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Abstract

This notes is ment to be a review of some basic inequalities and
bounds on Random variables. A basic understanding of probability
theory and set algebra might be required of the reader. This document
is aimed to provide clear and complete proof for some inequalities. For
readers familiar with the topics, many of the steps might seem trivial.
None the less they are provided to simplify the proofs for readers new
to the topic. This notes also provides to the best of my knowledge,
the most generalized statement and proof for Symmetrization lemma. I
also provides the less famous but geralized proof for Jensen’s inequality
and logarithmic sobolev inequality. Refer [2] for a more detailed review
of many of these inequalities with examples demonstrating their uses.

1 Preliminary

Throughout this notes we shall consider a probability space (Ω, E , P ) where
Ω is the sample space, E is the event class which is a σ−algebra on Ω and P
is a probability measure. Further, we shall assume that there exists a borel
measurable function mapping every point ω ∈ Ω to a real number uniquely
called a random variable. We shall call the space of random variables X
(note that X ⊆ R). Further, we shall assume that all the functions and sets
defined in the notes are measurable under the probability measure P .

2 Chebychev’s Inequality

Let us start this notes by proving what is refered to as Chebychev’s Inequal-
ity in [3]. Note, often by Chebychev’s inequality an inequality derived from
the below proved theorem is used. However [3] refers to this inequality as
Tchebycheff’s Inequality and the same is followed in this notes.
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Theorem 1 For some a ∈ X where X ⊆ R, let f be a non-negative function
such that {f(x) ≥ b|∀x ≥ a} , where b ∈ Y where Y ⊆ R. Then the following
inequality holds,

P (x ≥ a) ≤ E{f(x)}
b

Proof Let set X1 = {x : x ≥ a&x ∈ X} therefore we have,

X1 ⊆ X

Since f is a non-negative function, taking the lebesgue integral of the func-
tion over sets X1 and X we have,∫

X
fdP ≥

∫
X1

fdP ≥ b
∫
X1

dP

where
∫
X1
dP = P (X1). However the lebague integral over probability mea-

sure of a function is its expectation. Hence we have,

E{f(x : x ∈ X)} ≥ bP (X1)

⇒ E{f(x)} ≥ bP (x ≥ a)

and hence
P (x ≥ a) ≤ E{f(x)}

b
(1)

Now let us suppose that the function f is monotonically increasing. There-
fore for every x ≥ a, f(x) ≥ f(a). In (1) use b = f(a). Therefore we
get

P (x ≥ a) ≤ E{f(x)}
f(a)

From this we can get the well known inequalities like

P (x ≥ a) ≤ E{x}
a

called Markov inequality which holds for a > 0 and nonnegetive x,

P (|x− E(x)| ≥ a) ≤ E{|x− E(x)|2}
a2

=
V ar{x}
a2

(2)

often called the Chebychev’s Inequality1 and the Chernoff’s bound

P (x ≥ a) ≤ Eesx

esa
(3)

1In this note, V ar{} and σ2 are used interchangeably for variance
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3 Information Theoretic Bounds

3.1 Jensen’s Inequality

Here we shall state and prove a generalized, measure theoretic proof for
Jensen’s inequality. In general, in probability theory, a more specific form
of Jensen’s inequality is famous. But before that we shall first define a con-
vex function.

Definition A function φ(x) is defined to be convex in interval (a, b) if for
every point x′ in the interval (a, b) there exists an m such that

φ(x) ≥ m(x− x′) + φ(x′) (4)

for any x ∈ (a, b)

Note that this definition can be proved to be equivallent to the definition
of convex function as one in which the value of the function for any point
in the interval of convexity is always below the line segment joining the end
points of any subinterval of the convex interval containing that point. We
chose this particular definition for simplyfying the proof of Jensen’s inequal-
ity. Now without further a due, let us move to stating and proving Jensen’s
Inequality. (Note: Refer [4] for a similar generalized proof for Jensen’s In-
equality.)

