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1
Introduction

This course will focus on theoretical aspects of Statistical Learning and Sequential Prediction. Until recently,
these two subjects have been treated separately within the learning community. The course will follow a
unified approach to analyzing learning in both scenarios. To make this happen, we shall bring together
ideas from probability and statistics, game theory, algorithms, and optimization. It is this blend of ideas
that makes the subject interesting for us, and we hope to convey the excitement. We shall try to make the
course self-contained as much as possible, and pointers to additional readings will be provided whenever
necessary. Prerequisites for this course are probability theory and linear algebra.

“Learning” can be very loosely defined as the “ability to improve performance after observing data”.
Over the past two decades, there has been an explosion of both applied and theoretical work on machine
learning. Applications of learning methods are ubiquitous: they include systems for face detection and
face recognition, prediction of stock markets and weather patterns, speech recognition, learning user’s
search preferences, placement of relevant ads, and much more. The success of these applications has been
paralleled by a well-developed theory. We shall call this latter branch of machine learning – “learning
theory”.

Why should one care about machine learning? The reality is that computers are now an integral part
of our lives. Many tasks that we would like computers to perform cannot be hard-coded. The programs
have to adapt. The goal then is to encode, for a particular application, as much of the domain-specific
knowledge as needed, and leave enough flexibility for the system to improve upon observing data.

It is well-recognized that there is no single learning algorithm that will work universally (we will make
this statement mathematically precise). It is not our goal to make computers learn everything at once:
each application requires a lot of prior knowledge from the expert. The goal of learning theory then is to
develop general guidelines and algorithms, and prove guarantees about learning performance under various
natural assumptions.

A number of interesting learning models have been studied in the literature, and a glance at the
proceedings of a learning conference can easily overwhelm a newcomer. Hence, we start this course by
describing a few of the frameworks. We feel that the differences and similarities between various learning
scenarios become more apparent once viewed as minimax problems. The minimax framework also makes
it clear where the “prior knowledge” of the practitioner should be encoded, and we will emphasize the
minimax approach throughout the course.

Students (especially from the Stats department) might wonder: What separates Learning from Statis-
tics? Both fields look at data and have similar goals. Nowadays, it is indeed difficult to draw a line. Let
us briefly sketch a few historical differences. According to [54], in the 1960’s it became apparent that
classical statistical methods are poorly suited for certain inference and prediction problems, especially
those characterized by high dimensionality. Parametric statistics, as developed by Fisher, works well if the
statistician can model the underlying process generating the data. However, for many interesting problems
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8 Introduction

(e.g. face detection, character recognition) the associated high-dimensional modeling problem was found
to be intractable computationally, and the analysis given by classical statistics – inadequate. In order to
avoid making assumptions on the data-generating mechanism, a new distribution-free approach was sug-
gested. An interested reader is referred to the (somewhat extreme) point of view of Breiman [13] for more
discussion on the two cultures.

Recent developments in nonparametric estimation and high-dimensional inference further blur the
boundary between Statistics and Learning. Furthermore, the distribution-dependent analysis is, with-
out doubt, a part of learning theory as well. Many researchers publish both in statistical journals and in
conferences proceedings on learning theory, further bridging the notational and terminological divide. The
application-oriented machine learning research represents a blend of ideas from the distribution-free and
the data-modeling camps (sometimes called discriminative vs generative approaches), making the distinc-
tion between statistical and machine learning approaches even more indefinite. In the next lecture, we
shall make the distinctions concrete by formulating the goals of nonparametric estimation and statistical
learning as minimax problems.

Over the past 30 years, the development of Statistical Learning Theory has been intertwined with
the study of uniform Laws of Large Numbers. The theory provided an understanding of the inherent
complexities of distribution-free learning, as well as finite sample and data-dependent guarantees. Besides
the well-established theory, the algorithms developed by the learning community (e.g. Support Vector
Machines and AdaBoost) are often considered to be state-of-the art methods for prediction problems.
These methods adhere to the philosophy that, for instance, for classification problems one should not
model the distributions but rather model the decision boundary. Arguably, this accounts for success of
many learning methods, with the downside that interpretability of the results is often more difficult. The
term “learning” itself is a legacy of the field’s strong connection to computer-driven problems, and points
to the fact that the goal is not necessarily that of “estimating the true parameter”, but rather that of
improving performance with more data.

In the past decade, research in learning theory has been shifting to sequential problems, with a focus
on relaxing any distributional assumptions on the observed sequences. A rigorous analysis of sequential
problems is a large part of this course. Interestingly, most research on sequential (or, online) prediction has
been algorithmic: given a problem, one would present a method and prove a guarantee for its performance.
In this course, we present a study of inherent complexities of sequential prediction. The goal is to develop
it in complete parallel with the classical results of Statistical Learning Theory.

