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Abstract

We present a new online learning algorithm in the selective sampling framework, where
labels must be actively queried before they are revealed. We prove bounds on the regret of
our algorithm and on the number of labels it queries when faced with an adaptive adversarial
strategy of generating the instances. Our bounds both generalize and strictly improve over
previous bounds in similar settings. Additionally, our selective sampling algorithm can be
converted into an efficient statistical active learning algorithm. We extend our algorithm
and analysis to the multiple-teacher setting, where the algorithm can choose which subset of
teachers to query for each label. Finally, we demonstrate the effectiveness of our techniques
on a real-world Internet search problem.

1. Introduction

Human-generated labels are expensive. The active learning paradigm is built around the
idea that we should only acquire labels that actually improve our ability to make accurate
predictions. Online selective sampling (Cohn et al., 1990; Freund et al., 1997) is an active
learning setting that is modeled as a repeated game between a learner and an adversary.
On round t of the game, the adversary presents the learner with an instance xt ∈ R

d

and the learner responds by predicting a binary label ŷt ∈ {−1,+1}. The learner has
access to a teacher,1 who knows the correct label for each instance. The learner must now
decide whether or not to pay a unit cost and query the teacher for the correct binary label
yt ∈ {−1,+1} from the teacher. If the learner decides to issue a query, he observes the
correct label and uses it to improve his future predictions. However, when we analyze the

1. Most previous publications do not distinguish between the adversary and the teacher. We make this
distinction explicitly and intentionally, in anticipation of the multiple-teacher variant of the problem.
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accuracy of the learner’s predictions, we account for all labels, regardless of whether they
were observed by the learner or not. The learner has two conflicting goals: to make accurate
predictions and to issue a small number of queries.

To motivate the selective sampling setting, consider an Internet search company that
uses online learning techniques to construct a (simplified) search engine. In this case, the
instance xt represents the pairing of a search-engine query with a candidate web page and
the task is to predict whether this pair is a good match or a bad match. Clearly, there
is no way to manually label the millions of daily search engine queries along with all of
their candidate web pages. Instead, an intelligent mechanism of choosing which instances
to label is required. Search engine queries arrive in an online manner and a search engine
uses its index of the web to match each query with potential candidate URLs, making this
problem well suited for the selective sampling problem setting.

The first part of this paper is devoted to the selective sampling framework described
above. In Section 2 we present a selective sampling learning algorithm inspired by known
ridge regression algorithms (Hoerl and Kennard, 1970; Lai and Wei, 1982; Vovk, 2001;
Azoury and Warmuth, 2001; Cesa-Bianchi et al., 2003, 2005a; Li et al., 2008; Strehl and
Littman, 2008; Cavallanti et al., 2009; Cesa-Bianchi et al., 2009). To analyze this algorithm,
we adopt the model introduced in Cavallanti et al. (2009); Cesa-Bianchi et al. (2009); Strehl
and Littman (2008), where the adversary may choose arbitrary instances, but the teacher
is stochastic and samples each label from an instance-dependent distribution. We evaluate
the accuracy of the learner using the game-theoretic notion of regret, which measures the
extent to which the learner’s predictions disagree with the teacher’s labels. We prove both
an upper bound on the regret and an upper bound on the number of queries issued by the
learner.

Our algorithm is an online learning algorithm, designed to incrementally make binary
predictions on a sequence of adversarially-generated instances. However, we can also convert
our algorithm into an efficient statistical active learning algorithm, which receives a sample
of instances from some unknown distribution, queries the teacher for a subset of the labels,
and outputs a hypothesis with a small risk. The risk of a hypothesis is its error rate on
new instances sampled form the same underlying distribution. We present the details of
this conversion in Section 2.5.

In the setting described above, we assumed the learner has access to a single all-knowing
teacher. To make things more interesting, we introduce multiple teachers, each with a
different area of expertise and a different level of overall competence. On round t, some of
the teachers may be experts on xt while others may not be. A teacher who is an expert
on xt is likely to provide the correct label, while a teacher who isn’t may give the wrong
label. To make this setting as realistic as possible, we assume that the areas of expertise
and the overall competence levels of the different teachers are unknown to the learner, and
any characterization of a teacher must be inferred from the observed labels.

On round t, the learner receives the instance xt from the adversary and makes the
binary prediction ŷt. Then, the learner has the option to query any subset of teachers: each
teacher charges a unit cost per query and provides a binary label, without any indication of
his confidence and without the option of abstaining. The labels received from the queried
teachers may disagree, and the learner has no a-priori way of knowing which teacher to
trust. If the learner queries the wrong teachers, their labels may agree but still be wrong.
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The algorithm’s goal remains to make accurate predictions using a small number of queries.
However, in the absence of a ground truth labeling, it is unclear how to define what it means
to make an accurate prediction. To resolve this problem, we formalize the assumption that
different teachers have different areas of expertise, which allows us to compare each predicted
label with the labels provided by experts on the relevant topic.

Recalling the motivating example given above, assume that the Internet search company
employs multiple human teachers. Some teachers may be better than others across the
board and some teachers may be experts on specific topics, such as sports or politics. Some
teachers may know the right answer, while others may think they know the right answers
but in fact do not – for this reason we do not rely on the teachers themselves to reveal
their expertise regions. For example, say that the search engine receives the web query “nhl
new york team” and a candidate url is “kings.nhl.com”; a teacher who is a hockey expert
would know that this is a bad match (since New York’s NHL hockey team is called the
Rangers and not the Kings) while a non-expert may not know the answer. The learner has
no a-priori knowledge of which teacher to query for the label; yet, in our analysis we would
like to compare the learner’s prediction to the label given by the expert teacher.

The multiple-teacher selective sampling setting is the focus of the second half of this pa-
per. Specifically, in Section 3 we present a multiple-teacher extension of the (single-teacher)
adversarial-stochastic model mentioned earlier, along with two new learning algorithms in
this setting. Our model of the teachers’ expertise regions enables our algorithms to gradu-
ally identify the expertise region of each teacher. Roughly speaking, the algorithm attempts
to measure the consistency of the binary labels provided by each teacher in different regions
of the instance space. Our first multiple-teacher algorithm has the property that it either
queries all of the teachers or does not query any teacher, on each round. Our second al-
gorithm is more sophisticated and queries only those teachers it believes to be experts on
xt. Again, we provide a theoretical analysis that bounds both regret and number of queries
issued to the teachers.

Since our results rely on the specific stochastic model of the teachers, it is natural to
question how well this model approximates the real-world. To gain some confidence in our
assumptions and in our algorithms, in Section 4 we present a simple empirical study on
real data that both validate our theoretical results and demonstrates the effectiveness of
our approach.

1.1 Related Work in the Single Teacher Setting

Single-teacher selective sampling lies between passive learning (where the algorithm has no
control over the learning sequence) and fully active learning (where the learning algorithm
is allowed to select the instances xt). The literature on active learning is vast, and we can
hardly do it justice here. Recent papers on active learning include the works by Balcan
et al. (2006); Bach (2006); Balcan et al. (2007, 2008); Castro and Nowak (2008); Dasgupta
et al. (2005, 2008); Hanneke (2007, 2009); Koltchinskii (2010). All of these papers consider
the case where instances are drawn i.i.d. from a fixed distribution (either known or un-
known). In particular, Dasgupta et al. (2005) gives an efficient Perceptron-like algorithm
for learning within accuracy ǫ the class of homogeneous d-dimensional half-spaces under the
uniform distribution over the unit ball, with label complexity of the form d log 1

ǫ . Still in

3



Dekel, Gentile, and Sridharan

the i.i.d. setting, more general results are given by Balcan et al. (2007). A neat analysis of
previously proposed general active learning schemes (Balcan et al., 2006; Dasgupta et al.,
2008) is provided by the aforementioned paper by Hanneke (2009). Even more recently, a
general Rademacher complexity-based analysis of active learning is given by Koltchinskii
(2010). Due to their generality, many of the above results rely on schemes that are com-
putationally prohibitive, exceptions being the results by Dasgupta et al. (2005) and the
realizable cases analyzed by Balcan et al. (2007). For instance, the general algorithms pro-
posed by Hanneke (2009); Koltchinskii (2010) do actually imply estimating ǫ-minimal sets
(or disagreement sets) from empirical data and (local) Rademacher complexities, which
makes them computationally hard even for simple function classes, like linear-threshold
functions. Finally, pool-based active learning scenarios are considered by Bach (2006) (and
the references therein), though the analysis therein is only asymptotic in nature and no
quantification is given of the trade-off between risk and number of labels.

To contrast our work with the papers mentioned above, it is worth stressing that our re-
sults hold with no stochastic assumption on the source of the instances – in fact, we assume
that the instances may be generated by an adaptive adversary. However, as mentioned
above, we also show how our online learning algorithm can be converted into a statistical
active learning algorithm, with a formal risk bound. Our results in the online selective sam-
pling setting are more in line with the worst-case analyses by Cesa-Bianchi et al. (2006);
Strehl and Littman (2008); Cesa-Bianchi et al. (2009); Orabona and Cesa-Bianchi (2011).
These papers present variants of Recursive Least Squares algorithms that operate on arbi-
trary instance sequences. The analysis by Cesa-Bianchi et al. (2006) is completely worst
case: the authors make no assumptions whatsoever on the mechanism generating instances
or labels; however, they are unable to prove bounds on the label query rate. The setups by
Strehl and Littman (2008); Cesa-Bianchi et al. (2009); Orabona and Cesa-Bianchi (2011)
are closest to ours in that they assume the same stochastic model of the teacher. Our
bounds can be shown to be optimal with respect to certain parameters and, unlike compet-
ing works on this subject, we are able to face the case when the instance sequence x1,x2, ...
is generated by an adaptive adversary, rather than the weaker oblivious adversary, as by,
e.g., Cesa-Bianchi et al. (2009); Orabona and Cesa-Bianchi (2011). It is actually this differ-
ence that makes it possible the selective sampling-to-active learning conversion. A detailed
comparison of our results in the single-teacher setting with the results of the predominant
papers on this topic is given in Section 2.6, after our results are presented.

1.2 Related Work in the Multiple Teacher Setting

There is also much related work in the multiple-teacher setting, which is often motivated
within recent crowdsourcing applications. We can map the current state-of-the-art on this
topic along various interesting axes.

First, we distinguish between techniques that attempt to find the ground-truth labeling
(and evaluate each teacher’s quality) independent of the learning algorithm, and techniques
that combine the ground-truth-finding and the actual learning into a single algorithm. In the
first category are the classical work of Dawid and Skeene (1979), which presents techniques
of reconciling conflicting responses on medical questionnaires, the one of Spiegelhalter and
Stovin (1983) which handles conflicting information from repeated biopsies, the one by
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Smyth et al. (1995), where the authors infer a ground truth from multiple annotations of
astronomical images, and the one by Hui and Zhou (1998) which examines the more general
problem of evaluation in the absence of a ground truth. Still in the first category, Dekel and
Shamir (2009a) and Chen et al. (2010) both present general techniques for identifying and
rejecting low quality teachers. Papers in the second category discuss supervised learning
algorithms that can handle multiple-teacher input. In this category, Dekel and Shamir
(2009b) present an SVM variant that is less sensitive to bad labels generated by a small
set of malicious teachers, Raykar et al. (2010) use EM to jointly establish a ground truth
labeling and learn a maximum-likelihood estimator, Argall et al. (2009) dynamically choose
which human demonstrator to use when teaching a policy to a robot, and Groot et al.
(2011) integrate multiple-teacher support into Gaussian process regression learning. Our
work in the current paper falls in the second category.

We can also distinguish between algorithms that rely on repeated labeling (where multi-
ple teachers label each example), versus techniques that assume that each example is labeled
only once. Sheng et al. (2008); Snow et al. (2008); Donmez et al. (2009) collect repeated
labels and aggregate them (e.g. using a majority vote) to simulate the ground-truth label-
ing. Some of these papers balance an explore-exploit tradeoff, which determines how many
repeated labels are needed for each example. At the opposite end of the spectrum, Dekel
and Shamir (2009a) identify low-quality teachers and labels without any repeated labeling.
The technique presented in this paper falls in the latter category, since we actively deter-
mine which subset of teachers to query on each online round. However, while we do query
multiple teachers, we do not assume that the majority vote, or any other aggregate label, is
accurate. Still, we do compare to some majority vote of teachers in both our analysis and
our experiments.

Next, we distinguish between papers that consider the overall quality score of each
teacher (over the entire input space) from papers that assume that each teacher has a specific
area of expertise. Most of the papers mentioned above fall in the first category. In the second
category, Yan et al. (2010) extend the work in Raykar et al. (2010) (again, maximizing
likelihood and using EM) to handle the case where different teachers have knowledge about
different parts of the input space. In the present paper, we also model each teacher as an
expert on a different subtopic. A closely related research topic is multi-domain adaptation
(Mansour et al., 2009a,b), where multiple hypotheses must be optimally combined, under
the assumption that each hypothesis makes accurate predictions with respect to a different
distribution. Another closely related topic is learning from multiple sources (Crammer
et al., 2008), where multiple datasets are sampled from different distributions, and the goal
is to optimally combine them with a given target distribution in mind. However, in both
of these related problems we are given some prior information on the various distributions,
whereas in the multiple-teacher setting we must infer the expertise of each teacher from
data.

Another interesting distinction can be made between passive multiple-teacher tech-
niques, which process a static dataset that was collected beforehand, and active techniques
that route each example to the appropriate teacher. Most of the aforementioned work
follows the static approach. The proactive learning setting (Domnez, 2010; Yang and Car-
bonell, 2009a,b) assumes that the learner has access to teachers of different global quality,
with associated costs per label. Yang and Carbonell (2009a) present a theoretical analysis
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of proactive learning, under the assumption that each teacher gives the correct label most
of the time. However, note that the active category fits quite nicely with the assumption
that each teacher has an area of expertise (as opposed to measuring the global quality of
each teacher): once the algorithm identifies the area of expertise of a teacher, it seems only
natural to actively route the relevant examples to that teacher. The approach presented in
this paper does precisely that. At the time of writing the extended version of our paper,
other works have been published that considered the problem of active learning from mul-
tiple annotators. The one whose goal is closest to ours is perhaps the paper by Yan et al.
(2011), where a probabilistic multi-labeler model is formulated that allows one to learn the
expertise of the labelers and to single out the most uncertain sample (within a given pool of
unlabeled instances) whose label is useful to query. Though that paper is similar in spirit
to ours, it does mainly focus on modeling and empirical investigations. Finally, we note
that Melville et al. (2005) study the closely related problem of actively acquiring individual
feature values.