Theorem 2 Let f and µ be measurable functions of x which are finite a.e.
on A ⊆ Rn. Now let fµ and µ be integrable on A and µ ≥ 0. If φ is a
function which is convex in interval (a, b) which is the range of function f
and

∫
A φ(f)µ exists then,

φ(
∫
A fµ∫
A µ

) ≤
∫
A φ(f)µ∫
A µ

(5)

Proof From our assumptions, the range of f is (a, b) which is the interval
in which φ(x) is convex. Hence, consider the number,

x′ =
∫
A fµ∫
A µ
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Clearly it is within the interval (a, b). Further, from Equation (4) we have
for almost every x,

φ(f(x)) ≥ m(f(x)− x′) + φ(x′)

Multiplying by µ and integrating both sides we get,∫
A
φ(f)µ ≥ m(

∫
A
fµ− x′

∫
A
µ) + φ(x′)

∫
A
µ

Now see that
∫
A fµ− x′

∫
A µ = 0 and hence we have,∫

A
φ(f)µ ≥ φ(x′)

∫
A
µ

hence we get the result, ∫
A
φ(f)µ ≥ φ(

∫
A fµ∫
A µ

)
∫
A
µ

Now note that if µ is a probability measure then,
∫
A µ = 1 and since

expected value is simply lebesgue integral of function w.r.t. probability
measure, we have

E[φ(f(x))] ≥ φ(E[f(x)]) (6)

for any function φ convex for the range of function f(x).
Now a function φ(x) is convex if φ′(x) exists and is monotonically in-

creasing and if second derivative exists and is nonnegetive. Therefore we
can conclude that the function −log x is a convex function. Therefore by
Jensen’s inequality, we have

E[−log f(x)] ≥ log E[f(x)]

Now if we take function f(x) to be the probability result we get the result
that Entropy H(P ) is always greater than or equal to 0. If we make f(x) the
ratio of two probability measures dP and dQ, we get the result that relative
entropy or KL divergence of two distributions is always non negetive. That
is

D(P ||Q) = EP [log(
dQ(x)
dP (x)

)] ≥ log(EP [
dQ(x)
dP (x)

]) = log(EQ[dQ(x)]) = 0

Therefore,
D(P ||Q) ≥ 0
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3.2 Han’s Inequality

We shall first prove the Han’s Inequality for entropy and then usingthe
result, we shall prove the Han’s Inequality for relative entropy.

Theorem 3 Let x1, x2, ..., xn be discrete random variables from sample space
X. Then

H(x1, ..., xn) ≤ 1
n− 1

n∑
i=1

H(x1, ..., xi−1, xi+1, ..., xn) (7)

Proof Note that D(PX,Y ||PX × PY ) = H(X)−H(X|Y ). Since we already
proved that Relative entropy is non-negetive, we have, H(X) ≥ H(X|Y ).
This in a vague way means that information (about some variable Y ) can
only reduce entropy or uncertainity (H(X|Y )), which makes intutive sense.
Now consider the entropy,

H(x1, ..., xn) = H(x1, ..., xi−1, xi+1, ..., xn) +H(xi|x1, ..., xi−1, xi+1, ..., xn)

Since we have already seen that H(X) ≥ H(X|Y ), applying this we have,

H(x1, ..., xn) ≤ H(x1, ..., xi−1, xi+1, ..., xn) +H(xi|x1, ..., xi−1)

Summing both sides upto n we get

nH(x1, ..., xn) ≤
n∑
i=1

H(x1, ..., xi−1, xi+1, ..., xn) +H(xi|x1, ..., xi−1)

Now note that by definition of conditional entropy, H(X|Y ) = H(X,Y ) −
H(Y ). Therefore extending this to many variables we get the chain rule of
entropy as,

H(x1, ..., xn) =
n∑
i=1

H(xi|x1, ..., xi−1)

Therefore using this chain rule,

nH(x1, ..., xn) ≤
n∑
i=1

H(x1, ..., xi−1, xi+1, ..., xn) +H(x1, ..., xn)

Therefore,

H(x1, ..., xn) ≤ 1
n− 1

n∑
i=1

H(x1, ..., xi−1, xi+1, ..., xn)
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Now we shall prove the Han’s inequality for relative entropies. Let
xn1 = x1, x2, ..., xn be discrete random variables from sample space X just
like in the previous case. Now let P and Q be probability distributions in
the product space Xn and let P be a distribution such that PXn (x1,...,xn

dxn1
) =

dP1(x1)
dx1

dP2(x2)
dx2

...dPn(xn)
dxn

. That is distribution P assumes independence of the
variables (x1, ..., xn) with the probability density function of each variable
xi as dPi(x)

dxi
. Let x(i) = (x1, ..., xi−1, xi+1, ..., xn). Now with this setting we

shall state and prove Han’s relative entropy inequlity.