We start the course by listing in a rather informal way a few different settings, some of which are not
“learning” per se, but quite closely related. We will not cover all these in the course, but it is good to see
the breadth of problems anyway. In the following lecture, we will go through some of these problems once
again and will look at them through the lens of minimax. As we go through the various settings, we will
point out three key aspects: (a) how data are generated; (b) how the performance is measured;
and (c) where we place prior knowledge.

Before proceeding, let us mention that we will often make over-simplified statements for the sake of
clarity and conciseness. In particular, our definitions of research areas (such as Statistical Learning) are
bound to be more narrow than they are. Finally, these lecture notes reflect a personal outlook and may
have only a thin intersection with the reality.1

Notation: A set {z1, . . . , zt} is variably denoted by either z1∶t or zt. A t-fold product of Z is denoted by
Zt. Expectation with respect to a variable Z with distribution p is denoted by EZ or EZ∼p. We caution that
in the literature EZ is sometimes used to denote a conditional expectation; our notation is more convenient
for the problems we have in mind. The set {1, . . . , T} is denoted by [T ], and the set of all distributions on
some set A by ∆(A). The inner product between two vectors is written as ⟨a, b⟩ or as aTb. The set of all
functions from X to Y is denoted by YX .

1For a memorable collection of juicy quotes, one is advised to take a course with J. Michael Steele.
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Statistical Learning

Let us start with the so-called supervised learning . Within this setting, data are represented by pairs
of input and output (also called predictor and response) variables, belonging to some sets X and Y,
respectively. A training set , or a batch of data, will be denoted by {(Xt, Yt)}Tt=1 = (XT , Y T ) ∈ (X ×Y)T . It
is after observing this set that we hope to learn something about the relationship between elements of X
and Y.

For instance, Xt can be a high-dimensional vector of gene expression for the t-th patient and Yt can stand
for the presence or absence of diabetes. Such classification problems focus on binary “labels” Y = {0,1}.
Regression, on the other hand, focuses on real-valued outputs, while structured prediction is concerned
with more complex spaces Y of outcomes. The main (though not exclusive) goal of Statistical Learning
is in prediction; that is, “learning” is equated with the ability to better predict the y-variable from the
x-variable after observing the training data.

More specifically, “Statistical Learning” will refer to the following set of assumptions. We posit that
the relationship between X and Y is encoded by a fixed unknown distribution PX×Y . The observed data
{(Xt, Yt)}Tt=1 are assumed to be drawn i.i.d. from this distribution. Furthermore, when time comes to
evaluate our learning “progress”, it is assumed that the world will not be different. That is, our predictions
are compared against the same fixed distribution from which the initial data were sampled (or observed).
Both the i.i.d. and the “stationary world” assumptions are rather strong, and we will spend the second
part of this course on relaxing them.

So, how is our learning performance evaluated? Suppose, after observing the data, we can summarize
the “learned” relationship between X and Y via a hypothesis f̂ ∶ X ↦ Y. We then consider the average
error in predicting Y from X based on this hypothesis:

E(X,Y )`(f̂ , (X,Y )) (1.1)

where the expectation is over the random draw of (X,Y ) according to PX×Y and independently of
(XT , Y T ), and ` is some loss function which measures the gravity of the mistake. As an example, if
we are learning to classify spam emails, the measure of performance is how well we predict the spam label
of an email drawn at random from the population of all emails.

If Y = {0,1}, we typically consider the indicator loss `(f̂ , (X,Y )) = I{f̂(X) ≠ Y } or its surrogates

(defined in later lectures), and for regression problems it is common to study the absolute loss `(f̂ , (X,Y )) =
∣f̂(X) − Y ∣ and the squared loss `(f̂ , (X,Y )) = (f̂(X) − Y )2.

Since the training data {(Xt, Yt)}Tt=1 are assumed to be a random i.i.d. draw, the examples might be
misleading by chance. In this case, we should not penalize the learner. Indeed, a more reasonable goal is
to ask that the average

E`(f̂ , (X,Y )) = E{E(X,Y ) {`(f̂ , (X,Y )) ∣ (XT , Y T )}} (1.2)

of (1.1) under the draw of training data be small. Alternatively, the goal might be to show that (1.1) is

small with high probability. It is important to keep in mind that f̂ is random, as it depends on the data.
We will not write this dependence explicitly, but the hat should remind us of the fact.

If PX×Y were known, finding f̂ that minimizes E`(f̂ , (X,Y )) would be a matter of numerical optimiza-
tion. But then there is no learning to be done, as the sought after relationship between X and Y is known.
It is crucial that the distribution is not available to us and the only information we receive about it is
through the training sample. What do we do then? Well, as stated, the task of producing f̂ with a small
error (1.2) is unsurmountable in general. Indeed, we mentioned that there is no universal learning method,
and we just asked for exactly that! Assumptions or prior knowledge are needed.