An interesting variation on the multiple-teacher theme involves allowing each teacher’s
quality to vary with time (Donmez et al., 2010).

2. The Single Teacher Case

In this section, we focus on the standard online selective sampling setting, where the learner
has to learn an accurate predictor while determining whether or not to query the label
of each instance it observes. We formally define the problem setting in Section 2.1 and
introduce our algorithm in Section 2.2. We prove upper bounds on the regret and on the
number of queries in Section 2.3. We briefly mention how to convert our online learning
algorithm into a statistical active learning algorithm in Section 2.4 and Section 2.5, and we
compare our results to related work in Section 2.6.

2.1 Preliminaries and Notation

As mentioned above, on round t of the online selective sampling game, the learner receives
an instance xt ∈ R

d, predicts a binary label ŷt ∈ {−1,+1}, and chooses whether or not
to query the correct label yt ∈ {−1,+1}. We set Zt = 1 if a query is issued on round t
and Zt = 0 otherwise. The only assumption we make on the process that generates xt is
that ‖xt‖ ≤ 1; for all we know, instances may be generated by an adaptive adversary (an
adversary that reacts to our previous actions). Note that most of the previous work on
this topic makes stronger assumptions on the process that generates xt, resulting in a less
powerful setting. As for the labels provided by the teacher, we adopt the standard stochastic
linear noise model for this problem (Cesa-Bianchi et al., 2003; Cavallanti et al., 2009; Cesa-
Bianchi et al., 2009; Strehl and Littman, 2008) and assume that each yt ∈ {−1,+1} is
sampled according to the law

P (yt = 1 |xt ) =
1 + u⊤xt

2
, (1)

where u ∈ R
d is a fixed but unknown vector with ‖u‖ ≤ 1. Note that E [yt |xt ] = u⊤xt,

and we denote this value by ∆t. Unlike much of the recent literature on active learning
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(see Section 1.1), this simple noise model has the advantage of delivering time-efficient
algorithms of practical use.

The learner constructs a sequence of linear predictors w0,w1, . . ., where each wt ∈
R

d, and predicts ŷt = sign(∆̂t) where ∆̂t = wt−1
⊤xt. The desirable outcome is for the

sequence w0,w1, . . . to quickly converge to u. Let Pt denote the conditional probability
P( ·|x1, . . . ,xt−1,xt, y1, . . . , yt−1). We evaluate the accuracy of the learner’s predictions using
its regret, defined as

RT =
T∑

t=1

(

Pt(yt∆̂t < 0) − Pt(yt∆t < 0)
)

.

Additionally, we are interested in the number of queries issued by the learner NT =
∑T

t=1 Zt.
Our goal is to simultaneously bound the regret RT and the number of queries NT with high
probability over the random draw of labels.

Remark 1 At first glance, the linear noise model (1) might seem too restrictive. However,
this model can be made implicitly nonlinear by running our algorithm in a Reproducing
Kernel Hilbert Space H. This entails that the linear operation u⊤xt in (1) is replaced by
h(xt), for some (typically nonlinear) function h ∈ H. See also the comments at the end of
Section 2.2, and those surrounding Theorem 2.

2.2 Algorithm

The single teacher algorithm is a margin-based selective sampling procedure. The algorithm
“Selective Sampler” (Algorithm 1) depends on a confidence parameter δ ∈ (0, 1]. As in
known online ridge-regression-like algorithms (Hoerl and Kennard, 1970; Vovk, 2001; Azoury
and Warmuth, 2001; Cesa-Bianchi et al., 2003, 2005a; Li et al., 2008; Strehl and Littman,
2008; Cavallanti et al., 2009; Cesa-Bianchi et al., 2009), our algorithm maintains a weight
vector wt (initialized as w0 = 0) and a data correlation matrix At (initialized as A0 = I).
After receiving xt and predicting ŷt = sign(∆̂t), the algorithm computes an adaptive data-
dependent threshold θt, defined as

θ2
t = x⊤

t A−1
t−1xt

(

1 + 4

t−1∑

i=1

Ziri + 36 log
t

δ

)

,

where ri = x⊤
i A−1

i xi. The definition of θt follows from our analysis, and can be interpreted
as the algorithm’s uncertainty in its own predictions. More precisely, the learner believes
that |∆̂t−∆t| ≤ θt. A query is issued only if |∆̂t| ≤ θt, or in other words, when the algorithm
is unsure about the sign of ∆t. In Algorithm 1, this is denoted by Zt = 11

{
∆̂2

t ≤ θ2
t }, where

11
{
·
}

denotes the indicator function.
If the label is not queried, (Zt = 0) then the algorithm does not update its internal state

(and xt is discarded). If the label is queried (Zt = 1), then the algorithm computes the
intermediate vector w′

t−1 in such a way that ∆̂′
t = w′

t−1
⊤
xt is at most one in magnitude.

Observe that ∆̂t and ∆̂′
t have the same sign and only their magnitudes can differ. In

particular, it holds that

∆̂′
t =

{

sgn(∆̂t) if |∆̂t| > 1

∆̂t otherwise .
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Next, the algorithm defines the new vector wt so that Atwt undergoes an additive update,
where At is a rank-one adjustment of At−1.

The algorithm can be run both in primal form (as in the pseudocode in Algorithm 1)
and in dual form (i.e., in a Reproducing Kernel Hilbert Space). It is not hard to show that
the algorithm has a quadratic running time per round, where quadratic means O(d2) if it is
run in primal form, and O(N2

t ) if it is run in dual form, where Nt =
∑

i≤t Zi is the number
of labels requested by the algorithm up to time t. In the dual case, since the algorithm
updates only when Zt = 1, the number of labels Nt also corresponds to the number of
support vectors used to define the current hypothesis.

2.3 Analysis

Before diving into a formal analysis of Algorithm 1, we attempt to give some intuition
regarding our choice of θt. Recall that θt is the radius of the algorithm’s confidence interval,
and therefore a small value of θt implies that the algorithm is highly confident that ∆t and
∆̂t are close. If, additionally, ∆t is large, then sign(∆̂t) is likely to equal sign(∆t), and the
algorithm’s prediction is correct. Therefore, we want to show that θt can be kept small
without issuing an excessive number of queries. To see this, we notice that θt depends
on the three terms:

∑t−1
i=1 Ziri, log(t/δ), and x⊤

t A−1
t−1xt. Later in this section, we prove

that
∑t

i=1 Ziri grows logarithmically with the number of queries Nt, and obviously log(t/δ)
grows logarithmically with t. To show that θt remains small, we must show that the third
term, x⊤

t A−1
t−1xt, decreases quickly when labels are queried. x⊤

t A−1
t−1xt depends on the

relationship between the current instance xt and the previous instances on rounds where a
query was issued. If xt lies along the directions spanned by the previous instances, we show
that x⊤

t A−1
t−1xt tends to shrink as 1/Nt. As a result, θt is on the order of log(t/δ)/Nt, and Nt

only needs to grow at a slow logarithmic rate. On the other hand, if the adversary chooses xt

outside of the subspace spanned by the previous examples, then the term x⊤
t A−1

t−1xt causes
θt to be large, and the algorithm becomes more likely to issue a query. Overall, to ensure
a small value of θt across the instance space spanned by the xt produced by the adversary,
the algorithm must query O

(
log(t)

)
labels in each direction of this instance space.

As noted above, the adversary can arbitrarily inflate our regret by choosing instances
that induce small values of ∆t. Recall that a small value of ∆t implies that the teacher
guesses the label yt almost at random. Following Cesa-Bianchi et al. (2009), the bounds
we prove depend on how many of the instances xt are chosen such that ∆t is very small.
Formally, for any ǫ > 0, define

Tǫ =

T∑

t=1

11{|∆t| ≤ ǫ} . (2)

The following theorem is the main result of this section, and is stated so as to emphasize
both the data-dependent and the time-dependent aspects of our bounds.
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Algorithm 1: Selective Sampler

input confidence level δ ∈ (0, 1]
initialize w0 = 0, A0 = I
for t = 1, 2, . . .

receive xt ∈ R
d : ||xt|| ≤ 1, and set ∆̂t = wt−1

⊤xt

predict ŷt = sgn(∆̂t) ∈ {−1,+1}
θ2
t = x⊤

t A−1
t−1xt

(

1 + 4
∑t−1

i=1 Ziri + 36log(t/δ)
)

Zt = 11
{
∆̂2

t ≤ θ2
t

}
∈ {0, 1}

if Zt = 1
query yt ∈ {−1,+1}

w′
t−1 =







wt−1 − sgn(∆̂t)
(

|∆̂t|−1

x
⊤
t A−1

t−1
xt

)

A−1
t−1xt if |∆̂t| > 1

wt−1 otherwise

At = At−1 + xtx
⊤
t , rt = x⊤

t A−1
t xt, wt = A−1

t (At−1w
′
t−1 + ytxt)

else
At = At−1, wt = wt−1, rt = 0

Theorem 2 Assume that Selective Sampler is run with confidence parameter δ ∈ (0, 1].
Then with probability at least 1 − δ it holds that for all T ≥ 3

RT ≤ inf
ǫ>0

{

ǫ Tǫ +
2 + 8 log|AT | + 144 log(T/δ)

ǫ

}

= inf
ǫ>0

{

ǫ Tǫ + O
(d log T + log(T/δ)

ǫ

)}

NT ≤ inf
ǫ>0

{

Tǫ + O
( log |AT | log(T/δ) + log2 |AT |

ǫ2

)}

= inf
ǫ>0

{

Tǫ + O
(d2 log2(T/δ)

ǫ2

)}

,

where |AT | is the determinant of the matrix AT .

Note that the bounds above depend on d the dimension of the instance space. In the
case of a (possibly infinite-dimensional) Reproducing Kernel Hilbert Space, d is replaced by
a quantity that depends on the spectrum of the data’s Gram matrix.

The proof of Theorem 2 splits into a series of lemmas. For every T > 0 and ǫ > 0, we
define

UT,ǫ =
T∑

t=1

Z̄t 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

QT,ǫ =

T∑

t=1

Zt 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t| ,

where Z̄t = 1−Zt. In the above, UT,ǫ deals with rounds where the algorithm does not make
a query, while QT,ǫ deals with rounds where the algorithm does make a query. The proof
exploits the potential-based method for online ridge-regression-like algorithms we learned
from Azoury and Warmuth (2001). See also the works of Hazan et al. (2007); Dani et al.
(2008); Crammer and Gentile (2011) for a similar use in different contexts. The potential
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function we use is the (quadratic) Bregman divergence dt(u,w) = 1
2 (u − w)⊤At(u − w),

where At is the matrix computed by Selective Sampler at time t.

The proof structure is as follows. First, Lemma 3 below decomposes the regret RT into
three parts:

RT ≤ ǫTǫ + UT,ǫ + QT,ǫ .

The bound on UT,ǫ is given by Lemma 4. For the bound on QT,ǫ and the bound on the
number of queries NT , we use Lemmas 5 and 6, respectively. However, both of these lemmas
require that (∆t − ∆̂t)

2 ≤ θ2
t for all t. This assumption is taken care of by the subsequent

Lemma 7. Since ǫ is a positive free parameter, we can take the infimum over ǫ > 0 to
get the required results. In turn, many of these lemmas rely on technical lemmas given in
Appendix A and Appendix B.

Lemma 3 For any ǫ > 0 it holds that RT ≤ ǫTǫ + UT,ǫ + QT,ǫ .

Proof We have

Pt(∆̂tyt < 0) − Pt(∆tyt < 0)

≤ 11
{

∆̂t∆t ≤ 0
}∣
∣
∣2Pt(yt = 1) − 1

∣
∣
∣

= 11
{

∆̂t∆t ≤ 0
}

|∆t|

= 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

|∆t| + 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t|

≤ ǫ 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

+ 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t| (3)

= ǫ 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

+ 11
{

∆t∆̂t < 0,∆2
t > ǫ2, Zt = 0

}

|∆t|

+ 11
{

∆t∆̂t < 0,∆2
t > ǫ2, Zt = 1

}

|∆t|

≤ ǫ 11
{

∆t∆̂t < 0,∆2
t ≤ ǫ2

}

+ Z̄t 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

(4)

+ Zt 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

|∆t| .

The inequality in Eq. (4) follows directly from |∆t| ≤ 1. Summing over t = 1 . . . T completes
the proof.

Lemma 4 For any ǫ > 0 and T ≥ 3, with probability at least 1 − δ, it holds that

QT,ǫ ≤ 2 + 8 log|AT | + 144 log(T/δ)

ǫ
= O

(
d log T + log(T/δ)

ǫ

)

.

Proof We begin with

10
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QT,ǫ =
T∑

t=1

Zt 11
{

∆t∆̂t < 0
}

11
{
∆2

t > ǫ2
}
|∆t|

≤ 1

ǫ

T∑

t=1

Zt 11
{

∆̂t∆t < 0
}

∆2
t

=
1

ǫ

T∑

t=1

Zt 11
{

∆̂′
t∆t < 0

}

∆2
t .

∆̂′
t∆t < 0 implies that ∆2

t ≤ (∆t − ∆̂′
t)

2, and therefore the above can be upper bounded by

1

ǫ

T∑

t=1

Zt(∆t − ∆̂′
t)

2.