Theorem 4 Given any distribution Q on product space Xn and a distribu-
tion P on Xn which assumes independence of variables (x1, ..., xn)

D(Q||P ) ≤ 1
n− 1

n∑
i=1

D(Q(i)||P (i)) (8)

where
Q(i)(x(i)) =

∫
X

dQ(x1, ..., xi−1, xi, xi+1, ..., xn)
dxn1

dxi

and
P (i)(x(i)) =

∫
X

dP (x1, ..., xi−1, xi, xi+1, ..., xn)
dxn1

dxi

Proof By definition of relative entropy,

D(Q||P ) =
∫
Xn

dQlog(
dQ

dP
) =

∫
Xn

dQ

dxn1
log(dQ)− dQ

dxn1
log(

dP

dxn1
)dxn1 (9)

In the above equation, consider the term
∫
Xn

dQ
dxn1

log( dPdxn1 ))dxn1 . From our
assumption about P we know that

dP (xn1 )
dxn1

=
dP1(x1)
dx1

dP2(x)
dx2

...
dPn(xn)
dxn

Now P (i)(x(i)) =
∫
X

dP (x1,...,xi−1,xi,xi+1,...,xn)
dxn1

dxi, therefore,

dP (xn1 )
dxn1

=
dPi(xi)
dxi

dP (i)(x(i))
dx(i)

Therefore using this we get∫
Xn

dQ

dxn1
log(

dP (xn1 )
dxn1

)dxn1 =
1
n

(
n∑
i=1

∫
Xn

dQ

dxn1
(log(

dPi(xi)
dxi

) + log(
dP (i)(x(i))
dx(i)

))dxn1 )
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=
1
n

(
n∑
i=1

∫
Xn−1

dQ(i)

dx(i)
(log(

dP (i)(x(i))
dx(i)

))dx(i)) +
1
n

∫
Xn

dQ

dxn1
log(

dP (xn1 )
dxn1

)dxn1

Rearranging the terms we get,∫
Xn

dQ

dxn1
log(

dP (xn1 )
dxn1

)dxn1 =
1

n− 1
(
n∑
i=1

∫
Xn−1

dQ(i)

dx(i)
(log(

dP (i)(x(i))
dx(i)

))dx(i))

Now also note that by Han’s inequlity for entropy,∫
Xn

dQ

dxn1
log(

dQ(xn1 )
dxn1

)dxn1 ≥
n∑
i=1

∫
Xn

dQ(i)

dx(i)
log(

dQ(i)(x(i))
dx(i)

)dx(i)

Therefore when we consider relative entropy given by Equation (9) we get,

D(Q||P )

≥ 1
n− 1

∫
Xn−1

n∑
i=1

dQ(i)

dx(i)
log(

dQ(i)(x(i))
dx(i)

)dx(i)− 1
n− 1

∫
Xn−1

n∑
i=1

dQ(i)

dx(i)
log(

dP (i)(x(i))
dx(i)

)dx(i)

Thus finally simplifying we get the required result as

D(Q||P ) ≤ 1
n− 1

n∑
i=1

D(Q(i)||P (i))

4 Inequalities of Sums of Random Variables

4.1 Hoeffding’s Inequality

Theorem 5 Let be independent bounded random variables such that the
random variable xi falls in the interval [pi, qi]. Then for any a > 0 we have

P (
n∑
i=1

xi − E(
n∑
i=1

xi) ≥ a) ≤ e
− 2a2∑n

i=1
(qi−pi)2

Proof Form the Chernoff’s bound given by (3) we get,

P (x− E(x) ≥ a) ≤ Ees(x−E(x))

esa
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Let Sn =
∑n
i=1 xi. Therefore we have,

P (Sn − E(Sn) ≥ a) ≤ Ees(Sn−E(Sn))

esa

≤ e−sa
n∏
i=1

Ees(xi−E(xi)) (10)

Now Let y be any random variable such that p ≤ y ≤ q and Ey = 0. Then
for any s > 0 due to convexity of exponential function we have

esy ≤ y − p
q − p

esq +
q − y
q − p

esp

Taking expectation on both sides we get,

Eesy ≤ −p
q − p

esq +
q

q − p
esp

Now let α = −p
q−p . Therefore,

Eesy ≤ (αes(q−p) + (1− α))e−sα(q−p)

⇒ Eesy ≤ elog(αes(q−p)+(1−α))−sα(q−p)

⇒ Eesy ≤ eφ(u) (11)

Where the function φ(u) = log(αeu + (1− α))− uα and u = s(q − p).
Now using Taylor’s theorem, we have for some η,

φ(x) = φ(0) + xφ′(0) +
x2

2
φ′′(η) (12)