Where do we encode this prior knowledge about the task? This is where Statistical Learning (histori-
cally) splits from classical Statistics. The latter would typically posit a particular form of the distribution
PX×Y , called a statistical model. A parametric form is especially handy, as one can estimate the parameters
from data and then make predictions based on these estimates. We discuss this (plug-in) approach later.
While one can predict after constructing a good estimate, it is not necessary to perform the estimation

9



10 Introduction

step if the end goal is prediction. Indeed, it can be shown quite easily (see [21]) that the goal of estimation
is at least as hard as the goal of classification. Hence, for classification problems, it might be more natural
to assume the behavior of the classification boundary between the two classes rather than the form of the
underlying distribution PY ∣X of the two classes.

Before continuing with the distribution-free approach of Vapnik-Chervonenkis, let us mention that
Computational Learning Theory started in the 80’s as a distribution-dependent (that is, non-distribution-
free) study of classification. Fix a collection F of mappings X ↦ Y. Suppose we can make a very strong
prior knowledge assumption that one of the functions in F in fact exactly realizes the dependence between
X and the label Y . Since (X,Y ) is a draw from PX×Y , the assumption of

Y = f(X) for some f ∈ F (1.3)

translates into the assumption that the conditional distribution PY ∣X=x = δf(x). It is then possible to
characterize classes F for which

P (f̂(X) ≠ f(X)) = E∣f̂(X) − f(X)∣ (1.4)

can be made small for some learning mechanism f̂ . This setting is termed realizable and forms the core
of the original PAC framework [52]. Of course, this is not a distribution-free setting. It was the papers of
Haussler [25] and then Kearns et al [32] that extended the PAC framework to be distribution-free (termed
agnostic). It should not be omitted that Computational Learning Theory is additionally concerned with
existence of polynomial-time learning algorithms, a subject we might touch upon towards the end of the
course.

In an intermediate setting between realizable and agnostic, one assumes label noise; that is, given X,
the binary label Y is “often” equal to f(X), except for some cross-over probability:

∃f ∈ F such that for any x ∈ X , PY ∣X(Y ≠ f(x)∣X = x) < η < 1/2 (1.5)

This setting is very close to a modeling assumption made in Statistics, as discussed below. Under the
condition (1.5), the probability of error (1.4) is a reasonable quantity to consider.

The classical work of Vapnik and Chervonenkis is of a distribution-free nature. That is, the prior knowl-
edge does not enter in the form of an assumption on PX×Y , and our learning method should be “successful”
for all distributions. Instead, our “inductive bias” is realized by selecting a class F of hypotheses X ↦ Y
that (we believe) should explain well the relationship we are trying to learn. There is not much room to
circumvent the problem of no universal learning algorithm! Requiring the method to be successful for all
distributions means that the very notion of “successful” has to include the prior knowledge F . A natural
requirement is to minimize the loss relative to F :

E`(f̂ , (X,Y )) − inf
f∈F

E`(f, (X,Y )) (1.6)

Such relative loss is called excess loss. Hence, “learning” is defined as the ability to provide a summary
f̂ ∶ X ↦ Y of the relationship between X and Y such that the expected loss is competitive with the loss of
the best “explanation” within the class F . Clearly, the learning method should (and will) depend on the
prior knowledge F . We shall sometimes call the class F the “comparator class” and the term we subtract
off in (1.6) – the “comparator term”.

It can be argued that the distribution-free formulation in (1.6) should be used with a “growing” set
F , and idea formalized by Structural Risk Minimization and the method of sieves. A related idea is to
estimate from data the parameters of F itself. Such methods will be discussed in the lecture on model
selection towards the end of the course.

In the next lecture, we will discuss at length the merits and drawbacks of the distribution-free formu-
lation. For further reading on Statistical Learning Theory, we refer the reader to [12, 3, 38].

10



11

General Setting of Learning

Let us now remove the assumption that data are of the form X × Y and instead write it as some abstract
set Z. We refer to such a scenario as unsupervised learning. The learning task can still be defined by
requiring that “performance” is improved upon observing {Zt}Tt=1. Given these data, the learning method

is asked to summarize what it had learned by some element f̂ ∈ F , yet we do not require F to be the class
of functions X ↦ Y, and instead we treat it as an abstract set. The quality of the prediction is assessed
through a loss function ` ∶ F ×Z ↦ R, and we assume a fixed unknown distribution PZ on Z. As before,
the data are assumed to be an i.i.d. sample from PZ , and the performance measure

E`(f̂ , Z)

is evaluated under the random draw Z ∼ PZ . Examples of unsupervised learning tasks include clustering
and density estimation.

The setting we described is almost too general. Indeed, the problem of finding f̂ such that E`(f̂ , Z) is
small is considered in such areas as Statistical Decision Theory, Game Theory, and Stochastic Optimization.
One can phrase many different frameworks under any one of these umbrellas, but our aim is simply to
make the connections clear.

Nonparametric Regression

The literature on parametric and nonparametric estimation is vast, and we only pick a frequently used situ-
ation. Nonparametric regression (curve estimation) with fixed design assumes that the data {(xt, Yt)}Tt=1 ∈
(X ×Y)T consist of predictor-response pairs, where xt’s are fixed a priori (e.g. evenly spaced on the interval)
and Yt = f(xt) + εt, for independent noise εt and some function f ∶ X ↦ Y.