Next we rely on some standard technical results that are given in the appendix. Lemma 23
(i) upper bounds the above by

2

ǫ

T∑

t=1

Zt

(

(yt − ∆̂′
t)

2 − (yt − ∆t)
2
)

+
144

ǫ
log(T/δ).

Lemma 25 (iv) further bounds this term by

4

ǫ

T∑

t=1

Zt

(

dt−1(u,w′
t−1) − dt(u,w′

t) + 2 log
|At|
|At−1|

)

+
144

ǫ
log(T/δ).

After telescoping and using the facts that d0(u,w′
0) = d0(u,w0) = ||u||2/2 ≤ 1/2 and

|A0| = 1, the above is bounded by

2 + 8 log|AT | + 144 log(T/δ)

ǫ
,

which is in fact O
(

d log T+log(T/δ)
ǫ

)

in the finite-dimensional case. This concludes the proof.

Lemma 5 Assume that (∆t − ∆̂t)
2 ≤ θ2

t holds for all t. Then, for any ǫ > 0, we have
UT,ǫ = 0

Proof We rewrite our assumption (∆t − ∆̂t)
2 ≤ θ2

t as

∆t∆̂t ≥
∆̂2

t + ∆2 − θ2
t

2
≥ ∆̂2

t − θ2
t

2
.

However, if Z̄t = 1, then ∆̂2
t > θ2

t and so ∆t∆̂t ≥ 0. Hence, under the above as-

sumption, we can guarantee that for any t, Z̄t 11
{

∆t∆̂t < 0
}

= 0, thereby implying

11
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UT,ǫ =
∑T

t=1 Z̄t 11
{

∆t∆̂t < 0,∆2
t > ǫ2

}

= 0.

In the proof of the next two lemmas, we use the shorthand g(t) =
∑t

i=1 Ziri.

Lemma 6 Assume that (∆t − ∆̂t)
2 ≤ θ2

t holds for all t. Then, for any ǫ > 0, and T > 0
we have

NT ≤ Tǫ + O

(
log |AT | log(T/δ) + log2 |AT |

ǫ2

)

= Tǫ + O

(
d2 log2(T/δ)

ǫ2

)

.

Proof Let us rewrite our assumption (∆t − ∆̂t)
2 ≤ θ2

t as |∆t − ∆̂t| ≤ θt. Then |∆̂t| ≤ θt

implies |∆t| ≤ 2θt. We can write

Zt = 11
{

∆̂2
t ≤ θ2

t

}

≤ 11
{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t

}

= 11

{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t , θ
2
t ≥ ǫ2 x⊤

t A−1
t−1xt

8 rt

}

+ 11

{

∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t , θ
2
t <

ǫ2 x⊤
t A−1

t−1xt

8 rt

}

≤ 11

{

∆̂2
t ≤ θ2

t , θ
2
t ≥

ǫ2 x⊤
t A−1

t−1xt

8 rt

}

+ 11

{

∆2
t ≤ 4θ2

t , θ
2
t <

ǫ2 x⊤
t A−1

t−1xt

8 rt

}

. (5)

By Lemma 24 (i) we have xT
t A−1

t−1xt ≤ 2 rt, hence

11

{

∆2
t ≤ 4θ2

t , θ
2
t <

ǫ2 x⊤
t A−1

t−1xt

8 rt

}

≤ 11
{
∆2

t ≤ ǫ2
}

.

Plugging back into (5) and summing over t shows that, for any ǫ > 0,

NT ≤ Tǫ +

T∑

t=1

11

{

∆̂2
t ≤ θ2

t , θ
2
t ≥

ǫ2 x⊤
t A−1

t−1xt

8 rt

}

.

Now observe that, by definition of Zt and θt

T∑

t=1

{

∆̂2
t ≤ θ2

t ,θ
2
t ≥

ǫ2 x⊤
t A−1

t−1xt

8 rt

}

=
T∑

t=1

Zt 11
{

8 rt

(

1 + 4g(t − 1) + 36 log(t/δ)
)

≥ ǫ2
}

≤ 8

ǫ2

T∑

t=1

Zt rt

(

1 + 4g(t − 1) + 36 log(t/δ)
)

.

Using Lemma 24 (ii), the above is upper bounded by

8

ǫ2
(1 + 36 log(T/δ)) log |AT | +

32

ǫ2

T∑

t=1

Ztrtg(t − 1),

12
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which is in turn upper bounded by

8

ǫ2
(1 + 36 log(T/δ)) log |AT | +

16

ǫ2

T∑

t=1

(
g2(t) − g2(t − 1)

)
.

Again using Lemma 24 (ii), we upper bound the above by

8

ǫ2
(1 + 36 log(T/δ)) log |AT | +

16

ǫ2
log2 |AT |.

This term is O
(

log |AT | log(T/δ)+log2 |AT |
ǫ2

)

, and specifically O
(

d2 log2(T/δ)
ǫ2

)

in the finite-

dimensional case. Since this above holds for any ǫ > 0, it also holds for the best choice of ǫ.

Lemma 7 If Selective Sampler is run with confidence parameter δ ∈ (0, 1], then with prob-
ability at least 1 − δ, the inequality (∆t − ∆̂t)

2 ≤ θ2
t holds simultaneously for all t ≥ 3.

Proof First note that by Hölder’s inequality,

(∆t − ∆̂t)
2 = ((wt−1 − u)⊤xt)

2 ≤ 2 xT
t A−1

t−1xt dt−1(wt−1,u) . (6)

Now let t′ := argmaxj≤t−1 : Zj=1j, that is, t′ is the last round (up to time t − 1) on which
the algorithm issued a query. Then Lemma 25 (i), (ii), (iii), allows us to write

1

2

t′∑

i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)

≤
t′−1∑

i=1

Zi

(
di−1(u,w′

i−1) − di(u,w′
i) + 2Ziri

)

+ dt′−1(u,w′
t′−1) − dt′(u,wt′) + 2rt′

≤ 1

2
− dt′(u,wt′) + 2g(t′) ,

where the last step comes from the telescoping sum and the fact that

d0(u,w′
0) = d0(u,w0) =

1

2
‖u‖2 ≤ 1/2.

Moreover, by definition of t′ we see that g(t′) = g(t−1) and Zj = 0 for any j ∈ [t′ +1, t−1].
Hence for any such j we have wj = wt′ . This yields

1

2

t−1∑

i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)

≤ 1

2
− dt−1(u,wt−1) + 2g(t − 1) .

Plugging back into (6) results in

(∆t − ∆̂t)
2 ≤ 2 xT

t A−1
t−1xt

(

1/2 + 2 g(t − 1) − 1

2

t−1∑

i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)
)

. (7)

13
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A direct application of Lemma 23 (ii) shows that for any given t ≥ 3, with probability at
least 1 − δ/t2,

(∆t − ∆̂t)
2 ≤ x⊤

t A−1
t−1xt (1 + 4 g(t − 1) + 36 log(t/δ)) = θ2

t .

Finally, a union bound allows us to conclude that (∆t − ∆̂t)
2 ≤ θ2

t holds simultaneously for
all t ≥ 3 with probability at least 1 − δ.

Remark 8 Computing the intermediate vector w′
t−1 from wt−1, as defined in Algorithm 1,

corresponds to projecting wt−1 onto the convex set Ct = {w ∈ R
d : |w⊤xt| ≤ 1} w.r.t. the

Bregman divergence dt−1, i.e., w′
t−1 = argmin

u∈Ct
dt−1(u,wt−1). Notice that Ct includes

the unit ball since xt is normalized. This projection step is needed for technical purposes
during the construction of a suitable bounded-variance martingale difference sequence (see
Lemma 23 in Appendix A). Unlike similar constructions (Hazan et al., 2007; Dani et al.,
2008), we do not project onto the unit ball. In fact, computing the latter would involve a
line search over matrices, which would significantly slow down the algorithm. On the other
hand, it is also interesting to observe that Selective Sampler performs the projection onto
Ct only a logarithmic number of times. This is because

T∑

t=1

11
{

∆̂2
t ≤ θ2

t , |∆̂t| > 1
}

≤
T∑

t=1

Zt∆̂
2
t

≤
T∑

t=1

Ztθ
2
t

≤ 2

T∑

t=1

Zt rt

(

1 + 4 g(t − 1) + 36log(t/δ)
)

,

which is O
(
d2 log2(T/δ)

)
by Lemma 24 (iii).

2.4 An Online-to-Batch Conversion

It is instructive to see what the bound in Theorem 2 looks like when we assume that the
instances xt are drawn i.i.d. according to an unknown distribution over the Euclidean unit
sphere, and to compare this bound to standard statistical learning bounds. We model the
distribution of the instances near the hyperplane {x : u⊤x = 0} using the well-known
Mammen-Tsybakov low noise condition (Tsybakov, 2004):2

There exist c > 0 and α ≥ 0 such that P
(
|u⊤x| < ǫ

)
≤ c ǫα for all ǫ > 0.

We now describe a simple randomized algorithm which, with high probability over the
sampling of the data, returns a linear predictor with a small expected risk (expectation is
taken over the randomization of the algorithm). The algorithm is as follows:

2. The constant c might actually depend on the input dimension d. For notational simplicity, Theorem 9
regards c as a constant, hence it is hidden in the big-oh notation.
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1. Run Algorithm 1 with confidence level δ on the data (x1, y1), ..., (xT , yT ), and obtain
the sequence of predictors w0,w1, . . . ,wT−1

2. Pick r ∈ {0, 1, . . . , T − 1} uniformly at random and return wr.

Due to the unavailability of all labels, standard conversion techniques that return a single
deterministic hypothesis (Cesa-Bianchi and Gentile, 2008) do not readily apply here. The
following theorem, whose proof is given in Appendix C, states a high probability bound on
the risk and the label complexity of our algorithm.

Theorem 9 Let wr be the linear hypothesis returned by the above algorithm. Then with
probability at least 1 − δ we have

Er

[

P ′
r(y w⊤

r x < 0)
]

≤ P (y u⊤x < 0) + O




(d log(T/δ))

α+1

α+2

T
α+1

α+2

+
log
(

log T
δ

)

T



 ,

NT = O
(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

,

where Er is the expectation over the randomization in the algorithm, and P ′
r(·) denotes the

conditional probability P (· |x1, . . . ,xr−1, y1, . . . , yr−1).
3

As α goes from 0 (no assumptions on the noise) to ∞ (hard separation assumption), the
above bound on the average regret roughly interpolates between 1/

√
T and 1/T . Corre-

spondingly, the bound on the number of labels NT goes from T to log2 T . In particular,
observe that, viewed as a function of NT (and disregarding log factors), the instantaneous

regret is of the form N
−α+1

2

T . These bounds are sharper than those by Cavallanti et al. (2009)
and, in fact, no further improvement is generally possible (Castro and Nowak, 2008). The
same rates are obtained by Hanneke (2009) under much more general conditions, for less
efficient algorithms that are based on empirical risk minimization.

2.5 Statistical Active Learning

We now briefly show how to turn our algorithm into a standard statistical active learning
algorithm.

Following Koltchinskii (2010), we consider a sequential learning protocol for active
learning where on round t the algorithm has to choose a subset St of the instance space
{x ∈ Rd : ||x|| ≤ 1} (the Euclidean sphere) from which the next instance xt is sampled
from. Specifically, xt is sampled from the conditional distribution P ( · |x ∈ St), being P (·)
an unknown distribution over the Euclidean sphere. The algorithm then observes the asso-
ciated label yt, generated according to the linear noise model of Section 2.1. Notice that the
set St is typically depending on past examples (x1, y1), . . . (xt−1, yt−1). Again, the goal is
to study the high probability behavior of the regret as a function of the number of observed
labels (which now coincides with the number of sampled instances xt).

The analysis developed in Section 2.4 immediately accommodates this model of learning,
once we let St be the querying region of Algorithm 1, i.e.,

St = {x : (w⊤
t−1x)2 ≤ θ2

t },
3. Notice the difference with the conditional probability Pr(·) defined in Section 2.1.
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and think of the randomized i.i.d. algorithm described in that section as operating as
follows. We sample an independent new instance x from the Euclidean sphere, and check
whether x ∈ St or not. In the former case, the associated label y is sampled, and the
subset St is updated into St+1 according to the rules of Algorithm 1 for updating wt−1 into
wt and θt into θt+1. In the latter case, x is discarded, St remains unchanged, and a new
independent instance is drawn. Notice that this is precisely what Algorithm 1 does when
running with an i.i.d. sequence of examples. The same conclusions we have drawn from
Theorem 9 can be repeated here.

2.6 Related Work

As we mentioned in Section 1.1, the results of Theorem 2 are more in line with the worst-
case analyses by Strehl and Littman (2008); Cesa-Bianchi et al. (2009); Orabona and Cesa-
Bianchi (2011). These papers present variants of Recursive Least Squares algorithms that
operate on arbitrary instance sequences, but assuming the same linear stochastic noise-
model used in our analysis. The algorithm presented by Strehl and Littman (2008) ap-
proximates the Bayes margin to within a given accuracy ǫ, and queries Õ(d3/ǫ4) labels;
this bound is significantly inferior to our bound, and it seems to hold only in the finite-
dimensional case. A more precise comparison can be made to the (expectation) bounds
presented by Cesa-Bianchi et al. (2009); Orabona and Cesa-Bianchi (2011), which are of

the form RT ≤ min0<ǫ<1

(

ǫ Tǫ + T 1−κ

ǫ + d
ǫ2

ln T
)

, and NT = O (dT κ ln T ) , where κ ∈ [0, 1]

is a tunable parameter of their algorithm. After a proper setting of κ, this gives rise to an

instantaneous regret which is still (up to log factors) in the form N
−α+1

2

T under the same
low-noise assumptions as in Section 2.4. On the other hand, our bound here does not re-
quire tuning of parameters. More importantly, whereas the analysis of Cesa-Bianchi et al.
(2009); Orabona and Cesa-Bianchi (2011) only holds for oblivious adversaries, we cover the
case where the instances can be generated adaptively.4 We emphasize that it is just the
adaptivity of the adversary that enabled us to convert our selective sampling algorithm to
the statistical active learning algorithm presented in Section 2.5.