But we have φ(0) = 0 and φ′(x) = αex

αex+(1−α) −α. Therefore φ′(0) = 0 Now,

φ′′(x) =
α(1− α)ex

(1− α+ αex)2

If we consider φ′′(x) we see that the function is maximum when

φ′′′(x) =
α(1− α)ex

(1− α+ αex)2
− 2α2(1− α)e2x

(1− α+ αex)3
= 0

⇒ ex =
1− α
α
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Therefore, for any x

φ′′(x) ≤ ((1− α)2)
(2− 2α)2

=
1
4

Therefore from (12) and (11) we have

Eesy ≤ e
u2

8

Therefore for any p ≤ y ≤ q

Eesy ≤ e
s2(q−p)2

8 (13)

Using this in (10) we get,

P (Sn − E(Sn) ≥ a) ≤ e−saes2
∑n

i=1
(qi−pi)

2

8

Now we find the best bound by minimizing the L.H.S. of the above equation
w.r.t s. Therefore we have

des
2

∑n

i=1
(qi−pi)

2

8
−sa

ds
= es

2

∑n

i=1
(qi−pi)

2

8
−sa(2s

∑n
i=1 (qi − pi)2

8
− a) = 0

Therefore for the best bound we have

s =
4a∑n

i (qi − pi)2

and correspondingly we get

P (Sn − E(Sn) ≥ a) ≤ e
− 2a2∑n

i=1
(qi−pi)2 (14)

Now an interesting result from the Hoeffding’s inequality often used in
learning theory is to bound not the differnce in sum and its corresponding
expectation but the emperical average of loss function and its expectation.
This is done by using (14) as,

P (Sn − E(Sn) ≥ na) ≤ e
− 2(an)2∑n

i=1
(qi−pi)2

⇒ P (
Sn
n
− E(Sn)

n
≥ a) ≤ e

− 2(aN)2∑n

i=1
(qi−pi)2

Now Enx = Sn
n denotes the emperical average of x and E(Sn)

n = Ex. There-
fore we have

P (En(x)− E(x) ≥ a) ≤ e
− 2n2a2∑n

i=1
(qi−pi)2 (15)
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4.2 Bernstein’s Inequality

Hoeffding’s inequality does not use any knowledge about the distribution of
variables. The Bernstein’s inequality [7] uses the variance of the distribution
to get a tighter bound.

Theorem 6 Let x1, x2, ..., xn be independent bounded random variables such
that Exi = 0 and |xi| ≤ ς with probability 1 and let σ2 = 1

n

∑n
i=1 V ar{xi}

Then for any a > 0 we have

P (
1
n

n∑
i=1

xi ≥ ε) ≤ e
− nε2

2σ2+2ςε/3

Proof We need to re-estimate the new bound starting from (10). Let

Fi =
∞∑
r=2

sr−2E(xri )
r!σ2

i

where σ2
i = Ex2

i . Now ex = 1 + x+
∑∞
r=2

xr

r! . Therefore,

Eesxi = 1 + sExi +
∞∑
r=2

E(xri )
r!

Since Exi = 0 we have,
Eesxi = 1 + Fis

2σ2
i

≤ eFis2σ2
i

Consider the term Exri . Since expectation of a function is just the Lebesgue
integral of the function with respect to probability measure, we have Exri =∫
P x

r−1
i xi. Using Schwarz’s inequality we get,

Exri =
∫
P
xr−1
i xi ≤ (

∫
P
|xr−1
i |2)

1
2 (
∫
P
|xi|2)

1
2

⇒ Exri ≤ σi(
∫
P
|xr−1
i |2)

1
2

Proceeding to use the Schwarz’s inequality recursively n times we get

Exri ≤ σ
1+ 1

2
+ 1

2

2
+...+ 1

2

n−1

i (
∫
P
|x(2nr−2n+1−1)
i |)

1
2n
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{σ2(1− 1
2

n
)

i (
∫
P
|x(2nr−2n+1−1)
i |)

1
2n }

Now we know that |xi| ≤ ς. Therefore

(
∫
P
|x(2nr−2n+1−1)
i |)

1
2n ≤ (ς(2nr−2n+1−1))

1
2n

Hence we get

Exri ≤ {σ
2(1− 1

2

n
)

i ς(r−2− 1
2n

)}

Taking limit n to infinity we get

Exri ≤ limn→∞{σ
2(1− 1

2

n
)

i ς(r−2− 1
2n

)}

⇒ Exri ≤ σ2
i ς
r−2 (16)

