound on
expected regret we have that

E [RT ] ≤ αiαT +

√
T fatαiα log

(
2T

αiα

)
+
√
T (3 + 2 log(iα))

However for our choice of iα we see that iα ≤ log(1/α) and further αiα ≤ α. Hence we conclude that

E [RT ] ≤ αT +

√
T fatα log

(
2T

α

)
+
√
T

(
3 + 2 log log

(
1

α

))
Since choice of α was arbitrary we take infimum and get the result.
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Proof of Lemma 18. Without loss of generality assume L = 1. The general case follow from this by
simply scaling φ appropriately. We will also use the shorthand φ(f, z) to denote φ(f(z), z). We have

R(φ(F)) = sup
x

Eε

[
sup
f∈F

T∑
t=1

εtφ(f,xt(ε))

]
.

The proof proceeds by sequentially using the Lipschitz property of φ(f(xt(ε))) for increasing t. Towards this
end, define

Rt = sup
x

Eε

[
sup
f∈F

t∑
s=1

εsf(xs(ε)) +

T∑
s=t+1

εsφ(f,xs(ε))

]
.

Note that R0 = R(φ(F)) and RT = R(F). We need to show R0 ≤ RT and we will show this by proving
Rt−1 ≤ Rt for all t ∈ [T ]. So, let us fix t ∈ [T ] and start with Rt−1:

Rt−1 = sup
x

Eε

[
sup
f∈F

t−1∑
s=1

εsf(xs(ε)) +

T∑
s=t

εsφ(f,xs(ε))

]
.

We can write the above supremum as,

Rt−1 = sup
x1∈Z

Eε1 . . . sup
xt∈Z

Eεt sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + εtφ(f, xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]
= sup
x1∈Z

Eε1 . . . sup
xt∈Z

Sφ(x1:t, ε1:t−1) ,

where we have simply defined

Sφ(x1:t, ε1:t−1) = Eεt sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + εtφ(f, xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]
.

Here, x̃ ranges over all Z-valued trees of depth T − t.

Similarly, Rt can be written as,

Rt = sup
x1∈Z

Eε1 . . . sup
xt∈Z

Eεt sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + εtf(xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]
= sup
x1∈Z

Eε1 . . . sup
xt∈Z

S(x1:t, ε1:t−1) ,

where we have defined

S(x1:t, ε1:t−1) = Eεt sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + εtf(xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]
.

Thus, to prove Rt−1 ≤ Rt it suffices to prove Sφ(x1:t, ε1:t−1) ≤ S(x1:t, ε1:t−1) for all x1:t ∈ Zt and ε1:t−1 ∈
{±1}t−1. Fix x1:t, ε1:t−1. By explicitly taking expectation w.r.t. εt in the definition of Sφ, we have

2Sφ = sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + φ(f, xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]

+ sup
x̃′

Eεt+1:T

[
sup
g∈F

t−1∑
s=1

εsg(xs)− φ(g, xt) +

T∑
s=t+1

εsφ(g, x̃′s−t(εt+1:T ))

]

= sup
x̃,x̃′

Eεt+1:T

[
sup
f,g∈F

t−1∑
s=1

εs(f(xs) + g(xs)) + φ(f, xt)− φ(g, xt) +

T∑
s=t+1

εs(φ(f, x̃s−t(εt+1:T )) + φ(g, x̃′s−t(εt+1:T ))

]
.
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Now φ(f, xt) − φ(g, xt) = φ(f(xt), xt) − φ(g(xt), xt) is upper bounded by |f(xt) − g(xt)| because φ(·, z) is
1-Lipschitz for any z. Hence,

2Sφ ≤ sup
x̃,x̃′

Eεt+1:T

[
sup
f,g∈F

t−1∑
s=1

εs(f(xs) + g(xs)) + |f(xt)− g(xt)|+
T∑

s=t+1

εs(φ(f, x̃s−t(εt+1:T )) + φ(g, x̃′s−t(εt+1:T ))

]
.