Another relevant line of research that came to our attention at the time of writing the
extended version of our paper is the importance sampling-based active learning schemes
followed by Beygelzimer et al. (2010, 2011). These papers are interesting in that they give
up with the version space approach followed by their predecessors (Dasgupta et al., 2008;
Hanneke, 2007, 2009; Koltchinskii, 2010) which might deliver time-efficient active learning
schemes. A direct comparison to Beygelzimer et al. (2010, 2011) is not straightforward.
While we can see that their label selection mechanism (e.g., Algorithm 1 in Beygelzimer
et al., 2010) gets similar to the one in our Selective Sampler (once it is adapted to square
loss and the class conditional distribution is (1)), their analysis (e.g., Theorem 4 therein)
seems to provide suboptimal results. For instance, under hard separation assumptions,
their bound on NT never gets as small as a logarithmic function in T . In short, we suspect

4. It is fair to say that Orabona and Cesa-Bianchi (2011) have further improvements over both Cesa-Bianchi
et al. (2009) and this paper. In particular, the DGS-Mod algorithm therein is able to handle the case
when the vector u generating the labels has unknown length ||u||. However, it does so at the cost of an
exponential dependence of RT on ||u||.
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that their algorithm (or variants thereof) is a strict generalization of ours but, being more
general, the associated analysis is also significantly looser.

3. The Multiple Teacher Case

The problem is still online binary classification, where on each round t = 1, 2, . . . the learner
receives an input xt ∈ R

d, with ‖xt‖ ≤ 1, and outputs a binary prediction ŷt. However,
there are now K available teachers, each with his own area of expertise. The expertise area
of each teacher is unknown to the algorithm, and can only be inferred indirectly from the
binary labels provided by that teacher and by other teachers. If xt falls within the expertise
region of teacher j, then that teacher can provide an accurate label. After making each
binary prediction, the learner chooses if to issue a query to one or more of the K teachers.
The learner is free to query any subset of teachers, but each teacher charges a unit cost
per label. We emphasize that a queried teacher provides only a binary label, and does not
indicate his level of confidence in that label.

From the point of view of our learning algorithm, these confidence levels have to be
interpreted as reliability rates of the teachers. Since these rates play a major role in weighting
the relative importance of the teachers, it looks wiser to let the algorithm compute these
rates as a function of past interactions among teachers, rather than relying on human “self-
judgement”.

Formally, we assume that teacher j is associated with a weight vector uj ∈ R
d, where

‖uj‖ ≤ 1. If teacher j is queried on round t, he stochastically generates the binary label
yj,t according to Pt(yj,t = 1|xt) = (1 + ∆j,t)/2, where ∆j,t = uj

⊤xt and, as in Section 2, xt

can be chosen adversarially depending on previous x’s and yj’s. We consider |∆j,t| to be
the (hidden) confidence of teacher j in his label for xt. When the learner issues a query,
he receives nothing other than the binary label itself, and the confidence is only part of our
theoretical model of the teacher. If xt is almost orthogonal to uj then teacher j has a very
low confidence in his label, and we say that xt lies outside the expertise region of teacher j.

It is no longer clear how we should evaluate the performance of the learner, since the K
teachers will often give inconsistent labels on the given xt, and we do not have a well-defined
ground-truth to compare against. Intuitively, we would like the learner to predict the label
of xt as accurately as the teachers who are experts on xt. To formalize this intuition,5 define
the average margin of a generic subset of teachers C ⊆ [K] as ∆C,t = 1

|C|

∑

i∈C ∆i,t. We
define the set of experts for each instance using a user-specified parameter τ > 0. Define

j⋆
t = argmaxj |∆j,t| and Ct = {i : |∆i,t| ≥ |∆j⋆

t ,t| − τ} . (8)

In words, j⋆
t is the most confident teacher at time t, and Ct is the set of confident teachers

at time t. Again, recall that Ct is unknown to the learning algorithm. In this setting, τ
is a tolerance parameter that defines how confident a teacher must be, compared to the
most confident teacher, to be considered a confident teacher. Although τ does not appear
explicitly in the notation Ct, the reader should keep in mind that Ct and other sets defined
later on in this section all depend on τ . Using the definitions above, ∆Ct,t is the average
margin of the confident teachers, and we abbreviate ∆t = ∆Ct,t.

5. Here and throughout, [K] = {1, 2, . . . , K}.
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Now, let yt be the random variable that takes values in {−1, 1}, with Pt(yt = 1|xt) =
(1 + ∆t)/2. In words, yt is the binary label generated according to the average margin of
the confident teachers. We consider the sequence y1, . . . , yT to be our ad-hoc ground-truth,
and the goal of our algorithm is to accurately predict this sequence. Note that an equivalent
way of generating yt is to pick a confident teacher j uniformly at random from Ct and to
set yt = yj,t. Indeed there are other reasonable ways to define the ground-truth for this
problem, however, we feel that our definition coincides with our intuitions on learning from
teachers with different areas of expertise. If τ is set to 1, the learner is compared against
the average margin of all K teachers, while if τ = 0, the learner is compared against the
single most confident teacher.

Remark 10 The reader might wonder whether the framework just described could be ac-
commodated by a standard experts setting (e.g., Cesa-Bianchi and Lugosi, 2006) or, per-
haps, by a label-efficient version thereof (e.g., Helmbold and Panizza, 1997; Cesa-Bianchi
et al., 2005b). Due to the absence of a ground truth, the answer is negative. Of course,
we might be tempted to apply a label-efficient expert algorithm by pretending that the miss-
ing ground-truth is provided by some function of the teachers we query. Unfortunately, the
above references contain results which are too general to yield tight bounds for our specific
noise model. Indeed, our ambition here is to leverage the side information provided by the
instance vectors so as to outperform the best single expert in hindsight while, at the same
time, querying just a small fraction of the available teachers’ labels.

We now describe and analyze two algorithms within the multiple teacher setting. We
call these algorithms “first version” and “second version”. In the first version, the algorithm
queries either all of the teachers or none of them. The second version is more refined in
that the algorithm may query a different subset of teachers on each round. In Section 4 we
present experiments on real-world data with the second version of the algorithm.

3.1 Algorithm, First Version

The learner attempts to model each weight vector uj with a corresponding weight vector
wj,t. As in the single teacher case, the learner maintains a variable threshold θt, which can
be interpreted as the learner’s confidence in its current set of weight vectors. The learner
attempts to mimic the process of generating yt by choosing its own set of confident teachers
on each round. Denoting ∆̂j,t = wj,t

⊤xt, the learner defines

ĵt = argmaxj |∆̂j,t| and Ĉt = {i : |∆̂i,t| ≥ |∆̂ĵt,t
| − τ − 2θt} ,

where ĵt is the learner’s estimate of the most confident teacher, and Ĉt is the learner’s
estimate of the set of confident teachers. Note that the definition of Ĉt is more inclusive
than the definition of Ct in Eq. (8), in that it also includes teachers whose confidence falls
below |∆̂ĵt,t

| − τ . This accounts for the uncertainty regarding the learner’s set of weight
vectors.

As above, we define the notation ∆̂C,t = 1
|C|

∑

i∈C ∆̂i,t, and abbreviate ∆̂t = ∆̂Ĉt,t
. The

learner predicts the binary label ŷt = sgn(∆̂t). Let Pt denote the conditional probability
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Pt(·) = P( ·|x1, y1,1 . . . , yK,1,x2, y1,2 . . . , yK,2, . . . xt−1, y1,t−1, . . . yK,t−1,xt), and define the
regret of the learner as

RT =
T∑

t=1

(

Pt(yt∆̂t < 0) − Pt(yt∆t < 0)
)

. (9)

Next, we proceed to describe our criterion for querying teachers. We present a simple
criterion that either sets Zt = 1 and queries all of the teachers or sets Zt = 0 and queries
none of them. Therefore, the learner either incurs a cost of K or a cost of 0 on each round.
We partition the set of confident teachers Ĉt into two sets,

Ĥt = {i : |∆̂i,t| ≥ |∆̂ĵt,t
| − τ + 2θt}

B̂t = {i : |∆̂ĵt,t
| − τ − 2θt ≤ |∆̂i,t| < |∆̂ĵt,t

| − τ + 2θt} .

In words, Ĥt is the set of teachers with especially high confidence, while B̂t is the set of
teachers with borderline confidence. Intuitively, the learner is unsure whether the teachers
in B̂t should or should not be included in Ĉt. The learner issues a query (to all K teachers)
in one of two cases. The first case is when there exists a subset of borderline teachers S ⊆ B̂t

that causes the predicted label to flip, namely, ∆̂t∆̂Ĥt∪S, t < 0. The second case is when

there exists a subset of borderline teachers S ⊆ B̂t that causes the margin to be too small,
namely |∆̂Ĥt∪S, t| ≤ θt. In either of these cases, we say that the set of (estimated) confident
teachers is unstable. If a query is issued, each weight vector wj,t is updated as in the single
teacher case. The pseudocode of this algorithm is given in Algorithm 2.

Remark 11 At first sight, it may seem that computing Zt causes an exponential explosion
due to the need to check all possible subsets S ⊆ B̂t. The same implementation issue arises
in Algorithm 3 (Section 3.3). As a matter of fact, this check can be computed efficiently
by first sorting the teachers according to their estimated confidence |∆̂j,t|, and then greedily
growing the subset S by following this order.

3.2 Analysis, First Version

Our learning algorithm relies on labels it receives from a set of teachers, and therefore our
bounds should naturally depend on the ability of those teachers to provide accurate labels
for the sequence x1, . . . ,xT . For example, if an input xt lies outside the expertise regions
of all teachers, we cannot hope to learn anything from the labels provided by the teachers
for this input. Similarly, there is nothing we can do on rounds where the set of confident
teachers is split between two equally confident but conflicting opinions. We count these
difficult rounds by defining, for any ǫ > 0,

Tǫ =

T∑

t=1

11{|∆t| ≤ ǫ} . (10)

The above is just a multiple teacher counterpart to (2). However it is interesting to note
that even in a case where most teachers have low confidence in their prediction on any given
round, Tǫ can still be small provided that the experts in the field have a confident opinion.
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Algorithm 2: Multiple Teacher Selective Sampler – first version

input confidence level δ ∈ (0, 1], tolerance parameter τ ≥ 0

initialize A0 = I, ∀j ∈ [K] wj,0 = 0

for t = 1, 2, . . .

receive xt ∈ R
d : ||xt|| ≤ 1

θ2
t = x⊤

t A−1
t−1xt

(
1 + 4

∑t−1
i=1 Ziri + 36log(Kt/δ)

)

∀j ∈ [K] ∆̂j,t = wj,t−1
⊤xt and ĵt = argmaxj|∆̂j,t|

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t
< 0 or |∆̂S∪Ĥt, t

| ≤ θt

0 otherwise

if Zt = 1

query y1,t, . . . , yK,t

At = At−1 + xtx
⊤
t , rt = x⊤

t A−1
t xt

for j = 1, . . . ,K

w′
j,t−1 =







wj,t−1 − sgn(∆̂j,t)
(

|∆̂j,t|−1

x
⊤
t A−1

t−1
xt

)

A−1
t−1xt if |∆̂j,t| > 1,

wj,t−1 otherwise

wj,t = A−1
t (At−1w

′
j,t−1 + yj,txt)

else

At = At−1, rt = 0 and wj,t = wj,t−1 ∀j ∈ [K]

A more subtle difficulty presents itself when the collective opinion expressed by the set
of confident teachers changes qualitatively with a small perturbation of the input xt or one
of the weight vectors uj. To state this formally, define for any ǫ > 0

Hǫ,t = {i : |∆i,t| ≥ |∆j⋆
t ,t| − τ + ǫ}

Bǫ,t = {i : |∆j⋆
t ,t| − τ − ǫ ≤ |∆i,t| < |∆j⋆

t ,t| − τ + ǫ} .

The set Hǫ,t is the subset of teachers in Ct with especially high confidence, ǫ higher than
the minimal confidence required for inclusion in Ct. In contrast, the set Bǫ,t is the set
of teachers with borderline confidence: either teachers in Ct that would be excluded if
their margin were smaller by ǫ, or teachers that are not in Ct that would be included if
their margin were larger by ǫ. We say that the average margin of the confident teachers
is unstable with respect to τ and ǫ if |∆t| > ǫ but we can find a subset S ⊆ Bǫ,t such
that either ∆t∆S∪Hǫ,t, t < 0 or |∆S∪Hǫ,t, t| < ǫ. In other words, we are dealing with the
situation where ∆t is sufficiently confident, but a small ǫ-perturbation to the margins of the
individual teachers can cause its sign to flip, or its confidence to fall below ǫ. We count the
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unstable rounds by defining, for any ǫ > 0,6

T ′
ǫ =

T∑

t=1

11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t, t < 0 ∨ |∆S∪Hǫ,t, t| ≤ ǫ

}
. (11)

Intuitively T ′
ǫ counts the number of rounds on which an ǫ-perturbation of ∆t,j either changes

the sign of the average margin or results in an average margin close to zero. Like Tǫ, this
quantity measures an inherent hardness of the multiple teacher problem.

The following theorem is the main theoretical result of this section. It provides an upper
bound on the regret of the learner, as defined in Eq. (9), and on the total cost of queries,
NT = K

∑T
t=1 Zt. Again, we emphasize both the data and the time-dependent aspects of

the bound.

Theorem 12 Assume Algorithm 2 is run with a confidence parameter δ > 0. Then with
probability at least 1 − δ it holds for all T ≥ 3 that

RT ≤ inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(
log |AT | log(KT/δ) + log2 |AT |

ǫ2

)}

= inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(
d2 log2(KT/δ)

ǫ2

)}

,

NT ≤ K inf
ǫ>0

{

Tǫ + T ′
ǫ + O

(
log |AT | log(KT/δ) + log2 |AT |

ǫ2

)}

= K inf
ǫ>0

{

Tǫ + T ′
ǫ + O

(
d2 log2(KT/δ)

ǫ2

)}

.