Therefore,

Fi =
∞∑
r=2

sr−2E(xri )
r!σ2

i

≤
∞∑
r=2

sr−2σ2
i ς
r−2

r!σ2
i

Therefore,

Fi ≤
1
s2ς2

∞∑
r=2

srςr

r!
=

1
s2ς2

i

(esς − 1− sς)

Applying this to (16) we get,

Exri ≤ e
s2σ2

i
(esς−1−sς)

s2ς2

Now using (10) and the fact that σ2 = σ2
i
n we get,

P (Sn ≥ a) ≤ e−saes
2nσ2 (esς−1−sς)

s2ς2 (17)

Now to obtain the closest bound we minimize R.H.S w.r.t s. Therefore we
get

de
s2nσ2(

(esς−1−sς)
s2ς2

)−sa

ds
= e

s2nσ2(
(esς−1−sς)

s2ς2
)−sa(nσ2(

(ςesς − ς)
ς2

)− a) = 0

Therefore to get a tighter bound we have

(
(esς − 1)

ς
) =

a

nσ2
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Therefore we have
s =

1
ς
log(

aς

nσ2
+ 1)

Using this s in (17) we get

P (Sn ≥ a) ≤ e
nσ2

ς2
( aς
nσ2−log(

aς
nσ2 +1))−a

ς
log( aς

nσ2 +1)

≤ e
nσ2

ς2
( aς
nσ2−log(

aς
nσ2 +1)− aς

nσ2 log(
aς
nσ2 +1))

Let H(x) = (1 + x)log(1 + x)− x Therefore we get

P (Sn ≥ a) ≤ e
−nσ2

ς2
H( aς

nσ2 ) (18)

This is called the Bennett’s inequality [?]. We can derive the Bernstien’s
inequality by further bounding the function H(x). Let function G(x) =
3
2
x2

x+3 . We see that H(0) = G(0) = H ′(0) = G′(0) = 0 and we see that
H ′′(x) = 1

x+1 and G′′(x) = 27
(x+3)3 . Therefore H ′′(0) ≥ G′′(0) and further

if fn(x) of a function f represents the nth derivative of the function then
we have Hn(0) ≥ Gn(0) for any {n ≥ 2}. Therefore as a consequence of
Taylor’s theorem we have

H(x) ≥ G(x)∀x ≥ 0

Therefore applying this to (18) we get

P (
n∑
i

xi ≥ a) ≤ e
−nσ2

ς2
G( aς

nσ2 )

⇒ P (
n∑
i

xi ≥ a) ≤ e
−a2

2(aς+3nσ2)

Now let a = nε. Therefore,

P (
n∑
i

xi ≥ nε) ≤ e
−ε2n2

2(nες+3nσ2)

Therefore we get,

P (
1
n

n∑
i=1

xi ≥ ε) ≤ e
− nε2

2σ2+2ςε/3 (19)

An interesting phenomenon here is that if σ < ε then the upper bound
grows as e−nε rather than e−nε

2
as suggested by Hoeffding’s inequality (14).
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5 Inequalities of Functions of Random Variables

5.1 Efron Stien’s Inequality

Till now we only considered sum of R.V.s. Now we shall consider functions
of R.V.s. The Efron Stien [9] inequality is one of the tightest bounds known.

Theorem 7 Let S : Xn → R be a measurable function which is invari-
ant under permutation and let the random variable Z be given by Z =
S(x1, x2, ..., xn). Then we have

V ar(Z) ≤ 1
2

n∑
i=1

E[(Z − Z ′i)2]

where Z ′i = S(x1, ..., x
′
i, ..., xn) where {x′1, ...x′n} is another sample from the

same distribution as that of {x1, ...xn}

Proof Let
EiZ = E[Z|x1, ..., xi−1, xi+1, ..., xn]

and let V = Z − EZ. Now if we define Vi as

Vi = E[Z|x1, ..., xi]− E[Z|x1, ..., xi−1],∀i = 1, .., n

then V =
∑n
i=1 Vi and

V ar(Z) = EV 2 = E[(
n∑
i=1

Vi)2] = E[
n∑
i=1

V 2
i ] + 2E[

∑
i>j

ViVj ]

Now E[XY ] = E[E[XY |Y ]] = E[Y E[X|Y ]], therefore E[VjVi] = E[ViE[Vj |x1, ..., xi]].
But since i > j E[Vj |x1, ..., xi] = 0. Therefore we have,

V ar(Z) = E[
n∑
i=1

V 2
i ] =

n∑
i=1

E[V 2
i ]

Now let E
xji

represent expectation w.r.t variables {xi, ..., xj}.