Since, for any εt+1:T , the first and last sum above are unchanged if we simultaneously exchange f with g
and x̃ with x̃′, the above supremum is actually equal to one where the absolute value in the middle term is
absent. That is,

2Sφ ≤ sup
x̃,x̃′

Eεt+1:T

[
sup
f,g∈F

t−1∑
s=1

εs(f(xs) + g(xs)) + f(xt)− g(xt) +

T∑
s=t+1

εs(φ(f, x̃s−t(εt+1:T )) + φ(g, x̃′s−t(εt+1:T ))

]

= sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + f(xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]

+ sup
x̃′

Eεt+1:T

[
sup
g∈F

t−1∑
s=1

εsg(xs)− g(xt) +

T∑
s=t+1

εsφ(g, x̃′s−t(εt+1:T ))

]

= 2Eεt sup
x̃

Eεt+1:T

[
sup
f∈F

t−1∑
s=1

εsf(xs) + εtf(xt) +

T∑
s=t+1

εsφ(f, x̃s−t(εt+1:T ))

]
= 2S(x1:t, ε1:t−1) .

Proof of Lemma 19. Without loss of generality assume that the Lipschitz constant L = 1 because the
general case follows by scaling φ. Now note that by Theorem 9 we have that

R(φ ◦ F) ≤ inf
α

{
4Tα+ 12

∫ 1

α

√
T log N2(δ, φ ◦ F , T ) dδ

}
(15)

Now we claim that we can bound

log N2(δ, φ ◦ F , T ) ≤
k∑
j=1

log N∞(δ,Fj , T )

To see this we first start by noting that√√√√ 1

T

T∑
t=1

(φ(f(xt(ε)))− φ(vt(ε)))
2 ≤

√√√√ 1

T

T∑
t=1

max
j

(
fj(xt(ε)))− vjt (ε)

)2
≤

√
max
t∈[T ]

max
j

(
fj(xt(ε)))− vjt (ε)

)2
≤ max
j∈[k],t∈[T ]

|fj(xt(ε)))− vjt (ε)|

This means that if we have V1, . . . , Vk that are minimal L∞ covers for F1, . . . ,Fk at level δ then if we
construct a cover V = V1× . . .×Vk for F then for any f = (f1, . . . , fk) ∈ F and any ε ∈ {±1}T , there exists
v = (v1, . . . ,vk) ∈ V such that√√√√ 1

T

T∑
t=1

(φ(f(xt(ε)))− φ(vt(ε)))
2 ≤ max

j∈[k]
max
t∈[T ]

|fj(xt(ε)))− vjt (ε)| ≤ δ
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Hence we see that V is an `∞ cover at scale δ for φ ◦ F . Hence

log N2(δ, φ ◦ F , T ) ≤ log N∞(δ, φ ◦ F , T ) ≤ log(|V |) =

k∑
j=1

log(|Vj |) =

k∑
j=1

log N∞(δ,Fj , T )

as claimed. Now using this in Equation 15 we have that

R(φ ◦ F) ≤ inf
α

4Tα+ 12

∫ 1

α

√√√√T

k∑
j=1

log N∞(δ,Fj , T ) dδ


≤ inf

α

4Tα+ 12

k∑
j=1

∫ 1

α

√
T log N∞(δ,Fj , T ) dδ


≤

k∑
j=1

inf
α

{
4Tα+ 12

∫ 1

α

√
T log N∞(δ,Fj , T ) dδ

}
Now applying Theorem 12 we conclude as required that

R(φ ◦ F) ≤ O
(

log3/2(T )
) k∑
j=1

R(Fj)

Proof of Corollary 20. We first extend the binary function b to a function b̄ to any x ∈ Rk as follows :

b̄(x) =

{
(1− ‖x− a‖∞)b(a) if ‖x− a‖∞ < 1 for some a ∈ {±1}k

0 otherwise

First note that b̄ is well-defined since all points in the k-cube are separated by L∞ distance 2. Further
note that b̄ is 1-Lipschitz w.r.t. the L∞ norm and so applying Lemma 19 we conclude the statement of the
corollary.

Proof of Proposition 21. The most difficult of these is Part 4, which follows immediately by Lemma 18
by taking φ(·, z) there to be simply φ(·). The other items follow similarly to Theorem 15 in [26] and we
provide the proofs for completeness. Note that, unlike Rademacher complexity defined in [26], Sequential
Rademacher complexity does not have the absolute value around the sum.

Part 1 is immediate because for any fixed tree x and fixed realization of {εi},

sup
f∈F

T∑
t=1

εtf(xt(ε)) ≤ sup
f∈G

T∑
t=1

εtf(xt(ε)) ,

Now taking expectation over ε and supremum over x completes the argument.