As in the proof of Theorem 2, we begin by decomposing the regret and the number of queries.
Recall the definitions of Tǫ and T ′

ǫ in Eq. (10) and Eq. (11), respectively. Additionally, define
for any ǫ > 0

UT =
∑T

t=1 Z̄t 11
{
∆t∆̂t < 0

}
,

QT,ǫ =
∑T

t=1 Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}
. (12)

Tǫ and T ′
ǫ deal with rounds on which the ground truth itself is unreliable, UT sums over

rounds where the learner does not issue a query, and QT,ǫ sums over rounds where the
learner does issue a query. Using these definitions, we state the following decomposition
lemmas.

Lemma 13 For any ǫ > 0 it holds that RT ≤ ǫTǫ + T ′
ǫ + UT + QT,ǫ.

Lemma 14 For any ǫ > 0, it holds that NT ≤ K (Tǫ + T ′
ǫ + QT,ǫ).

The proofs of these lemmas are given in Appendix C. To conclude the proof of Theorem 12,
it remains to upper bound UT and QT,ǫ.

6. Notice that, up to degenerate cases, both Tǫ and T ′

ǫ tend to vanish as ǫ → 0. Hence, as in the single
teacher case, the free parameter ǫ trades-off hardness terms against large deviation terms.
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Lemma 15 If (∆j,t − ∆̂j,t)
2 ≤ θ2

t holds for all j ∈ [K] and t ∈ [T ], then

QT,ǫ = O
(

log |AT | log(KT/δ) + log2 |AT |
ǫ2

)

= O
(

d2 log2(KT/δ)

ǫ2

)

.

Lemma 16 If (∆j,t − ∆̂j,t)
2 ≤ θ2

t for all j ∈ [K] and t ∈ [T ], then UT = 0.

The proofs of these lemmas are also given in Appendix C. Both lemmas rely on the assump-
tion that (∆j,t − ∆̂j,t)

2 ≤ θ2
t for all t ∈ [T ] and j ∈ [K]. A straightforward stratification

of Lemma 7 in Section 2 over the K teachers verifies that this condition holds with high
probability. This concludes the proof of Theorem 2.

3.3 Algorithm, Second Version

The second version differs from the first one in that now each teacher j has its own threshold
θj,t, and also its own matrix Aj,t. As a consequence, the set of confident teachers Ĉt and the
partition of Ĉt into highly confident (Ĥt) and borderline (B̂t) teachers have to be redefined
as follows:

Ĉt = {j : |∆̂j,t| ≥ |∆̂ĵt,t
| − τ − θj,t − θĵt,t

}, where ĵt = argmaxj |∆̂j,t|,
Ĥt = {i : |∆̂i,t| ≥ |∆̂ĵt,t

| − τ + θj,t + maxj∈Ĉt
θj,t},

B̂t =
{
i : |∆̂ĵt,t

| − τ − θj,t − θĵt,t
≤ |∆̂i,t| < |∆̂ĵt,t

| − τ + θj,t + maxj∈Ĉt
θj,t

}
.

The pseudocode is given in Algorithm 3. Notice that the query condition defining Zt now
depends on an average threshold θS∪Ĥt, t

= 1
|S∪Ĥt|

∑

j∈S∪Ĥt
θj,t .

3.4 Analysis, Second Version

The following theorem bounds the regret and the total number of queries issued by the
second version of our algorithm, with high probability. The proof is similar to the proof of
Theorem 12. We keep the definitions of the sets Hǫ,t and Bǫ,t as given in Section 3.2, but in
the bound on NT in Theorem 17, we replace T ′

ǫ with the more refined quantity T ′′
ǫ , defined

as

T ′′
ǫ =

T∑

t=1

|Hǫ,t ∪ Bǫ,t|
K

11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t, t < 0 ∨ |∆S∪Hǫ,t, t| ≤ ǫ

}
.

Note that T ′′
ǫ is similar to T ′

ǫ except that while T ′
ǫ only counts the number of times that

perturbations to the ∆j,t’s lead to conflict or low confidence predictions, T ′′
ǫ also accounts

for the fraction of confident teachers involved in the conflict. We state the following bound
on regret and on the overall number of queries.
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Algorithm 3: Multiple Teacher Selective Sampler – second version

input confidence level δ ∈ (0, 1], tolerance parameter τ ≥ 0

initialize Aj,0 = I, wj,0 = 0, ∀j ∈ [K]

for t = 1, 2, . . .

receive xt ∈ R
d : ||xt|| ≤ 1

∀j ∈ [K], θ2
j,t = x⊤

t A−1
j,t−1xt

(
1 + 4

∑t−1
i=1 Zirj,i + 36log(Kt/δ)

)

∀j ∈ [K], ∆̂j,t = wj,t−1
⊤xt and ĵt = argmaxj |∆̂j,t|

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{

1 if ∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t
< 0 or |∆̂S∪Ĥt, t

| ≤ θS∪Ĥt, t

0 otherwise

if Zt = 1 and j ∈ Ĉt

query yj,t

Aj,t = Aj,t−1 + xtx
⊤
t , rj,t = x⊤

t A−1
j,t xt

w′
j,t−1 =







wj,t−1 − sgn(∆̂j,t)
(

|∆̂j,t|−1

x
⊤
t A−1

j,t−1
xt

)

A−1
j,t−1xt if |∆̂j,t| > 1,

wj,t−1 otherwise

wj,t = A−1
j,t (Aj,t−1w

′
j,t−1 + yj,txt)

else
Aj,t = Aj,t−1, rj,t = 0 and wj,t = wj,t−1

Theorem 17 Assume Algorithm 3 is run with a confidence parameter δ > 0. Then with
probability at least 1 − δ it holds for all T ≥ 3 that

RT ≤ inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(
K log |AT | log(KT/δ) + K log2 |AT |

ǫ2

)}

= inf
ǫ>0

{

ǫTǫ + T ′
ǫ + O

(
K d2 log2(KT/δ)

ǫ2

)}

,

NT ≤ K inf
ǫ>0

{

Tǫ + T ′′
ǫ + O

(
K log |AT | log(KT/δ) + K log2 |AT |

ǫ2

)}

= K inf
ǫ>0

{

Tǫ + T ′′
ǫ + O

(
K d2 log2(KT/δ)

ǫ2

)}

.

The bounds above resemble the bounds stated in Theorem 12 for the first version of the
algorithm; all of these bounds contain two kinds of terms: hardness terms (Tǫ, T ′

ǫ, and T ′′
ǫ )

and large deviation terms (d log T -like factors). The regret bound for the second version of
the algorithm is strictly inferior to the regret bound for the first version, as an additional
factor of K multiplies the large deviation term. However, the bounds on the number of
queries of the two algorithms are not directly comparable. On one hand, if a typical example
only has a few confident teachers, we expect T ′′

ǫ to be much smaller than T ′
ǫ, which could
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make the bound on NT in Theorem 17 much smaller than its counterpart in Theorem 12.
On the other hand, the bound in Theorem 17 has an additional factor of K multiplying its
large deviation term.

As in the proofs of Theorem 2 and Theorem 12, to analyze the regret and number of queries
made by the algorithm, we start by decomposing these terms. To decompose the regret, we
note that Lemma 13 applies as before, and we have that for any ǫ > 0,

RT ≤ ǫTǫ + T ′
ǫ + UT + QT,ǫ,

where Tǫ is as defined in Eq. (10), T ′
ǫ is as defined in Eq. (11), and UT and QT,ǫ are defined

in Eq. (12). To decompose the total number of queries, we require a new lemma.

Lemma 18 If (∆j,t − ∆̂j,t)
2 ≤ θ2

j,t holds for all j ∈ [K] and t ∈ [T ], then for any ǫ > 0, it
holds that

NT ≤ K

(

Tǫ + T ′′
ǫ + O

(∑K
j=1

(
log |Aj,T | log(KT/δ) + log2 |Aj,T |

)

ǫ2

))

≤ K

(

Tǫ + T ′′
ǫ + O

(
Kd2 log2(KT/δ)

ǫ2

))

.

Once again, proofs are given in Appendix C. We are left with the task of bounding UT and
QT,ǫ.

Lemma 19 If (∆j,t − ∆̂j,t)
2 ≤ θ2

j,t holds for all j ∈ [K] and t ∈ [T ], then

QT,ǫ = O
(∑K

j=1

(
log |Aj,T | log(KT/δ) + log2 |Aj,T |

)

ǫ2

)

= O
(

K d2 log2(KT/δ)

ǫ2

)

.

Lemma 20 If (∆j,t − ∆̂j,t)
2 ≤ θ2

j,t for all j ∈ [K] and t ∈ [T ], then UT = 0.

Proofs of these lemmas are also given in Appendix C. As before, these lemmas hold under
the condition that (∆j,t− ∆̂j,t)

2 ≤ θ2
j,t for all t ∈ [T ] and j ∈ [K]. Again as done previously,

a straightforward union bound over Lemma 7 in Section 2 applied to each of the K teachers
verifies that this condition holds with high probability which in turn concludes the proof of
Theorem 17.

Remark 21 It should be clear that a low noise analysis, akin to the one presented in
Sections 2.4 and 2.5 can be attempted, once low noise conditions in the vein of Tsybakov
(2004) are formulated which take into account both the conflicting region defining Tǫ, and
the unstable regions defining T ′

ǫ, and T ′′
ǫ . Rather than presenting explicit theoretical results

of this sort here, we do prefer quantifying the label saving capability implied by teacher
aggregation by the nontrivial experimental results contained in the next section.
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4. Experiments in the Multiple Teacher Setting

We report on the results of an empirical study carried out on a medium-size real-world
dataset. The goal of our experiments is to validate the theory and to quantify the ef-
fectiveness of our multiple teacher query selection mechanism in different multiple-teacher
scenarios. Due to our difficulty in finding genuine multiple-teacher datasets of a significant
size, we resorted to simulating the teachers through learning. This also allowed us to obtain
a much more controlled experimental setup.

4.1 Dataset and Tasks

Our data are taken from a subset of the learning-to-rank dataset MSLR-WEB10K.7 This
dataset is a collection of (anonymized) query-url pairs collected from a commercial search
engine (Microsoft Bing). Each query-url pair is represented by a feature vector and a human-
generated relevance label between 0 (irrelevant) to 4 (perfectly relevant). Each feature
vector is made up of 136 real or integer valued features.8 MSLR-WEB10K is partitioned
into five subsets, named S1 through S5: we only used S1 in our experiments. The S1 subset
contains 241988 query-url pairs, with 2000 distinct queries, and about 121 urls per query
(with a maximum of 809 urls and a minimum of 1 url per query). As a preprocessing step,
we randomly shuffled the examples within each query and normalized the feature vectors
to unit length.

We generated a binary classification dataset by assigning the binary label “-1” to all
query-url pairs with a relevance label of 0 and the binary label “+1” to all remaining pairs.
This gave rise to a dataset with balanced classes (roughly, 48% positive and 52% negative).
We then simulated four different multiple-teacher scenarios, distinguished by the number of
teachers involved (“few” or “many”) and the amount of overlap between expertise regions
(“nonoverlapping teachers” vs. “overlapping teachers”).

This binary classification dataset simply provides a binary label per example, and does
not specify the identity of the teacher that provided that label. We simulated multiple
teachers as follows: we grouped queries together in various ways (see below) and trained a
linear classifier using half of the urls associated with each query in the group. The training
was done using a single random-order pass of a full-information second-order Perceptron
algorithm (Cesa-Bianchi et al., 2005a). The result is a linear classifier per query-group: we
view each of these linear classifiers as a teacher. The specific subset of training queries in
each group determines the expertise region of the respective teacher. The 119507 query-url
pairs that were not used to simulate the teachers were later used to test our algorithm.

We defined the query groups in four different ways, to simulate four different multiple-
teacher scenarios.

• Few nonoverlapping teachers. We generated 5 teachers by partitioning the 2000
queries into 5 sets (the first teacher is defined by (half of) the first 400 queries, the
second teacher by (half of) the second 400 queries, and so on). Hence each teacher
has acquired expertise in the subset of 400 queries seen during training.

7. Available at http://research.microsoft.com/en-us/projects/mslr.
8. After a quick scrutiny of the semantics of the features, we decided to drop features 126 through 131.

Hence, we ended up with 130 usable features.
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Scenario best worst avg stddev

Few nonoverlapping teachers 19.9% 31.7% 24.9% 4.6%

Few overlapping teachers 20.5% 29.6% 24.5% 3.6%

Many nonoverlapping teachers 16.3% 54.8% 25.5% 7.4%

Many overlapping teachers 17.0% 42.3% 24.5% 5.1%

Table 1: Performance (test set mistake rate) of the generated teachers in the four simulated
scenarios. Results are averaged over 10 repetitions. “best”, “worst”, and “avg”
are the (average) mistake rate of the best, worst and average performing teacher,
respectively. “stddev” is the standard deviation of the mistake rates, and gives an
idea of the difference in performance across teachers (not across repetitions).

• Few overlapping teachers. We generated 5 teachers by defining 5 overlapping
sets of queries. Specifically, the first 500 queries are common to all teachers, and
the remaining 1500 queries are partitioned equally among the teachers. Hence, each
teacher is trained on examples from 800 queries.

• Many nonoverlapping teachers. We generated 100 teachers by partitioning
the queries into 100 disjoint sets, each containing 20 queries. The resulting teachers
turned out to be quite unreliable; some of them gave labels that were not far from
random guessing at test time.

• Many overlapping teachers. We generated 100 teachers with partially overlap-
ping expertise. All teachers share the first 100 queries, and the remaining 1900 queries
are partitioned equally. Hence, each teacher is trained on examples from 100+19 =
119 queries.

Due to the variance introduced by the randomized training/test splits and the random order
in which training examples were presented to the second-order Perceptron, we repeated the
above process 10 times per scenario and averaged the results.