For random design, we assume (as in Statistical Learning Theory) that Xt’s are random and i.i.d. from
some marginal distribution PX , either known or unknown to us. Then, given X, we have Yt = f(Xt) + εt,
and this defines a joint distribution P fX×Y = PX × P f

Y ∣X parametrized by f .

Given the data, let f̂ summarize what has been learned. In statistical language, we construct an
estimate f̂ of the unknown f which parametrizes the distribution P fX×Y . The typical performance measure

is the loss EX(f(X) − f̂(X))2 or some other p-norm. Instead of integrating with respect to the marginal

PX , the fixed-design setting integrates (f(x) − f̂(x))2 under the Lebesgue measure.
More generally, the notion of loss can be defined through the function ` ∶ F ×F ↦ R and ` is sometimes

assumed to be some notion of a distance between functions or parameters [57]. The goal then is to ensure
that

E`(f, f̂) = E{E{`(f, f̂) ∣ (XT , Y T )}} (1.7)

is small.
Clearly, the study of (1.7) needs to depend on properties of F , which embodies the prior assumptions

about the problem. This prior knowledge is encoded as the distributional assumption on P fX×Y in a similar
way to the “label noise setting” of PAC learning discussed above. In the next lecture, we will make the
distinction between this setting and Statistical Learning even more precise.

We refer to [51] and [56] for nice expositions of the field of nonparametric statistics. These books also
study density estimation, which we briefly discuss next.

Density Estimation

Suppose that we observe i.i.d. data {Zt}Tt=1 ∈ ZT from a distribution P fZ with a density f . The goal is to

construct an estimate f̂ ∶ Z ↦ R of this unknown density. The error of the estimate is measured by, for
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12 Introduction

instance, the integrated mean squared error (under the Lebesgue measure)

E{∫ (f̂(z) − f(z))2dz}

or via the Kullback-Leibler divergence

E`(f, f̂) = ∫ f(z) log
f(z)
f̂(z)

dz = E{log
f(Z)
f̂(Z)

} = E{(− log f̂(Z)) − (− log f(Z))} .

The KL divergence as a measure of quality of the estimator corresponds to a (negative) log loss `(f,Z) =
− log f(Z) which is central to problems in information theory.

Both in nonparametric regression and in density estimation it is common to consider the mean squared
error at a particular z:

mse(z) = E(f̂(z) − f(z))2

where the expectation is over the data, but z is fixed.
Once again, construction of optimal estimators depends on the particular characteristics that are as-

sumed about f , and these are often embodied via the distribution-dependent assumption f ∈ F . The
characteristics that lead to interesting statements are often related to the smoothness of densities in F .

Summary: Let us summarize the main characteristics of the settings considered so far. First, they all
assume a probabilistic nature of data. Moreover, the probability distribution is typically assumed to be
fixed in time. An i.i.d. sample is assumed to be available all at once as a batch, and the “performance” is
assessed through f̂ with respect to the unknown distribution.

We now move beyond these “static” scenarios. In sequential problems we typically “learn” constantly as
we observe more and more data, and there is a greater array of problems to consider. One important issue
to look out for is whether the performance is measured at the end or throughout the sequence. Problems
also differ according to the impact the learner has through his actions. Yet another aspect is the amount
of information of feedback the learner receives.

Let us pause for a second and discuss the issue of measuring learner’s performance when the actions
actually affect the data the learner will receive. The learner can either be evaluated at the end, or through
an average performance over the course of the interaction. The distinction between the two possibilities
is very important and will be mentioned throughout the course. If the evaluation is done at each step,
the so-called exploration-exploitation dilemma potentially arises: the greedy action might not reveal the
most information, and might therefore hurt future performance. This will be further illustrated when we
compare regret minimization and optimization.

Universal Data Compression and Conditional Probability Assign-
ment

In this scenario, suppose that a stream of Z1, Z2, . . . is observed. For simplicity, suppose that all Zt take
on values in a discrete set Z. There are two questions we can ask: (1) how can we sequentially predict
each Zt having observed the prefix {Zs}t−1

s=1? and (2) how can we compress this sequence? It turns out that
these two questions are very closely related.

As in the setting of density estimation, suppose that the sequence is generated according to some
distribution f on finite (or infinite) sequences in ZT (or Z∞), with f in some given set of distributions F .2

Once again, F embodies our assumption about the data-generating process, and the problem presented

2Note the slight abuse of the notation: previously, we have used P f do denote the distribution on (X,Y ) with the mean
function f , then we used f to denote the unknown density of Z, and now we use f to stand for the distribution itself.
Hopefully, this should not cause much confusion.
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here is distribution-dependent. Later, we will introduce the analogue of universal prediction for individual
sequences, where the prior knowledge F will be moved to the “comparator” in a way similar to distribution-
free Statistical Learning.