To show Part 2, first observe that, according to Part 1,

R(F) ≤ R(conv(F)) .

Now, any h ∈ conv(F) can be written as h =
∑m
j=1 αjfj with

∑m
j=1 αj = 1, αj ≥ 0. Then, for fixed tree x

and sequence ε,
T∑
t=1

εth(xt(ε) =

m∑
j=1

αj

T∑
t=1

εtfj(xt(ε) ≤ sup
f∈F

T∑
t=1

εtf(xt(ε))
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and thus

sup
h∈conv(F)

T∑
t=1

εth(xt(ε) ≤ sup
f∈F

T∑
t=1

εtf(xt(ε) .

Taking expectation over ε and supremum over x completes the proof.

To prove Part 3, first observe that the statement is easily seem to hold for c ≥ 0. That is, R(cF) = cR(F)
follows directly from the definition. Hence, it remains to convince ourselves of the statement for c = −1.
That is, R(−F) = R(F). To prove this, consider a tree xR that is a reflection of x. That is, xRt (ε) = xt(−ε)
for all t ∈ [T ]. It is then enough to observe that

Eε

[
sup
f∈−F

T∑
t=1

εtf(xt(ε))

]
= Eε

[
sup
f∈F

T∑
t=1

−εtf(xt(ε))

]

= Eε

[
sup
f∈F

T∑
t=1

εtf(xt(−ε))

]
= Eε

[
sup
f∈F

T∑
t=1

εtf(xRt (ε))

]

where we used the fact that ε and −ε have the same distribution. As x varies over all trees, xR also varies
over all trees. Hence taking the supremum over x above finishes the argument.

Finally, for Part 5,

sup
f∈F

{
T∑
t=1

εt (f + h) (xt(ε))

}
=

{
sup
f∈F

T∑
t=1

εtf(xt(ε))

}
+

{
T∑
t=1

εth(xt(ε))

}

Note that, since h(xt(ε)) only depends on ε1:t−1, we have

Eε [εth(xt(ε))] = Eε1:t−1
[E [εt|ε1:t−1]h(xt(ε)] = 0 .

Thus,
R(F + h) = R(F) .

Proof of Proposition 22. We use linearity of the functions in FW to write

RT (FW) = sup
x

Eε

[
sup
w∈W

T∑
t=1

εt 〈w,xt(ε)〉

]

= sup
x

Eε

[
sup
w∈W

〈
w,

T∑
t=1

εtxt(ε)

〉]

Let Ψ? be the Fenchel conjugate of Ψ. By Fenchel-Young inequality, for any λ > 0,〈
w,

T∑
t=1

εtxt(ε)

〉
≤ Ψ(w)

λ
+

Ψ?
(∑T

t=1 λ εt xt(ε)
)

λ
.

Taking supremum over w ∈ W, we get,

sup
w∈W

〈
w,

T∑
t=1

εtxt(ε)

〉
≤ Ψmax

λ
+

Ψ?
(∑T

t=1 λ εt xt(ε)
)

λ
.
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Now, taking expectation w.r.t. ε, we get

Eε

[
sup
w∈W

〈
w,

T∑
t=1

εtxt(ε)

〉]
≤ Ψmax

λ
+

Eε
[
Ψ?
(∑T

t=1 λ εt xt(ε)
)]

λ
.

Now we use Lemma 23 below with Zt = λ εt xt(ε). Note that E [Zt | ε1:t−1] = 0 and ‖Zt‖? ≤ λ‖X‖? almost
surely. Thus, we get,

Eε

[
sup
w∈W

〈
w,

T∑
t=1

εtxt(ε)

〉]
≤ Ψmax

λ
+
λ2 ‖X‖2? T

2σ λ
.

Simplifying and optimizing over λ > 0, gives

RT (FW) ≤ ‖X‖?

√
2 Ψmax T

σ
.

Proof of Lemma 24. Consider the game (F ,Xcvx) and fix a randomized strategy π of the player. Then,
the expected regret of Π against any adversary playing g1, . . . , gT can be bounded as

R(π, g1:T ) =

T∑
t=1

Eut∼πt(g1:t−1) [gt(ut)]− inf
u∈F

T∑
t=1

gt(u)

≤
T∑
t=1

gt
(
Eut∼πt(g1:t−1) [ut]

)
− inf
u∈F

T∑
t=1

gt(u)

= R(π′, g1:T ) .