The reader should observe that the way we generated teachers makes our results com-
parable even across scenarios. In fact, despite the actual training/test split differs over
scenarios, in all four scenarios and for all 2000 queries, half the urls (and associated labels)
are used for training and half are used for test. So, in a sense, the set of teachers we gener-
ated in all scenarios collectively encode the same amount of information. That is, the data
used for training the teachers are of the same size and query mixture across scenarios.

4.2 Algorithm and Baselines

On any given scenario, a teacher is then just a linear-threshold function. We generated
teachers’ opinions on the test set just by evaluating such functions on the test set instances.
Table 1 gives relevant statistics about the teachers’ performance on the test set (notice
that such figures can only be computed after knowing the true labels on the test set – this
information was never made available to the multiple teacher algorithm). As expected,
best and worst teachers are farther apart in the nonoverlapping scenarios (correspondingly,
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”stddev” figures are larger), with a larger variability in the many teacher settings. Moreover,
throughout the 10 repetitions, it often happened that among the many poorly trained
classifiers (as are those produced within the “many nonoverlapping” setting), a few of them
turned out to be significantly accurate on the test set. Likewise, some of them happened
to be even worse than random guessing.

After simulating the teachers, we implemented a simplified version of our second-version
multiple teacher algorithm (Algorithm 3), where the thresholds θ2

j,t are simplified to

θ2
j,t = αx⊤

t A−1
j,t−1xt log(1 + t), (13)

and α > 0 is a tunable parameter (independent of j and t). Hence our algorithm now
has two parameters: τ ∈ [0, 1] and α > 0. The reason for this simplified θj,t is that the
actual expression for θj,t, as it appears in Algorithm 3, is the one suggested by the theory
after significant mathematical over-approximations (large deviations, Hölder’s inequality,
etc.). This suggests that the exact expression for θj,t given in the pseudocode may be too
conservative to work well in practice. In any event, observe that the factor α log(1 + t)
in (13) is a good proxy for the factor 1 + 4

∑t−1
i=1 Ziri + 36log(Kt/δ) in the algorithm’s

pseudocode, once we let α range over the positive reals.

The following three baselines were used in our comparative study.

• Best Teacher in hindsight on the test set. This is the predictor that would be
learned on-the-fly by a standard expert algorithm (e.g., Weighted Majority – see
Littlestone and Warmuth, 1994; Cesa-Bianchi and Lugosi, 2006), where teachers are
experts, and the algorithm has at its disposal both the true labels of the test set
and the prediction of all teachers. Recall that the true labels of the test set are not
available to our algorithm. Because this algorithm is expected to make at least as
many mistakes as the best expert, the “best” column in Table 1 delivers optimistic
approximations to the actual performance of this algorithm in the four scenarios. The
associated number of queries made to the teachers is the largest possible, i.e., the size
of the test set (119507) times the number of teachers (119507×5 in the “few teacher”
scenarios, and 119507×100 in the “many teacher” scenarios).

• Flat Majority of teachers. This algorithm asks all teachers and predicts with their
flat majority.9 Like the Best Teacher baseline, this algorithm queries all of the
teachers all the time. Unlike Best Teacher, this algorithm does not receive any
feedback on the true labels of the test set.

• Full-information version of our second-version Algorithm (Alg. (3)). This is our
algorithm with θ2

j,t fixed to the value ∞ for all j and t. Since θ2
j,t = ∞ implies

Zt = 1 and Ĉt = [K] for all t (thereby making τ immaterial), this algorithm predicts
by aggregating all teachers via a margin-based majority and, as before, querying
all labels from all teachers. Again, no ground-truth feedback is given. Hence, this
baseline is just a weighted version of Flat Majority, where the weights are given by

9. Alternatively, this algorithm picks a teacher uniformly at random and goes with its label. In our exper-
iments, we did not test this randomized version due to the high variance of the results, especially in the
“many teacher” scenarios – see the last two rows in Table 1.
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Scenario Best Teach. Flat Majority Full-info Alg. 3

Few nonoverlapping teachers 19.9% 16.7% 15.8%

Few overlapping teachers 20.5% 17.9% 15.8%

Many nonoverlapping teachers 16.3% 15.6% 15.6%

Many overlapping teachers 17.0% 15.7% 15.7%

Table 2: Performance (test set mistake rate) of the three tested baselines in the four sim-
ulated scenarios. Results are averaged over 10 repetitions. The “Best Teacher”
figures are taken from Table 1.

the estimated margins ∆̂j,t computed by Algorithm 3 operating in a “full information”
mode.

4.3 Results and Comments

We measured the error rate on the test set and the average number of requested labels per
example. Figure 1 shows test error rate as a function of the per-teacher query rate (i.e.,
the average fraction of times we query the teachers). The figure displays the test error
rate of our algorithm compared to the three baselines mentioned above, in each of the four
scenarios, with τ = 0.3 and different values of α in [0.01, 10]. Very similar plots are obtained
for other values of τ .10 Increasing α causes a steady increase in the (average) per-teacher
query rate, but surprisingly enough, has a negligible effect on test error rate across most of
its range (hence the flattish plots in Figure 1). In particular, a query rate of about 1% is
already sufficient to get very close to the smallest test error rate achieved by the algorithm.
As for comparison to the baselines, the following comments can be made.

• Our algorithm significantly outperforms all baselines in the “few teacher” scenarios,
but is about the same as the two majority baselines in the “many teacher” scenarios.
Notice, however, that this comparison is unfairly penalizing our algorithm in that the
baselines do achieve their results by asking all of the teachers all of the time. Moreover,
it is worth stressing that though our plots display average rates over repetitions (i.e.,
over train/test splits), the above comparative behavior did consistently occur in every
single repetition.

• We found somewhat surprising that Full-Info does not improve on Flat Majority.
Moreover, since Full-Info can be obtained by our algorithm, just by setting α = ∞
in (13), we see that more teacher labels can even be detrimental. This phenomenon
is statistically significant only in the “few teacher” scenarios.

• The more teachers we have at our disposal, the more beneficial is the process of
averaging over them. Notably, in our dataset, many unreliable (but nonoverlapped)

10. For instance, in the “few nonoverlapping” setting, when τ = 0.0 and α ranges over [0.01,10] the test
error rate of our algorithm ranges between 15.5% and 15.7%; when τ = 0.7 the test error ranges between
15.6% and 15.7%. In the “many overlapping” setting, when τ = 0.0 and α ∈ [0.01,10] we obtain a test
error between 15.6% and 15.9%; When τ = 0.7, the range is between 15.4% and 15.5%.
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Figure 1: Average per-teacher query rate vs. test error rates in the four scenarios. Results
are averaged over 10 repetitions. The query rate of the multiple selective sampler
- second version (“Our alg.”) is obtained by setting τ = 0.3, and letting α in
(13) vary across the range [0.01, 10]. In any given scenario, the per-teacher query
rate of our algorithm is the average fraction of labels requested to the teachers
out of the total number of labels available in that scenario. For instance, an
average per-teacher query rate of 10% achieved in a few teacher scenario means
that, averaged over the 10 repetitions, the total no. of queries made to the five
teachers was 119507×5×10% = 59753.5. Hence, each of the 5 teachers received
on average 11950.7 queries. The test error rates of the three baselines are taken
from Table 2, and are plotted (as horizontal lines) just for reference.
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teachers queried all the times and aggregated by a flat average (aka Flat Majority)
is about as good in terms of accuracy as running more sophisticated weighted averages.
Still, our experiments show that there is no need to query all of the teachers in order
to achieve this accuracy.

• Aggregating opinions of teachers with a good amount of overlapping expertise (as in
the two “overlapping teacher” settings), might be detrimental, as evinced by compar-
ing the first row in Table 2 to the second one, and the third to the fourth one. Similar
conclusions are suggested by the behavior of our algorithm as presented in Figure 1.

Finally, we make a few comments on the role of the parameter τ in our algorithm. As
mentioned above, we observed that the value of τ does not have a significant influence on
the algorithm’s test error rate or label query rate. In a sense, this is a lucky circumstance,
since we initially expected the tuning of τ to be a nontrivial task.11 The value of τ does
however play an important role in the “degree of aggregation” of teachers: When Zt = 1,
setting τ close to 0 makes the algorithm query only the (estimated) most confident teacher
at time t, whereas setting τ close to 1 causes the algorithm to query all teachers. For
instance, in the “many nonoverlapping teachers” scenario, if τ = 0.3 (as in the plot in
Figure 1 (d)), and α = 0.1, the most queried teacher receives 5440 queries (out of 119507),
and the least queried teacher receives 3319. In the same scenario with τ = 0.0 and the same
value of α, the most queried teacher receives 10849 queries while the least queried teacher
gets only 1050. Hence, our algorithm exhibits a desirable fine-grained selection capability
of the subsets of teachers to query, thereby making it significantly different from the all-or-
none strategy followed by the first version of our algorithm (Algorithm 2), which we do not
expect to work as well in practice.

5. Conclusions and Open Questions

We introduced a new algorithm in the online selective sampling framework, where instances
are chosen by an adaptive adversary and labels are sampled from a linear stochastic model.
We gave sharp bounds on the regret and on the number of queries made by this algo-
rithm, improving over previous algorithms and closing some important open questions on
this topic. The same machinery can also be used to build efficient active learning algo-
rithms working under standard statistical assumptions. We then lifted the above to the
more involved setting where multiple unreliable teachers are available. We presented two
algorithms and corresponding analyses. We concluded with a preliminary empirical study
that demonstrates how the second version of our algorithm outperforms various intuitive
baselines, both in terms of accuracy and total number of queries.

We leave some open problems for future research: The bound on NT in Theorem 2 is
tight w.r.t. ǫ (see the lower bound by Cesa-Bianchi et al., 2009), but need not be tight
w.r.t. d. This might be due to the way we constructed our martingale argument to prove
Lemma 7. Resolving this issue remains an open problem. Second, it would be interesting
to generalize our results to other stochastic label models, such as logistic models, and to
understand how closely each model matches the true behavior of human teachers. Third, the

11. Consider that the absence of ground-truth feedback makes standard cross-validation techniques somewhat
problematic.
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bounds in the multiple teacher setting (Theorems 12 and 17) are likely to be suboptimal,
and might perhaps be improved by exploiting the interaction structure among teachers.
Fourth, it would be interesting to extend our work to a setting where different teachers
charge different rates. For example, one could imagine a setting where the cost of each
label depends on each teacher’s confidence in his own answer. This setting is closer to the
proactive learning setting (Donmez and Carbonell, 2008; Yang and Carbonell, 2009a,b).
These and other open problems provide many opportunities for interesting future research
on this topic.
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Appendix A.

This appendix contains the large deviation inequalities we use throughout the paper.

Lemma 22 (Kakade and Tewari, 2008)

Suppose X1,X2, ...,XT is a martingale difference sequence with |Xt| ≤ b. Let
Vart(Xt) = Var(Xt|X1, ...,Xt−1), and V =

∑T
t=1 Vart(Xt). Then for any δ < 1/e and

T ≥ 3, we have

P

(
T∑

t=1

Xt > max
{
√

4V log
4 log T

δ
, 3b log

4 log T

δ

}
)

≤ δ.

Lemma 23 With the notation introduced in Section 2, define

µt =

t∑

i=1

Zi(∆i − ∆̂′
i)

2, Σt =

t∑

i=1

Zi

(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
)

.

Assume that Selective Sampler in Section 2 is run with confidence parameter δ ∈ (0, 1], and
let t ≥ 3. Then

(i) with probability at least 1 − δ/t2 we have µt ≤ 2Σt + 144 log(t/δ);

(ii) with probability at least 1 − δ/t2 we have −1
2 Σt ≤ 36 log(t/δ).

Proof Set Mi = Zi (∆i − yi)(∆i − ∆̂′
i), and observe that Mi can be rewritten as

Mi =
1

2
Zi

(

(∆i − ∆̂′
i)

2 −
(

(yi − ∆̂′
i)

2 − (yi − ∆i)
2
))

,

which implies 1
2 (µt − Σt) =

∑t
t=1 Mi. Now, M1, ...,Mt is a martingale difference sequence

w.r.t. history and current xi. This is because Ei [Mi] = Zi (∆i − Ei [yi])(∆i − ∆̂′
i) = 0 .
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Since |∆t|, |∆̂t| ≤ 1, we also have that |Mi| ≤ 4. Let Vari(·) denote the conditional variance
Var(· |x1, . . . ,xi−1,xi, y1, . . . , yi−1). Observing that

Vari(Mi) = Zi (∆i − ∆̂′
i)

2Vari

(
(∆i − yi)

2
)
≤ 4

3
Zi(∆i − ∆̂′

i)
2

holds, an application of Lemma 22 yields

1

2
(µt − Σt) ≤ max

{√

6 µt log

(
4t2 log t

δ

)

, 12 log

(
4t2 log t

δ

)}

. (14)

We now use the inequality
√

ab ≤ a+b
2 to (14) with a = µt/2 and b = 12 log

(
4t2 log t

δ

)

. This

implies

1

2
(µt − Σt) ≤ µt/4 + 12 log

(
4t2 log t

δ

)

which in turn implies (i). To prove (ii), we again apply
√

ab ≤ a+b
2 to (14), this time with

a = µt and b = 6 log
(

4t2 log t
δ

)

.

Appendix B.

Most of the steps in the proofs of these lemmas appear in the papers by Azoury and War-
muth (2001); Cesa-Bianchi et al. (2005a). The proofs are provided here for completeness.

Lemma 24 With the notation introduced in Section 2, we have that for each t = 1, 2, . . .
the following inequalities hold :

(i) x⊤At−1xt ≤ 2rt;

(ii) Ztrt ≤ log |At|
|At−1|

;

(iii)
∑t

i=1 Ziri ≤ log |At| ≤ d log(1 + Nt) = O(d log t).