So, how should we measure the quality of the “learner” in this sequential problem? Since Zt’s are
themselves random draws, we might observe unusual sequences, and should not be penalized for not being
able to predict them. Hence, the measure of performance should be an expectation over the possible
sequences. It must be noted that high-probability or almost sure results are also of great interest. On
each round, we can summarize what we learned so far from observing Zt−1 via a conditional distribution
f̂t ∈ ∆(Z) – hence the name “conditional probability assignment”. A natural measure of error at time t is
then

E{log
f(Z ∣Zt−1)
f̂t(Z)

∣ Zt−1}

or some other notion of distance between the actual and the predicted distribution. When the mistakes
are averaged over a finite-horizon time T , the measure of performance becomes

1

T

T

∑
t=1

E{log
f(Z ∣Zt−1)
f̂t(Z)

∣ Zt−1} = 1

T
E{log

f(ZT )
f̂(ZT )

} , (1.8)

where f̂ can be thought of either as a joint distribution over sequences, or as a collection of T conditional
distributions for all possible prefixes. If the distributions f ∈ F have the same conditional distributions
and sequences are i.i.d., the measure of performance becomes an averaged version of the one introduced
for density estimation with KL divergence.

There are two main approaches to ensuring that the expected loss in (1.8) is small: (1) the plug-in
approach involves estimating at each step the unknown distribution f ∈ F and using it to predict the next
element of the sequence; (2) the mixture approach involves a Bayesian-type averaging of all distributions
in F . It turns out that the second approach is superior, a fact that is known in statistics as suboptimality
of selectors, or suboptimality of plug-in rules. We will discuss this issue late in the course.

Active Learning and Selective Sampling

A number of interesting active learning scenarios are studied in the literature, and we only describe a few.
Some of these settings are closely related to Sequential Design of Experiments in Statistics.

Focusing on the supervised learning scenario, we assume that Z = X × Y. In a pool-based version of
active learning, we are given a batch of τ “unlabeled” examples {Xi}τi=1 and the learning process involves
sequentially selecting these Xi’s and asking for the response Yi. One may imagine trying to classify pictures
of cats and dogs while having access to a large pool of unlabeled images, and a clever active learning method
would sequentially ask for the label of only a subset of these. The usual motivation is that labels might be
expensive to acquire, and the goal is to do well with minimal cost. We may assume that {Xi}τi=1 are i.i.d.
from an unknown marginal distribution PX , or simply fixed. Let us mention a related (but less realistic)
non-pool-based version, where the learner has the freedom to pick any xt from the domain X at time t and
ask for the corresponding value of Yt (effectively, the pool is X itself). Such a scenario might be reasonable
if one can (in the language of Statistics) conduct an “experiment” at any x ∈ X .

But what does it mean to ask for Yt at Xt ∈ X ? In the statistical version of the problem, it is assumed
that the response Yt to the query at Xt is drawn independently according to some fixed distribution PY ∣X .
Since Xt’s are chosen “actively”, the sequence X1, . . . ,XT is dependent, and the learner becomes an integral
part of the data-acquisition process. The resulting stochastic process is defined via the algorithm we use.
More precisely, a deterministic algorithm (or policy) is defined as the sequence of mappings

πt ∶ (X ×Y)t−1 ↦ X̄ ⊆ X ,

where X̄ might be the pool of unlabeled examples, or all of X for the non-pool-based version. We will also
talk about randomized algorithms which map into the space of distributions.
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So far we have described how data are acquired. Next, we define a measure of performance. For
“statistical” active learning with a fixed distribution PY ∣X , the knowledge of the learner after actively

acquiring the partial data {(Xs, Ys)}ts=1 can be summarized via a hypothesis f̂t ∶ X ↦ Y. We can consider

a measure of performance that averages the performance of all f̂t’s, or we can only assess the quality of
the last hypothesis f̂T . Let us do the latter. For instance, in the classification setting, the error can then
be measured by

E{∫ PY ∣x(Y ≠ f̂T (x))PX(dx)}

where PX is the underlying marginal distribution. The expectation is over the random draws of {Xi}τi=1,
Yt, and given the algorithm {πt}Tt=1.

Yet another version of active learning assumes that {Xi}τi=1 is not given ahead of time to the learner,
but is rather revealed one-by-one in a stream fashion (let us call it a stream-based active learning). That
is, the active learner does not select the next element Xt, but rather observes a random i.i.d. sequence
of X’s drawn from PX . The learner can ask for the label Yt at the current element Xt in the stream,
but only once. If the process of not asking for the label incurs no cost, we can equivalently say that the
learner is defined as a sequence of mappings πt ∶ (X × Y)t−1 ↦ 2X for each t. At each time step, the
algorithm decides on the subset πt of X that the learner is willing to query if X ∈ πt is presented. This, in
turn, is equivalent to looking at PX through a “window”, effectively chopping and rescaling the marginal
distribution PX . We then set the goal as usual: minimize expected loss E`(f̂T , (X,Y )) with a given budget
on the number of label requests, where the expectation is over the random draw (X,Y ) from PX×PY ∣X and

over the path (XT , Y T ). One may consider the “realizable” or distribution-free scenario in exact parallel
to the development in “passive learning” (another name for receiving the training data all at once). In the
distribution-free scenario, we can put the prior knowledge into the comparator exactly as done in Eq. (1.6).