Here we used Jensen’s inequality in the second line and π′ is simply the deterministic strategy obtained from
π that, on round t, plays

Eut∼πt(g1:t−1) [ut] .

This means that VT (F ,Xcvx) = Vdet
T (F ,Xcvx) where Vdet

T is defined as the minimax regret obtainable only
using deterministic player strategies. Now, we appeal to Theorem 14 in [2] that says Vdet

T (F ,Xcvx) =
Vdet
T (F ,Xlin). Since Xlin also consists of convex (in fact, linear) functions, the above argument again gives
Vdet
T (F ,Xlin) = VT (F ,Xlin). This finishes the proof of the lemma.

Proof of Proposition 25. Fix a γ > 0 and use loss

`(ŷ, y) =

 1 ŷy ≤ 0
1− ŷy/γ 0 < ŷy < γ
0 ŷy ≥ γ

First note that since the loss is 1/γ-Lipschitz, we can use Theorem 2 and the Rademacher contraction
Lemma 18 to show that for each γ > 0 there exists a randomized strategy πγ such that

E

[
T∑
t=1

Eft∼πγt (z1:t−1) [`(ft(xt), yt)]

]
≤ inf
f∈F

T∑
t=1

`(f(xt), yt) +
2

γ
RT (F)

Now note that the loss is lower bounded by the Zero-one loss 1 {ŷy < 0} and is upper bounded by the margin
Zero-one loss 1 {ŷy < γ}. Hence we see that for this strategy,

E

[
T∑
t=1

Eft∼πγt (z1:t−1) [1 {ft(xt)yt < 0}]

]
≤ inf
f∈F

T∑
t=1

1 {f(xt)yt < γ}+
2

γ
RT (F) (16)
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Hence for each fixed γ for randomized strategy given by πγ we have the above bound. Now we discretize
over γ’s as γi = 1/2i and using the output of the randomized strategies πγ1 , πγ2 , . . . that attain the regret
bounds given in (16) as experts and running experts algorithm given in Algorithm 3 with initial weight for
expert i as pi = 6

π2i2 then using Proposition 29 we get that for this randomized strategy π, such that for
any i

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt)yt < 0}]

]
≤ inf
f∈F

T∑
t=1

1 {f(xt)yt < γi}+
2

γi
RT (F) +

√
T

(
1 + 2 log

(
iπ√

6

))
Now for any γ > 0 let iγ be such that γ ≤ 2−iγ and for any i < iγ , γ > 2−iγ . Then using the above bound
we see that

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt)yt < 0}]

]
≤ inf
f∈F

T∑
t=1

1 {f(xt)yt < 2γ}+
2

γ
RT (F) +

√
T

(
1 + 2 log

(
iπ√

6

))
However note that iγ ≤ log(1/γ) and so we can conclude that

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt)yt < 0}]

]
≤ inf
f∈F

T∑
t=1

1 {f(xt)yt < 2γ}+ 2

γ
RT (F)+

√
T

(
1 + 2 log

(
π log(1/γ)√

6

))

Proof of Proposition 26. We shall prove that for any i ∈ [k],

RT (Fi) ≤ 2LBiRT (Fi−1)

To see this note that

RT (Fi) = sup
x

Eε

 sup
wi:‖wi‖1≤Bi
∀jfj∈Fi−1

T∑
t=1

εt

∑
j

wijσ (fj(xt(ε)))




≤ sup
x

Eε

 sup
wi:‖wi‖1≤Bi
∀jfj∈Fi−1

‖wi‖1 max
j

∣∣∣∣∣
T∑
t=1

εtσ (fj(xt(ε)))

∣∣∣∣∣
 (Hölder’s inequality)

≤ sup
x

Eε

[
Bi sup

f∈Fi−1

∣∣∣∣∣
T∑
t=1

εtσ (f(xt(ε)))

∣∣∣∣∣
]

= sup
x

Eε

[
Bi sup

f∈Fi−1

max

{
T∑
t=1

εtσ (f(xt(ε))) ,−
T∑
t=1

εtσ (f(xt(ε)))

}]

= sup
x

Eε

[
Bi max

{
sup

f∈Fi−1

T∑
t=1

εtσ (f(xt(ε))) , sup
f∈Fi−1

T∑
t=1

−εtσ (f(xt(ε)))

}]

≤ sup
x

Eε

[
Bi sup

f∈Fi−1

T∑
t=1

εtσ (f(xt(ε)))