Proof To prove (i), note that on the rounds we do not query, At = At−1 and so rt =
x⊤

t A−1
t−1xt. On the rounds we do query, At = At−1 + xtx

⊤
t , and so by the matrix inversion

formula

A−1
t = A−1

t−1 −
A−1

t−1xtx
⊤
t A−1

t−1

1 + x⊤
t A−1

t−1xt

we see that

rt = x⊤
t A−1

t−1xt −
(x⊤

t At−1xt)
2

1 + x⊤
t A−1

t−1xt

.

This automatically gives us that rt ≤ x⊤
t A−1

t−1xt. Further since x⊤
t A−1

t−1xt ≤ 1, we can

conclude that rt ≥ 1
2x

⊤
t A−1

t−1xt. Hence we conclude that for any t, rt ≤ x⊤At−1xt ≤ 2rt.
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Now to prove (ii), note that since whenever we query, At = At−1 + xtx
⊤
t , using the

identity, x⊤
t (At−1 + xtx

⊤
t )−1xt = 1 − |At|

|At−1|
and the fact that 1 − x ≤ log(x), we see that

rt ≤ log
|At|
|At−1|

.

To get (iii), we sum up and resolve the telescoping sum as

t∑

i=1

Ziri ≤
t∑

i=1

Zi log
|Ai|
|Ai−1|

= log |At| ≤ d log(1 + Nt) = O(d log t) .

Lemma 25 With the notation introduced in Section 2, the following holds for any u :
||u|| ≤ 1:

(i) If t is such that Zt = 1 we have

1

2

(

(yt − w′
t−1

⊤
xt)

2 − (yt − u⊤xt)
2
)

= dt−1(u,w′
t−1) − dt(u,wt) + dt(w

′
t−1,wt) ;

(ii) If t is such that Zt = 1 we have dt(w
′
t−1,wt) ≤ 2 rt ;

(iii) If t is such that Zt = 1 we have dt(u,w′
t) ≤ dt(u,wt) ;

(iv) For any t = 1, 2, ..., we have

Zt

2

(

(yt − w′
t−1

⊤
xt)

2 − (yt − u⊤xt)
2
)

≤ Zt

(
dt−1(u,w′

t−1) − dt(u,w′
t)
)
+2 log

|At|
|At−1|

.

Proof To prove (i), define αt := dt−1(u,w′
t−1) − dt(u,wt) + dt(w

′
t−1,wt). Using the

definition of dt, we have that

αt =
1

2
u⊤(At−1 − At)u + u⊤(Atwt − At−1w

′
t−1) +

1

2
w′

t−1(At−1 + At)w
′
t−1 −w′

t−1Atwt .

Using the recursive definition At = At−1 + xtx
⊤
t and rearranging terms in the right-hand

side above, we get

αt =
1

2

(
(w′

t−1)
⊤xtx

⊤
t w′

t−1 − u⊤xtx
⊤
t u
)

+ (u⊤ − w′
t−1)(Atwt − At−1w

′
t−1)

=
1

2

(
(w′

t−1
⊤
xt)

2 − (u⊤xt)
2
)

+ (u⊤ − w′
t−1)(Atwt − At−1w

′
t−1) .

By definition, Atwt = At−1w
′
t−1 + ytxt. Plugging this equality into the equation above

gives

αt =
1

2

(
(w′

t−1
⊤
xt)

2 − (u⊤xt)
2
)

+ yt(u
⊤ − w′

t−1)xt

=
1

2

(

(yt − w′
t−1

⊤
xt)

2 − (yt − u⊤xt)
2
)

,
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thereby proving (i).
To prove (ii), we rewrite dt(w

′
t−1,wt) as

dt(w
′
t−1,wt) =

1

2
(w′

t−1 − wt)
⊤At(w

′
t−1 − wt)

=
1

2
(Atw

′
t−1 − Atwt)

⊤A−1
t (Atw

′
t−1 − Atwt) .

Using Atwt = At−1w
′
t−1 + ytxt, the above becomes

dt(w
′
t−1,wt) =

1

2

(
(At − At−1)w

′
t−1 − ytxt

)⊤
A−1

t

(
(At − At−1)w

′
t−1 − ytxt

)
.

Using At = At−1 + xtx
⊤
t , we have

dt(w
′
t−1,wt) =

1

2

(

xtx
⊤
t w′

t−1 − ytxt

)

A−1
t

(

xtx
⊤
t w′

t−1 − ytxt

)

=
(w′

t−1
⊤
xt − yt)

2

2
x⊤

t A−1
t xt

=
(w′

t−1
⊤
xt − yt)

2

2
rt

=
(∆̂′

t − yt)
2

2
rt

≤ 2rt ,

where the last step uses |∆̂′
t| ≤ 1

To prove (iii) we observe that, w′
t, as defined in Algorithm 1, is the projection of wt

onto the convex set Ct = {w : |w⊤xt| ≤ 1} w.r.t. Bregman divergence dt. By the theorem
of generalized projections we have that

0 ≤ dt(w
′
t,wt) ≤ dt(u,wt) − dt(u,w′

t) .

holds for any u ∈ Ct. Since Ct includes the unit ball {u : ||u|| ≤ 1} the claim follows.
Finally, to prove (iv), observe that when t is such that Zt = 0 then both sides of the

inequality are 0 (since At = At−1). On the other hand, when Zt = 1 we just combine (i),
(ii), (iii), and Lemma 24 (ii) to give the required inequality.

Appendix C.

Proof sketch of Theorem 9. We rely on Theorem 2, where the role of Tǫ is neatly handled
by the low-noise assumption combined with a standard Chernoff bound. In particular, since
E [Tǫ] ≤ cT ǫα, we can easily conclude that for any δ > 0, with probability at least 1− δ over
sample x1, . . . ,xT we have Tǫ ≤ 3c

2 Tǫα + O(log(1/δ)) . We optimize over ǫ the bounds on
RT and NT contained in Theorem 2. We obtain that, with the same probability,

RT = O
(

(d log(T/δ))
α+1

α+2 T
1

α+2 + log(1/δ)
)

(15)

NT = O
(

(d2 log2(T/δ))
α

α+2 T
2

α+2 + log(1/δ)
)

.
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Now define

Kt =
(

P ′
t(yt ∆̂t < 0) − P ′

t(yt ∆t < 0)
)

−
(

Pt(yt ∆̂t < 0) − Pt(yt ∆t < 0)
)

,

and note that K1, ...,KT forms a martingale difference sequence. Let E’t [·] denote the con-
ditional expectation E[· |x1, . . . ,xt−1, y1, . . . , yt−1] and Var′t(·) be the conditional variance
Var(· |x1, . . . ,xt−1, y1, . . . , yt−1).

12 We have

Var′t[Kt] = E’t
[
K2

t

]

≤ 2
((

P ′
t(yt ∆̂t < 0) − P ′

t (yt ∆t < 0)
))2

+ 2 E’t

[(

Pt(yt ∆̂t < 0) − Pt(yt ∆t < 0)
)2
]

(using (a − b)2 ≤ 2a2 + 2b2)

≤ 2
(

P ′
t (yt ∆̂t < 0) − P ′

t(yt ∆t < 0)
)

+ 2 E’t

[

Pt(yt ∆̂t < 0) − Pt(yt ∆t < 0)
]

(using P ′
t(yt ∆̂t < 0) ≥ P ′

t (yt ∆t < 0) and Pt(yt ∆̂t < 0) ≥ Pt(yt ∆t < 0) )

= 4
(

P ′
t (yt ∆̂t < 0) − P ′

t(yt ∆t < 0)
)

.

Following Lemma 22 and overapproximating we have that, with probability at least 1 − δ,

T∑

t=1

(

P ′
t(yt ∆̂t < 0) − P ′

t(yt ∆t < 0)
)

≤ 2 RT + O
(

log

(
log T

δ

))

= O
(

(d log(T/δ))
α+1

α+2 T
1

α+2 + log

(
log T

δ

))

,

the last equality deriving from (15). Dividing by T concludes the proof.

Proof of Lemma 13. We upper bound each of the summands in Eq. (9) individually. We
begin as in Eq. (3) in the proof of Lemma 3. This gives us

Pt(y∆̂t < 0)−Pt(y∆t < 0) ≤ ǫ 11
{
∆t∆̂t < 0, |∆t| ≤ ǫ

}
+ 11
{
∆t∆̂t < 0, |∆t| > ǫ

}
|∆t| . (16)

The first term on the right-hand side above is simply upper bounded by ǫ 11
{
|∆t| ≤ ǫ

}
. To

upper bound the second term, we recall that |∆t| ≤ 1 and bound 11
{
∆t∆̂t < 0, |∆t| > ǫ

}
by

11
{
∆t∆̂t < 0, |∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ 11
{
∆t∆̂t < 0, |∆t| > ǫ

}
11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}

≤ 11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ 11
{
∆t∆̂t < 0

}
11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}

≤ 11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ Z̄t 11
{
∆t∆̂t < 0

}
+ Zt 11

{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}
. (17)

12. Notice the difference between the conditional expectation and conditional variance used here and those
used in the proof of Lemma 23.
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We plug Eq. (17) into the right-hand side of Eq. (16) to obtain the desired upper-bound on
Pt(y∆̂t < 0) − Pt(y∆t < 0). Summing over t completes the proof.

Proof of Lemma 14. It is straightforward to verify that

Zt = Zt 11
{
|∆t| ≤ ǫ

}
+ Zt 11

{
|∆t| > ǫ

}

≤ Zt 11
{
|∆t| ≤ ǫ

}
+ Zt 11

{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ Zt 11
{
|∆t| > ǫ

}
11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}

≤ 11
{
|∆t| ≤ ǫ

}
+ 11

{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}
.

Summing over t proves the bound.

Proof of Lemma 15. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t

< 0 ∨ |∆̂S∪Ĥt, t
| ≤ θt

}

= 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θt

}

+ 11
{
∀S ⊆ B̂t : |∆̂S∪Ĥt, t

| > θt

}
11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t

< 0
}

≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θt

}

+ 11
{
|∆̂t| > θt

}
11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t

< 0, |∆̂S∪Ĥt, t
| > θt

}
.

We focus on the second term on the right-hand side above. Using the assumption that
|∆j,t − ∆̂j,t| ≤ θt for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t −
∆Ĉt, t

| ≤ θt and |∆̂S∪Ĥt, t
−∆S∪Ĥt, t

| ≤ θt for any S. Now, if S is such that ∆̂t∆̂S∪Ĥt, t
< 0,

|∆̂S∪Ĥt, t
| > θt, and |∆̂t| > θt, then it also holds that ∆Ĉt, t

∆S∪Ĥt, t
< 0. Moreover, if there

exists S ⊆ B̂t such that ∆Ĉt, t
∆S∪Ĥt, t

< 0 then either ∆t∆S∪Ĥt, t
< 0 or ∆t∆Ĉt, t

< 0. Since

Ĉt = Ĥt ∪ B̂t we have that

11
{
∃S ⊆ B̂t : ∆Ĉt, t

∆S∪Ĥt, t
< 0
}

≤ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

.

Putting together, we can write

Zt ≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θt

}
+ 11

{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{
4θt > ǫ

}
+ Zt 11

{
4θt ≤ ǫ

}

≤ Zt 11
{
4θt > ǫ

}
+ 11

{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θt

}
11
{
4θt ≤ ǫ

}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

11
{
4θt ≤ ǫ

}
. (18)

Next, we show that B̂t can be replaced with Bt in the equation above. To do so, we use the
fact that B̂t appears only in terms that are multiplied by 11

{
4θt ≤ ǫ

}
. Using the definition
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of B̂t, the fact that |∆̂j⋆
t ,t| ≤ |∆̂ĵt,t

| and |∆ĵt,t
| ≤ |∆j⋆

t ,t|, together with the assumption

|∆j,t − ∆̂j,t| ≤ θ for all j ∈ [K] we get

B̂t ⊆ {i : |∆j⋆
t ,t| − τ − 4θt ≤ |∆i,t| ≤ |∆j⋆

t ,t| − τ + 4θt} .

If 4θt ≤ ǫ then the right-hand side above is a subset of Bǫ,t, and therefore, under this
condition, B̂t ⊆ Bǫ,t. We conclude that B̂t can be replaced by Bt in Eq. (18), and

Zt ≤ Zt 11
{
4θt > ǫ

}
+ 11

{
∃S ⊆ Bt : |∆̂S∪Ĥt, t

| ≤ θt

}
11
{
4θt ≤ ǫ

}

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt, t

< 0
}

11
{
4θt ≤ ǫ

}

≤ Zt 11
{
4θt > ǫ

}
+ 11

{
∃S ⊆ Bt : |∆̂S∪Ĥt, t

| ≤ ǫ/4
}

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt, t

< 0
}

.

With the inequality above handy, we are now ready to upper-bound QT,ǫ. We have

QT,ǫ =
T∑

t=1

Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t,t ≥ 0, |∆S∪Hǫ,t,t| > ǫ

}

≤
T∑

t=1

Zt 11
{
4θt > ǫ

}

+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt, t

| ≤ ǫ/4
}

11
{
∀S ⊂ Bǫ,t : |∆S∪Hǫ,t,t| > ǫ

}

︸ ︷︷ ︸

=0

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt, t

< 0
}

11
{
∀S ⊂ Bǫ,t : ∆t∆S∪Hǫ,t,t ≥ 0

}

︸ ︷︷ ︸

=0

≤ 16

ǫ2

T∑

t=1

Ztθ
2
t .

Recall that θ2
t = x⊤

t A−1
t−1xt

(
1+4

∑t−1
i=1 Ziri +36log(Kt/δ)

)
. Using Lemma 24 (i), we obtain

QT,ǫ ≤ 32
ǫ2
∑T

t=1 Ztrt

(

1+4
∑t−1

i=1 Ziri +36log(Kt/δ)
)

. The conclusion of the proof follows

along the lines of the proof of Lemma 6.