V ar(Z) =
n∑
i=1

E[(E[Z|x1, ..., xi]− E[Z|x1, ..., xi−1])2]
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=
n∑
i=1

Exi1
[(Exni+1

[Z|x1, ..., xi]− Exni [Z|x1, ..., xi−1])2]

=
n∑
i=1

Exi1
[(Exni+1

[Z|x1, ..., xi]− Exni+1
[Exi [Z|x1, ..., xi−1]])2]

However, x2 is a convex function and hence we can apply Jensens inequality
(6) and hence get,

V ar(Z) ≤
n∑
i=1

Exi1,xni+1
[(Z − Exi [Z|x1, ..., xi−1, xi+1, ..., xn])2]

Therefore,

V ar(Z) ≤
n∑
i=1

E[(Z − Ei[Z])2]

Where Ei[Z] = E[Z|x1, ..., xi−1, xi+1, ..., xn]. Now let x and y be 2 indepen-
dent samples from the same distribution.

E(x− y)2 = E[x2 + y2 − 2xy] = 2E[x2]− 2(E[x])2

Hence, if x and y are i.i.d’s, then V ar{x} = E[1
2(x− y)2]. Thus we have,

Ei[(Z − Ei[Z])2] =
1
2
Ei[(Z − Z ′i)2]

Thus we have the Efron-Stein inequality as

V ar(Z) ≤ 1
2

n∑
i=1

E[(Z − Z ′i)2] (20)

Notice that if function S is the sum of the random variables the inequality
becomes an equality. Hence the bound is tight. It is often refered to as
jacknife bound.

5.2 McDiarmid’s Inequality

Theorem 8 Let S : Xn → R be a measurable function which is invari-
ant under permutation and let the random variable Z be given by Z =
S(x1, x2, ..., xn). Then for any a > 0 we have

P (|Z − E[Z]| ≥ a) ≤ 2e
2 a2∑n

i=1
ς2
i

14



whenever the function has bounded difference [10]. That is

supx1,...,xn,x′i
|S(x1, x2, ..., xn)− S(x1, ..., x

′
i, ..., xn)| ≤ ςi

where Z ′i = S(x1, ..., x
′
i, ..., xn) where {x′1, ...x′n} is a sample from the same

distribution as {x1, ...xn}

Proof Using Chernoff’s bound (3) we get

P (Z − E[Z] ≥ a) ≤ e−saeE[Z−E[Z]]

Now let,

Vi = E[Z|x1, ..., xi]− E[Z|x1, ..., xi−1],∀i = 1, .., n

then V =
∑n
i=1 Vi = Z − E[Z]. Therefore,

P (Z − E[Z] ≥ a) ≤ e−saE[e
∑n

i=1
sVi ] = e−sa

n∏
i=1

E[esVi ] (21)

Now Let Vi be bounded by the interval [Li, Ui]. We know that |Z−Z ′i)| ≤ ςi,
hence it follows that |Vi| ≤ ςi and hence |Ui−Li| ≤ ςi. Using (13) on E[esVi ]
we get,

E[esVi ] ≤ e
s2(Ui−Li)

2

8 ≤ e
s2ς2

i
8

Using this in (21) we get,

P (Z − E[Z] ≥ a) ≤ e−as
n∏
i=1

e
s2ς2

i
8 = es

2
∑n

i=1

ς2
i
8
−sa

Now to make the bound tight we simply minimize it with respect to s.
Therefore to do that,

2s
n∑
i=1

ς2
i

8
− a = 0

⇒ s =
4a∑n
i=1 ς

2
i

Therefore the bound is given by,

P (Z − E[Z] ≥ a) ≤ e
( 4a∑n

i=1
ς2
i

)2
∑n

i=1

ς2
i
8
−( 4a2∑n

i=1
ς2
i

)

15



⇒ P (Z − E[Z] ≥ a) ≤ e
−( 2a2∑n

i=1
ς2
i

)

Hence we get,

P (|Z − E[Z]| ≥ a) ≤ 2e
−( 2a2∑n

i=1
ς2
i

)

(22)

5.3 Logarithmic Sobolev Inequality

This inequality is very useful in deriving simple proofs for many known
bounds using a method famous as Ledoux method [11]. Before jumping into
the therem, let us first prove a useful lemma.