]
+ sup

x
Eε

[
Bi sup

f∈Fi−1

T∑
t=1

−εtσ (f(xt(ε)))

]
(σ(0) = 0 and 0 ∈ Fi)

= 2Bi sup
x

Eε

[
sup

f∈Fi−1

T∑
t=1

εtσ (f(xt(ε)))

]
(Proposition 21)

≤ 2BiL sup
x

Eε

[
sup

f∈Fi−1

T∑
t=1

εtf(xt(ε))

]
(Lemma 18)

= 2BiLRT (Fi−1) (17)
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To finish the proof we note that

RT (F1) = sup
x

Eε

[
sup

w∈Rd:‖w‖1≤B1

T∑
t=1

εtw
>xt(ε)

]

≤ sup
x

Eε

[
sup

w∈Rd:‖w‖1≤B1

‖w‖1

∥∥∥∥∥
T∑
t=1

εtxt(ε)

∥∥∥∥∥
∞

]

≤ B1 sup
x

Eε

[
max
i∈[d]

{
T∑
t=1

εtxt(ε)[i]

}]

Note that the instances x ∈ X are vectors in Rd and so for a given instance tree x, for any i ∈ [d], x[i] given
by only taking the ith co-ordinate is a valid real valued tree. Hence using Lemma 8 we conclude that

RT (F1) ≤ B1 sup
x

Eε

[
max
i∈[d]

{
T∑
t=1

εtxt(ε)[i]

}]
≤ B1

√
2TX2

∞ log d

Using the above and Equation 17 we conclude the proof.

Proof of Proposition 27. For a tree of depth d, the indicator function of a leaf is a conjunction of no
more than d decision functions. More specifically, if the decision tree consists of decision nodes chosen from
a class H of binary-valued functions, the indicator function of leaf l (which takes value 1 at a point x if x
reaches l, and 0 otherwise) is a conjunction of dl functions from H, where dl is the depth of leaf l. We can
represent the function computed by the tree as the sign of

g(x) =
∑
l

wlσl

dl∧
i=1

hl,i(x)

where the sum is over all leaves l, wl > 0,
∑
l wl = 1, σl ∈ {±1} is the label of leaf l, hl,i ∈ H, and the

conjunction is understood to map to {0, 1}. Let F be this class of functions. Now note that if we fix some
L > 0 then we see that the loss

φL(α) =

 1 if α ≤ 0
1− Lα if 0 < α ≤ 1/L

0 otherwise

is L-Lipschitz and so by Theorem 2 and Lemma 18 we have that for every L > 0, there exists a randomized
strategy πL for the player, such that for any sequence z1 = (x1, y1), . . . , zT = (xT , yT ),

E

[
T∑
t=1

Eft∼πLt (z1:t−1) [φL(ytft(xt)]

]
≤ inf
t∈T

T∑
t=1

φL(ytt(xt)) + LR(T )

Now note that φL upper bounds the step function and so

E

[
T∑
t=1

Eft∼πLt (z1:t−1) [1 {ft(xt) 6= yt}]

]
≤ inf
t∈T

T∑
t=1

φL(ytt(xt)) + LR(T )
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Now say t∗ ∈ T is the minimizer of
∑T
t=1 1 {t(xt) 6= yt} then note that

T∑
t=1

φL(ytt
∗(xt)) =

T∑
t=1

1 {t(xt) 6= yt}+
∑
l

C̃T (l)φL(wl)

≤
T∑
t=1

1 {t∗(xt) 6= yt}+
∑
l

C̃T (l) max(0, 1− Lwl)

≤
T∑
t=1

1 {t∗(xt) 6= yt}+
∑
l

max
(

0, (1− Lwl)C̃T (l)
)

= inf
t∈T

T∑
t=1

1 {t(xt) 6= yt}+
∑
l

max
(

0, (1− Lwl)C̃T (l)
)

Hence we see that

E

[
T∑
t=1

Eft∼πLt (z1:t−1) [1 {ft(xt) 6= yt}]

]
≤ inf
t∈T

T∑
t=1

1 {t(xt) 6= yt}+
∑
l

max
(

0, (1− Lwl)C̃T (l)
)

Now if we discretize over L as Li = i for all i ∈ N and run experts algorithm 3 with π1, π2, . . . as our experts
and weight of expert πi is pi = 6