Proof of Lemma 16. We first prove that Ĥt ⊆ Ct ⊆ Ĉt. If j ∈ Ct, then |∆j,t| ≥
|∆j⋆

t ,t|− τ ≥ |∆ĵt,t
|− τ . Using the assumption that |∆j,t− ∆̂j,t| ≤ θt and |∆ĵt,t

− ∆̂ĵt,t
| ≤ θt,

we have that |∆̂j,t| ≥ |∆̂ĵt,t
| − τ − 2θt, and therefore j ∈ Ĉt. Similarly, if j ∈ Ĥt, then

|∆̂j,t| ≥ |∆̂ĵt,t
| − τ + 2θt ≥ |∆̂j⋆

t ,t| − τ + 2θt. Using the assumption that |∆j,t − ∆̂j,t| ≤ θt

and |∆j⋆
t ,t − ∆̂j⋆

t ,t| ≤ θt, we get |∆j,t| ≥ |∆j⋆
t ,t| − τ , and therefore j ∈ Ct.

Now assume that Zt = 0. By definition, ∆̂t∆̂S∪Ĥt,t
≥ 0 and |∆̂S∪Ĥt,t

| > θ for all S ⊆ B̂t,

and particularly for S = Ct \ Ĥt. Namely, ∆̂t∆̂Ct,t ≥ 0 and |∆̂Ct,t| > θt. Once again using
the assumption of the lemma, this time in conjunction with Jensen’s inequality, we get that

(∆t − ∆̂Ct,t)
2 ≤ θ2

t , which implies ∆t∆̂Ct,t ≥ 1
2

(

∆̂2
Ct,t

− θ2
t

)

. Plugging in |∆̂Ct,t| > θt

gives ∆t∆̂Ct,t > 0 which, combined with ∆̂t∆̂Ct,t ≥ 0 gives ∆t∆̂t ≥ 0. Overall we have

shown that Zt = 0 implies that ∆t∆̂t ≥ 0. Therefore, UT =
∑T

t=1 Z̄t 11
{

∆t∆̂t < 0
}

= 0 .
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Proof of Lemma 19. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t

< 0 ∨ |∆̂S∪Ĥt, t
| ≤ θS∪Ĥt, t

}

= 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θS∪Ĥt, t

}

+ 11
{
∀S ⊆ B̂t : |∆̂S∪Ĥt, t

| > θS∪Ĥt, t

}
11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t

< 0
}

≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θS∪Ĥt, t

}

+ 11
{
|∆̂t| > θĈt,t

}
11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t

< 0, |∆̂S∪Ĥt, t
| > θS∪Ĥt, t

}
.

We focus on the second term on the right-hand side above. Using the assumption that |∆j,t−
∆̂j,t| ≤ θj,t for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t−∆Ĉt, t

| ≤ θĈt,t

and |∆̂S∪Ĥt, t
− ∆S∪Ĥt, t

| ≤ θS∪Ĥt, t
for any S. Now, if S is such that ∆̂t∆̂S∪Ĥt, t

< 0,

|∆̂S∪Ĥt, t
| > θS∪Ĥt, t

, and |∆̂t| > θĈt,t
, then it also holds that ∆Ĉt, t

∆S∪Ĥt, t
< 0. Moreover, if

there exists S ⊆ B̂t such that ∆Ĉt, t
∆S∪Ĥt, t

< 0 then either ∆t∆S∪Ĥt, t
< 0 or ∆t∆Ĉt, t

< 0.

Since Ĉt = Ĥt ∪ B̂t we have that

11
{
∃S ⊆ B̂t : ∆Ĉt, t

∆S∪Ĥt, t
< 0
}

≤ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

.

Putting together, we can write

Zt ≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θS∪Ĥt, t

}
+ 11

{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

+ Zt 11
{
4max

j∈Ĉt

θj,t ≤ ǫ
}

≤ Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

+ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ θS∪Ĥt, t

}
11
{
4max

j∈Ĉt

θj,t ≤ ǫ
}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

11
{
4max

j∈Ĉt

θj,t ≤ ǫ
}

≤ Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

+ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t

| ≤ ǫ/4
}

11
{
4max

j∈Ĉt

θj,t ≤ ǫ
}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t

< 0
}

11
{
4max

j∈Ĉt

θj,t ≤ ǫ
}

. (19)

where the last step is because maxj∈Ĉt
θj,t ≥ θS∪Ĥt, t

. Next, we show that B̂t can be replaced

with Bt in the equation above. To do so, we use the fact that B̂t appears only in terms
that are multiplied by 11

{
4maxj∈Ĉt

θj,t ≤ ǫ
}
. Using the definition of B̂t, the fact that

|∆̂j⋆
t ,t| ≤ |∆̂ĵt,t

| and |∆ĵt,t
| ≤ |∆j⋆

t ,t|, together with the assumption |∆j,t − ∆̂j,t| ≤ θj,t for all
j ∈ [K] we get

B̂t ⊆
{

i : |∆j⋆
t ,t| − τ − 4max

j∈Ĉt

θj,t ≤ |∆i,t| ≤ |∆j⋆
t ,t| − τ + 4θĈt,t

}

.

Hence, when 4maxj∈Ĉt
θj,t ≤ ǫ we are guaranteed that the right-hand side above is a subset

of Bǫ,t, and therefore, under this condition, B̂t ⊆ Bǫ,t. We conclude that B̂t can be replaced
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by Bǫ,t in Eq. (19), and so Zt is upper bounded by

Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

+ 11
{
∃S ⊆ Bǫ,t : |∆̂S∪Ĥt, t

| ≤ ǫ/4
}

+ 11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Ĥt, t

< 0
}

.

With the inequality above handy, we are now ready to upper-bound QT,ǫ. We have

QT,ǫ =
T∑

t=1

Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t,t ≥ 0, |∆S∪Hǫ,t,t| > ǫ

}

≤
T∑

t=1

Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

+ 11
{
∃S ⊆ Bǫ,t : |∆̂S∪Ĥt, t

| ≤ ǫ/4
}

11
{
∀S ⊂ Bǫ,t : |∆S∪Hǫ,t,t| > ǫ

}

︸ ︷︷ ︸

=0

+ 11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Ĥt, t

< 0
}

11
{
∀S ⊂ Bǫ,t : ∆t∆S∪Hǫ,t,t ≥ 0

}

︸ ︷︷ ︸

=0

≤ 16

ǫ2

T∑

t=1

Zt max
j∈Ĉt

θ2
j,t

≤
16
∑T

t=1 Zt
∑

j∈Ĉt
θ2
j,t

ǫ2

=
16
∑

j∈[K]

∑T
t=1 Zt 11

{

j ∈ Ĉt

}

θ2
j,t

ǫ2

=
16
∑

j∈[K]

∑T
t=1 Zt 11

{

j ∈ Ĉt

}

x⊤
t A−1

j,t−1xt

(

1 + 4
∑t−1

i=1 Zirj,i + 36 log(Kt/δ)
)

ǫ2

=
16
∑

j∈[K]

∑T
t=1 Ztrj,t

(

1 + 4
∑t−1

i=1 Zirj,i + 36 log(Kt/δ)
)

ǫ2
.

Now, proceeding along the same lines as in the proof of Lemma 6 (which in turn mainly
relies on Lemma 24) we conclude that,

QT,ǫ ≤
16
∑

j∈[K]

(
(1 + 36 log(KT/δ)) log |Aj,T | + 4 log2 |Aj,T |

)

ǫ2
= O

(
Kd2 log2(KT/δ)

ǫ2

)

.

This concludes the proof.

Proof of Lemma 20. The proof proceeds in the same way as the proof of Lemma 16.
We first prove that Ĥt ⊆ Ct ⊆ Ĉt. If j ∈ Ct, then |∆j,t| ≥ |∆j⋆

t ,t| − τ ≥ |∆ĵt,t
| − τ .

Using the assumption that |∆j,t − ∆̂j,t| ≤ θj,t and |∆ĵt,t
− ∆̂ĵt,t

| ≤ θĵt,t
, we have that

|∆̂j,t| ≥ |∆̂ĵt,t
| − τ − θj,t − θĵt,t

, and therefore j ∈ Ĉt. Similarly, if j ∈ Ĥt, then

|∆̂j,t| ≥ |∆̂ĵt,t
| − τ + θj,t + max

j∈Ĉt

≥ |∆̂j⋆
t ,t| − τ + θj,t + max

j∈Ĉt

.
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Using the assumption that |∆j,t − ∆̂j,t| ≤ θj,t and |∆j⋆
t ,t − ∆̂j⋆

t ,t| ≤ θj⋆
t ,t ≤ maxj∈Ĉt

θj,t, we
get |∆j,t| ≥ |∆j⋆

t ,t| − τ , and therefore j ∈ Ct.

Now assume that Zt = 0. By definition, ∆̂t∆̂S∪Ĥt,t
≥ 0 and |∆̂S∪Ĥt,t

| > θS∪Ĥt,t
for all

S ⊆ B̂t, and particularly for S = Ct \ Ĥt. Namely, ∆̂t∆̂Ct,t ≥ 0 and |∆̂Ct,t| > θĈt,t
. Once

again using the assumption of the lemma, this time in conjunction with Jensen’s inequality,

we get that (∆t − ∆̂Ct,t)
2 ≤ θ2

t , which implies ∆t∆̂Ct,t ≥ 1
2

(

∆̂2
Ct,t

− θ2
Ĉt,t

)

. Plug-

ging in |∆̂Ct,t| > θĈt,t
gives ∆t∆̂Ct,t > 0 which, combined with ∆̂t∆̂Ct,t ≥ 0, gives

∆t∆̂t ≥ 0. Overall we have shown that Zt = 0 implies that ∆t∆̂t ≥ 0. Therefore,

UT =
∑T

t=1 Z̄t 11
{

∆t∆̂t < 0
}

= 0 .

Proof of Lemma 18. We start just as in the proof of Lemma 14 and get,

Zt ≤ 11
{
|∆t| ≤ ǫ

}
+ Zt 11

{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}
.

Hence,

NT =
T∑

t=1

|Ĉt|Zt

≤
T∑

t=1

|Ĉt| 11
{
|∆t| ≤ ǫ

}

+

T∑

t=1

|Ĉt|Zt 11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+
T∑

t=1

|Ĉt|Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}

≤ K

T∑

t=1

11
{
|∆t| ≤ ǫ

}

+ K
T∑

t=1

|Ĉt|
K

Zt 11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ K

T∑

t=1

Zt 11
{
∀S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

≥ 0, |∆S∪Hǫ,t
| > ǫ

}

= KTǫ

+ K

T∑

t=1

|Ĉt|Zt

K 11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

+ KQT,ǫ . (20)
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Now we note that by definition of Ĉt, if j ∈ Ĉt then

|∆̂j,t| ≥ |∆̂ĵt,t
| − τ − θj,t − θĵt,t

≥ |∆̂j⋆
t ,t| − τ − θj,t − θĵt,t

.

Combined with our assumption that (∆j,t − ∆̂j,t)
2 ≤ θ2

j,t holds for all j ∈ [K] this implies

|∆j,t| ≥ |∆j⋆
t ,t| − τ − 2θj,t − θĵt,t

− θj⋆
t ,t . (21)

On the other hand, by definition of j⋆
t , we also have |∆j⋆

t ,t| ≥ |∆ĵt,t
| and, owing to our

assumption, |∆̂j⋆
t ,t| ≥ |∆̂ĵt,t

| − θj⋆
t ,t − θĵt,t

. Hence we see that j⋆
t ∈ Ĉt. Using this in

Equation (21) gives, for any j ∈ Ĉt,

|∆j,t| ≥ |∆j⋆
t ,t| − τ − 4max

j∈Ĉt

θj,t .

Thus we see that as long as 4maxj∈Ĉt
θj,t ≤ ǫ, we have Ĉt ⊂ Hǫ,t ∪ Bǫ,t.

We now use this in Equation (20). We obtain

NT ≤KTǫ + KQT,ǫ

+ K

(
T∑

t=1

|Ĉt|Zt

K 11
{
4max

j∈Ĉt

θj,t ≤ ǫ
}

11
{
|∆t| > ǫ

}
×

× 11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

)

+ K

(
T∑

t=1

|Ĉt|Zt

K 11
{
4max

j∈Ĉt

θj,t > ǫ
}

11
{
|∆t| > ǫ

}
×

× 11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

)

≤ KTǫ + KQT,ǫ

+ K

(
T∑

t=1

|Bǫ,t ∪ Hǫ,t|
K

11
{
|∆t| > ǫ

}
11
{
∃S ⊆ Bǫ,t : ∆t∆S∪Hǫ,t

< 0 ∨ |∆S∪Hǫ,t
| ≤ ǫ

}

)

+ K

T∑

t=1

Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

= K

(

Tǫ + T ′′
ǫ + QT,ǫ +

T∑

t=1

Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

)

. (22)
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In order to bound last term, we notice that

T∑

t=1

Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}

≤
16
∑T

t=1 Zt maxj∈Ĉt
θ2
j,t

ǫ2

≤
16
∑T

t=1 Zt
∑

j∈Ĉt
θ2
j,t

ǫ2

=
16
∑

j∈[K]

∑T
t=1 Zt 11

{

j ∈ Ĉt

}

θ2
j,t

ǫ2

=
16
∑

j∈[K]

∑T
t=1 Zt 11

{

j ∈ Ĉt

}

x⊤
t A−1

j,t−1xt

(

1 + 4
∑t−1

i=1 Zirj,i + 36 log(Kt/δ)
)

ǫ2

=
16
∑

j∈[K]

∑T
t=1 Ztrj,t

(

1 + 4
∑t−1

i=1 Zirj,i + 36 log(Kt/δ)
)

ǫ2
.

Now, proceeding along the lines of the proof of Lemma 6 (which in turn mainly relies on
Lemma 24), we obtain

T∑

t=1

Zt 11
{
4max

j∈Ĉt

θj,t > ǫ
}
≤

16
∑

j∈[K]

(
(1 + 36 log(KT/δ)) log |Aj,T | + 4 log2 |Aj,T |

)

ǫ2

= O

(
Kd2 log2(KT/δ)

ǫ2

)

.

Plugging these back into Equation (22) and applying the bound on QT,ǫ from Lemma 19
concludes the proof.
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