Lemma 9 For any positive random variable y and α > 0 we have

E{ylog y} − Ey log Ey ≤ E{ylog y − ylog α− (y − α)} (23)

Proof For any (x > 0 ) we have, log x ≤ x− 1. Therefore,

log
α

Ey
≤ α

Ey
− 1

Therefore,
Ey log

α

Ey
≤ α− Ey

adding E{ylog y} on both sides we get,

Ey logα− Ey logEy + E{ylog y} ≤ α− Ey + E{ylog y}

Therefore simplifying we get the required result as

E{ylog y} − Ey log Ey ≤ E{ylog y − ylog α− (y − α)}

Now just like in the previous two sections, let S : Xn → R be a mea-
surable function which is invariant under permutation and let the random
variable Z be given by Z = S(x1, x2, ..., xn). Here we assume independence
of (x1, x2, ..., xn). Z ′i = S(x1, ..., x

′
i, ..., xn) where {x′1, ...x′n} is another sam-

ple from the same distribution as that of {x1, ...xn}. Now we are ready to
state and prove the logarithmic Sobolev inequality.

16



Theorem 10 If function ψ(x) = ex − x− 1 then,

sE{ZesZ} − E{esZ}log E{esZ} ≤
n∑
i=1

E{esZψ(−s(Z − Z ′i))} (24)

Proof From Lemma 1 (Equation(23)) we have for any positive variable Y
and α = Y ′i > 0,

Ei{Y log Y } − EiY log EiY ≤ Ei{Y log Y − Y log Y ′i − (Y − Y ′i )}

Now let Y = esZ and Y ′i = esZ
′
i then,

Ei{Y log Y } − EiY log EiY ≤ Ei{esZ(sZ − sZ ′i)− esZ(1− esZ′i−sZ)}

Writing it in terms of function ψ(x) we get,

Ei{Y log Y } − EiY log EiY ≤ Ei{esZψ(−s(Z − Z ′i))} (25)

Now let measure P denote the distribution of (x1, ..., xn) and let distribution
Q be given by,

dQ(x1, ..., xn) = dP (x1, ..., xn)Y (x1, ..., xn)

Then we have,

D(Q||P ) = EQ{log Y } = EP {Y log Y } = E{Y log Y }

Now since Y is positive, we have

D(Q||P ) ≥ E{Y log Y } − EY log EY (26)

However by Han’s inequality for relative entropy, rearranging Equation (8)
we have,

D(Q||P ) ≤
n∑
i=1

D(Q||P )−D(Q(i)||P (i)) (27)

Now we have already shown that D(Q||P ) = E{Y log Y } and further,
E{Ei{Y log Y }} = E{Y log Y } therefore, D(Q||P ) = E{Ei{Y log Y }}. Now
by definition,

dQ(i)(x(i))
dx(i)

=
∫
X

dQ(x1, ..., xi−1, xi, xi+1, ..., xn)
dxn1

dxi

=
∫
X

Y (x1, ..., xn)dP (x1, ..., xi−1, xi, xi+1, ..., xn)
dxn1

dxi

17



Due to the independence assumption of the sample, we can rewrite the above
as,

dQ(i)(x(i))
dx(i)

=
dP (x1, ..., xi−1, xi+1, ..., xn)

dx(i)

∫
X
Y (x1, ..., xn)dPi(xi)

=
dP (x1, ..., xi−1, xi+1, ..., xn)

dx(i)
EiY

Therefore D(Q(i)||P (i)) is given by,

D(Q(i)||P (i)) =
∫
Xn−1

EiY log EiY dP (xi) = E{EiY log EiY }

Now using this we get,

n∑
i=1

D(Q||P )−D(Q(i)||P (i)) =
n∑
i=1

E{Ei{Y log Y }} − E{EiY log EiY }

Therefore, using this in Equation (27) we get,

D(Q||P ) ≤
n∑
i=1

E{Ei{Y log Y }} − E{EiY log EiY }

and using this inturn with Equation (26) we get,

E{Y log Y } − EY log EY ≤
n∑
i=1

E{Ei{Y log Y } − EiY log EiY }

Using the above with Equation (25) and substituting Y with esZ we get the
first required result as,

sE{ZesZ} − E{esZ}log E{esZ} ≤
n∑
i=1

E{esZψ(−s(Z − Z ′i))}

6 Symmetrization Lemma

The symmetrisization lemma is probably one of the easier bounds we re-
view in this notes. However, it is extremely powerful since it allows us to
bound the difference between of emperical mean of a function and its ex-
pected value, using the difference between emperical means of the function

18



for 2 independent samples of the same size as the original sample. Note
that in most literature, the symmetrization lemma stated and proved only
bounds zero one functions like loss function or the actual classification func-
tion. Here we derive a more generalized version where we prove the lemma
for bounding the difference between expectation of any measurable function
with bounded variance and its emperical mean.