π2 i
−2 so that

∑
i pi = 1 then we get that for this randomized strategy P , we

have from Proposition 29 that for all L ∈ N,

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt) 6= yt}]

]

≤ inf
t∈T

T∑
t=1

1 {t(xt) 6= yt}+
∑
l

max
(

0, (1− Lwl)C̃T (l)
)

+ LR(T ) +
√
T + 2

√
T log(Lπ/

√
6)

Now we pick L = |{l : C̃T (l) > 2R(T )}| =: Nleaf and also pick wl = 0 if C̃T (l) ≤ 2R(T ) and wl = 1/L
otherwise. Hence we see that

E

[
T∑
t=1

Eft∼πt(z1:t−1) [1 {ft(xt) 6= yt}]

]
≤ inf
t∈T

T∑
t=1

1 {t(xt) 6= yt}+
∑
l

C̃T (l)1
{
C̃T (l) ≤ 2R(T )

}
+ 2R(T )

∑
l

1
{
C̃T (l) > 2R(T )

}
+
√
T + 2

√
T log(Nleafπ/

√
6)

= inf
t∈T

T∑
t=1

1 {t(xt) 6= yt}+
∑
l

min(C̃T (l), 2R(T )) +
√
T
(

1 + 2 log(Nleafπ/
√

6)
)

Now finally we can apply Corollary 20 to bound R(T ) ≤ dO(log3/2 T ) R(H) and thus conclude the proof by
plugging this into the above.

Exponentially Weighted Average (EWA) Algorithm on Countable Experts

We consider here a version of the exponentially weighted experts algorithm for countable (possibly infinite)
number of experts and provide a bound on the expected regret of the randomized algorithm. The proof of
the result closely follows the finite case (e.g. [10, Theorem 2.2]).

Say we are provided with countable experts E1, E2, . . . where each expert can herself be thought of as a
randomized/deterministic player strategy which, given history, produces an element of F at round t. Here
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Algorithm 3 EWA (E1, E2, . . ., p1, p2, . . .)

Initialize each w1
i ← pi

for t = 1 to T do
Pick randomly an expert i with probability wti
Play ft = f ti
Receive xt

Update for each i, wt+1
i =

wtie
−ηfti (xt)∑

i w
t
ie
−ηft

i
(xt)

end for

we also assume that F ⊂ [0, 1]X contains only non-negative functions. Denote by f it the function output by
expert i at round t given the history. The EWA algorithm we consider needs access to the countable set of
experts and also needs an initial weighting on each expert p1, p2, . . . such that

∑
i pi = 1.

Proposition 29. For the exponentially weighted average forecaster (Algorithm 3) with η = T−1/2 yields

E

[
T∑
t=1

ft(xt)

]
≤

T∑
t=1

f ti (xt) +

√
T

8
+
√
T log (1/pi)

for any i ∈ N.

Proof. Define Wt =
∑
i pie

−η
∑t
j=1 f

j
i (xt). Then note that

log

(
Wt

Wt−1

)
= log

(∑
i pie

−η
∑t
j=1 f

j
i (xt)

Wt−1

)
= log

(∑
i

wt−1i e−ηf
t
i (xt)

)
Now using Hoeffding’s inequality (see [10, Lemma 2.2]) we have that

log

(
Wt

Wt−1

)
≤ −η

∑
i

wt−1i f ti (xt) +
η2

8
= −ηE [ft(xt)] +

η2

8

Summing over t we get

log(WT )− log(W0) =

T∑
t=1

log

(
Wt

Wt−1

)
≤ −ηE

[
T∑
t=1

ft(xt)

]
+
Tη2

8
(18)

Note that W0 =
∑
i pi = 1 and so log(W0) = 0. Also note that for any i ∈ N,

log(WT ) = log

(∑
i

pie
−η

∑T
t=1 f

t
i (xt)

)
≥ log

(
p
−η

∑T
t=1 f

t
i (xt)

i

)
= log(pi)− η

T∑
t=1

f ti (xt)

Hence using this with Equation 18 we see that

log(pi)− η
T∑
t=1

f ti (xt) ≤ −ηE

[
T∑
t=1

ft(xt)

]
+
Tη2

8

Rearranging we get

E

[
T∑
t=1

ft(xt)

]
≤

T∑
t=1

f ti (xt) +
ηT

8
+

1

η
log

(
1

pi

)
Using η = 1√

T
we get the desired bound.
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