Clearly, the active learner should have an advantage over the passive learner. But how much advantage?
It turns out that the answer to this question depends on some interesting properties of the set F and
of the distribution PX×Y . Roughly speaking, the rate at which the above-mentioned “window” (called
disagreement region) can shrink plays an important role.

We mention that non-pool-based active learning of hyperplanes can be phrased as stochastic optimiza-
tion with first-order oracle feedback, while in the limit of noise going to zero – as binary search or the
method of centers of gravity in optimization. Furthermore, active learning can be phrased in the language
of Information Theory as a certain system with feedback. The information-theoretic methods can then be
used to establish limits on what is attainable in both active and passive learning. We will point out these
connections later in the course.

Sequential Prediction of Individual Sequences

Let us discuss a general setting of sequential prediction for individual sequences, and then particularize it
to an array of problems considered within the fields of Statistics, Game Theory, Information Theory, and
Computer Science.

At an abstract level, suppose we observe a sequence z1, z2, . . . of data and need to make decisions
f1, f2, . . . on the fly. (Note that we lost the “hat” on our predictions f̂t to ease later notation.) Suppose
we would like to lift the assumption that the sequence being observed is generated from some distribution
from a given family, an assumption we made in the setting of universal lossless data compression. When
we go to such a distribution-free setting for individual sequences, it actually no longer makes much sense
to define per-round loss as E`(ft, Z) with the expectation over Z according to the arbitrary conditional
distribution. In fact, let us assume that there is no distribution governing the evolution of z1, z2, . . .. The
sequence is then called individual3. This surprising twist of events might be difficult for statisticians to
digest, and we refer to the papers of Phil Dawid on prequential statistics for more motivation. The (weak)

3Strictly speaking, the term individual sequence, coming from information theory, refers to binary or finite-valued sequences.
We use it more liberally for any sequences taking values in some abstract set Z.
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prequential principle states that “any criterion for assessing the agreement between Forecaster and Nature
should depend only on the actual observed sequences and not further on the strategies which might have
produced these” [20].

If there is only one sequence, then how do we evaluate learner’s performance? A sensible way is to score
learner’s instantaneous loss on round t by `(ft, zt), where the decision ft must be chosen on the basis of
zt−1, but not zt. Averaging over T , the overall measure of performance on the given sequence is

1

T

T

∑
t=1

`(ft, zt). (1.9)

Just as in our earlier exposition on statistical learning, it is easy to show that making the above expression
small is an impossible goal even in simple situations. Some prior knowledge is necessary, and two approaches
can be taken to make the problem reasonable. We describe them below.

Assumption of Realizability Let us consider the supervised setting: Z = X ×Y. We make an assump-
tion that the sequence z1, . . . , zT is only “in part” individual. That is, the sequence x1, . . . , xT is indeed
arbitrary, yet yt is given by yt = f(xt) for some f ∈ F . Additional “label noise” assumption has also been
considered in the literature. Under the “realizability” assumption, the goal of minimizing (1.9) is feasible,
as will be discussed later in the course. However, a much richer setting is the following.

Regret Bounds This is the most studied setting, and the philosophy is in a sense similar to that of going
from distribution-dependent to distribution-free learning. Instead of assuming that some f ∈ F governs the
evolution of the sequence, we push the assumption into the comparator term (the term we subtract off):

Regret = 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt) (1.10)

That is, the average loss of the learner is judged by the yardstick, which is the best fixed decision from the
set F that we could have “played” for the T rounds. The reader probably noticed that we started to use
a game-theoretic lingo. Indeed, the scenario has a very close relation to game theory.

More generally, we can define regret with respect to a set Φ of strategies, where each strategy φ ∈ Φ is
a sequence of mappings φt from the past to the set of decisions F :

Regret = 1

T

T

∑
t=1

`(ft, zt) − inf
φ∈Φ

1

T

T

∑
t=1

`(φt(zt−1), zt) (1.11)

From this point of view, (1.10) is regret with respect to a set of constant strategies.
The reader should take a minute to ponder upon the meaning of regret. If we care about our average

loss (1.9) being small and we are able to show that regret as defined in (1.11) is small, we would be happy
if we knew that the comparator loss is in fact small. But when is it small? When the sequences are well
predicted by some strategy from the set Φ. Crucially, we are not assuming that the data are generated
according to a process related in any way to Φ! All we are saying is that, if we can guarantee smallness
of regret for all sequences and if the comparator term captures the nature of sequences we observe, our
average loss is small. Nevertheless, it is important that the bound on regret that is proved for all individual
sequences will hold... well... for all sequences. Just the interpretation might be unsatisfactory.