Lemma 11 Let f : X → R be a measurable function such that V ar{f} ≤
C. Let Ên{f} be the emperical mean of the function f(x) estimated using
a set (x1, x2, ..., xn) of n independent identical samples from space X. Then
for any a > 0 if n > 8C

a2 we have,

P (|Ên
′{f} − Ên

′′{f}| ≥ 1
2
a) ≥ 1

2
P (|E{f} − Ên{f}| > a) (28)

where Ên
′{f} and Ên

′′{f} stand for emperical mean of the function f(x)
estimated using samples (x′1, x

′
2, ..., x

′
n) and (x′′1, x

′′
2, ..., x

′′
n) respectively

Proof By the definition of probability,

P (|Ên
′{f} − Ên

′′{f}| ≥ 1
2
a) =

∫
X2n

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP

Where function 1z is 1 for any z ≥ 0 and 0 otherwise. Since X2n is the
product space Xn ×Xn, using Fubini’s theorem we have,

P (|Ên
′{f} − Ên

′′{f}| ≥ 1
2
a) =

∫
Xn

∫
Xn

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP ′′dP ′

Now since the set Y = {(x1, x2, ..., xn) : |E{f} − Ên{f}| > a} is a subset of
Xn and term inside the integral is always non-negetive,

P (|Ên
′{f} − Ên

′′{f}| ≥ 1
2
a) ≥

∫
Y

∫
Xn

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP ′′dP ′

Now let Let Z = {(x1, x2, ..., xn) : |Ên{f}−E{f(x)}| ≤ a
2}. Clearly for any

sample (x1, x2, ..., x2n), if (x1, x2, ..., xn) ∈ Y and (xn+1, xn+2, ..., x2n) ∈ Z
it implies that (x1, x2, ..., x2n) is a sample such that |Ên

′{f}− Ên
′′{f}| ≥ a

2
Therefore, coming back to the integral since Z ⊂ Xn ,∫

Y

∫
Xn

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP ′′dP ′ ≥

∫
Y

∫
Z

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP ′′dP ′

19



Now since the integral is over Y and Z half spaces as we saw earlier,∫
Y

∫
Z

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP ′′dP ′ =

∫
Y

∫
Z

1dP ′′dP ′

=
∫
Y
P (|Ên

′{f} − E{f}| ≤ 1
2
a)dP ′

Therefore,∫
Y

∫
Xn

1
[|Ên

′{f}−Ên
′′{f}|− 1

2
a]
dP ′′dP ′ ≥

∫
Y
P (|Ên

′{f} − E{f}| ≤ 1
2
a)dP ′

Now,

P (|Ên
′{f} − E{f}| ≤ 1

2
a) = 1− P (|Ên

′′{f} − E{f}| > 1
2
a)

Using Equation (2) (often called the chebyshev’s inequality) we get,

P (|Ên
′′{f} − E{f}| > 1

2
a) ≤ 4V ar{f}

na2
≤ 4C
na2

Now if we choose n such that n > 8C
a2 as per our assumption then,

P (|Ên
′′{f} − E{f}| > 1

2
a) ≤ 1

2
Therefore,

P (|Ên
′′{f} − E{f}| ≤ 1

2
a) ≥ 1− 1

2
=

1
2

Puting this back in the integral we get,

P (|Ên
′{f} − Ên

′′{f}| ≥ 1
2
a) ≥

∫
Y

1
2
dP ′ =

1
2

∫
Y
dP ′

Therefore we get the final result as,

P (|Ên
′{f} − Ên

′′{f}| ≥ 1
2
a) ≥ 1

2
P (|E{f} − Ên{f}| > a)

Note that if we make the function f to be a zero one function then the
maximum possible variance is 1

4 . Hence if we set C to 1
4 then the condition

under which the inequality holds becomes, n > 2
a2 . Further note that if

we choose the zero one function f(x) such that it is 1 when say x is a
particular value and 0 if not, then the result basically bounds the absolute
difference between probability of the event of x taking a particular value and
the frequency estimate of x taking that value in a sample of size n using
the difference in the frequencies of occurance of the value in 2 independent
samples of size n.
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