Let’s see why the above discussion is similar to passing from distribution-dependent statistical learning
to distribution-independent learning (with the redefined goal as in (1.6)). If we start a paper with the line
“Assume that data are Yt = f(Xt) + ε for some f ∈ F”, then whatever we prove is invalidated if the model
is not correct (in the statistical language: misspecified). It is then unclear how badly the performance
degrades as the assumption starts to become violated. On the other hand, putting the prior knowledge
into the comparator term and asking for the method to hold for all distributions does not suffer from
the problem of starting with a wrong assumption. There is a price to pay, however, for moving the prior
knowledge into the comparator term. The upper bounds one gets are definitely more conservative. How

15



16 Introduction

much more conservative will be a subject of interest in this course. Furthermore, the duality between
assuming a form of a data-generating process versus competing with the related class of predictors is very
intriguing and has not been studied much. We will phrase this duality precisely.

Summarizing, it should now be clear what the advantages and disadvantages of the regret formulation
are: we have a setup of sequential decision-making with basically no assumptions that would invalidate our
result, yet smallness of regret is “useful” whenever the comparator term is small. On the downside, protec-
tion against all models leads to more conservative results than one would obtain making a distributional
assumption.

For a large part of the course we will study the regret notion (1.10) defined with respect to a single fixed
decision. Hence, the upper bounds we prove for regret will hold for all sequences, but will be more useful
for those sequences on which a single decision is good on all the rounds. What are such sequences? There
is definitely a flavor of stationarity in this assumption, and surely the answer depends on the particular
form of the loss `. We will also consider regret of the form

Regret = 1

T

T

∑
t=1

`(ft, zt) − inf
(g1,...,gT )

1

T

T

∑
t=1

`(gt, zt) (1.12)

where the infimum is taken over “slowly-changing” sequences. This can be used to model an assumption of
a non-stationary but slowly changing environment, without ever assuming that sequences come from some
distribution. It should be noted that it is impossible in general to have an average loss comparable to that
of the best unrestricted sequence (g1, . . . , gT ) of optimal decisions that changes on every round.4

The comprehensive book of Cesa-Bianchi and Lugosi [16] brings together many of the settings of predic-
tion of individual sequences, and should be consulted as a supplementary reading. It is, in fact, after picking
up this book in 2007 that our own interests in the field sparked. The following question was especially
bothersome: why do upper bounds on regret defined in (1.10) look similar to those for statistical learning
with i.i.d. data? After all, there are no probabilistic assumptions placed on the individual sequences! This
course will, in particular, address this question. We will show the connections between the two scenarios,
as well as the important differences.

Let us mention that we will study an even more difficult situation than described so far: the sequence
will be allowed to be picked not before the learning process, but during the process. In other words, the
sequence will be allowed to change depending on the intermediate “moves” (or decisions) of the learner.
This is a good model for learning in the environment on which learner’s actions have an effect. We need
to carefully define the rules for this, as to circumvent the so-called Cover’s impossibility result. Since the
sequence will be allowed to evolve in the worst-case manner, we will model the process as a game against
an adaptive adversary. A good way to summarize the interaction between the learner and the adversary
(environment, Nature) is by specifying the protocol:

Sequential prediction with adaptive environment

At each time step t = 1 to T ,

• Learner chooses ft ∈ F and Nature simultaneously chooses zt ∈ Z
• Player suffers loss `(ft, zt) and both players observe (ft, zt)

In the case of a non-adaptive adversary, the sequence (z1, . . . , zT ) is fixed before the game and is revealed
one-by-one to the player.

We remark that the name individual sequence typically refers to non-adaptive adversaries, yet we will
use the name for the both adaptive and non-adaptive scenarios. There is yet another word we will abuse
throughout the course: “prediction”. Typically, prediction refers to the supervised setting when we are
trying to predict some target response Y . We will use prediction in a rather loose sense, and synonymously
with “decision making”: abstractly, we “predict” or “play” or “make decision” or “forecast” ft on round t
even if the decision space F has nothing to do with the outcome space Z. Finally, we remark that “online
learning” is yet another name often used for sequential decision-making with the notion of regret.

4Some algorithms studied in computer science do enjoy competitive-ratio type bounds that involve comparison with the
best offline method — more on this later.

16



17

Online Convex Optimization

Let us focus on regret against the best fixed comparator, as defined in (1.10), and make only one additional
assumption: `(f, z) is convex in the first argument. Since no particular dependence on the second argument
is assumed, we might as well slightly abuse the notation and equivalently rewrite `(f, z) as `z(f) or even
z(f), where z ∶ F ↦ R is a convex function. The latter notation makes it a bit more apparent that we are
stepping into the world of convex optimization.

Regret can now be written as

Regret = 1

T

T

∑
t=1

zt(ft) − inf
f∈F

1

T

T

∑
t=1

zt(f) (1.13)

where the sequence z1, . . . , zT is individual (also called worst-case), and each zt(f) is a convex function.
At the first sight, the setting seems restricted, yet it turns out that the majority of known regret-

minimization scenarios can be phrased this way. We briefly mention that methods from the theory of
optimization, such as gradient descent and mirror descent, can be employed to achieve small regret, and
these methods are often very computationally efficient. These algorithms are becoming the methods of
choice for large scale problems, and are used by companies such as Google. When data are abundant, it is
beneficial to process them in a stream rather than as a batch, which means we are in the land of sequential
prediction. Being able to relax distributional assumptions is also of great importance for present-day
learning problems. It is not surprising that online convex optimization has been a very hot topic over the
past 10 years.

The second part of this course will focus on methods for studying regret in convex and non-convex
situations. Some of our proofs will be algorithmic in nature, some – nonconstructive. The latter approach
is particularly interesting because the majority of the results in the literature so far have been of the first
type.

Multiarmed Bandits and Partial Information Games

It turns out that the exploration-exploitation dilemma does not arise when regret is defined against the
best fixed decision as in (1.10), given that we observe the outcome zt after predicting ft. Matters become
more complicated when only partial information about zt is observed, and a proper exploration-exploitation
tradeoff is often key. The setting is often called “bandit” or “partial feedback”.

In the original formulation of Robbins [46], the learner is faced with k decisions (arms of a multi-armed
bandit), each producing a stochastic reward if chosen. A choice of arm i at time step t results in a random
reward rt drawn independently from the distribution pi with support on [0,1] and mean µi. The goal is to
minimize regret of not knowing the best arm in advance: maxi∈{1...k} µiT −∑Tt=1 rt. An optimal algorithm
for this problem has been exhibited by Lai and Robbins [34]. Switching to losses instead of rewards, the
goal can be equivalently written as minimization of expected regret

E{ 1

T

T

∑
t=1

`(ft, zt)} − inf
f∈F

E{ 1

T

T

∑
t=1

`(f, zt)}

where `(f, z) = ⟨f, z⟩, F = {e1, . . . , ek} the set of standard basis vectors, and expectation is over i.i.d. draws
of zt ∈ [0,1]k according to the product of one-dimensional reward distributions p1 × . . . × pk. Crucially, the
decision-maker only observes the loss `(f, z) (that is, one coordinate of z) upon choosing an arm. The
setting is the most basic regret-minimization scenario for i.i.d. data where the exploration-exploitation
dilemma arises. The dilemma would not be present had we defined the goal as that of providing the best
hypothesis at the end, or had we observed the full reward vector zt at each step.

Interestingly, one can consider the individual sequence version of the multiarmed bandit problem. It is
not difficult to formulate the analogous goal: minimize regret

E{ 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt)}

17
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where `(f, z) = ⟨f, z⟩, the learner only observes the value of the loss, and the sequence z1, . . . , zT is indi-
vidual. Surprisingly, it is possible to develop a strategy for minimizing this regret. Generalizations of this
scenario have been studied recently, and we may formulate the following protocol:

Bandit online linear optimization

At each time step t = 1 to T ,

• Learner chooses ft ∈ F and Nature simultaneously chooses zt ∈ Z
• Player suffers loss `(ft, zt) = ⟨ft, zt⟩ and the learner only observes this value.

One can also move from online linear to online convex optimization for even more generality, yet the
question of optimal rates here is still open.

In the stochastic setting with a fixed i.i.d. distribution for rewards, however, we may formulate the
problem as minimizing regret

E{ 1

T

T

∑
t=1

z(ft) − inf
f∈F

z(f)} (1.14)

where z is an unknown convex function and the learner receives a random draw from a fixed distribution
with mean `(ft, z) upon playing ft. An optimal algorithm for this problem has been recently developed.

Note that (1.14) basically counts the average value of the unknown convex function z at the trajectory
f1, . . . , fT and compares it to the minimum value of the function over the set F . The reader will recognize
this as a problem of optimization, but with the twist of measuring average error instead of the final error.
As mentioned before, this twist leads to the exploration-exploitation tradeoff.

Convex Optimization with Stochastic and Deterministic Oracles

Convex optimization is concerned with finding the minimum of an unknown convex function z(f) over
a set F , which we assume to be a convex set. The optimization process consists of repeatedly querying
f1, . . . , fT ∈ F and receiving some information (from the Oracle) about the function at each query point.
For deterministic optimization, this information is noiseless, while for stochastic optimization it is noisy.
For the zero-th order optimization, the noiseless feedback to the learner (optimizer) consists of the value
z(ft), while for stochastic optimization the feedback is typically a random draw from a distribution with
mean z(ft). Similarly, first order noiseless information consists of a (sub)gradient of z at ft, while the
stochastic feedback provides this value only on average. The deterministic optimization goal is to minimize
z(fT ) − inff∈F z(f). In the stochastic case the goal is, for instance, in expectation:

E{z(fT ) − inf
f∈F

z(f)} .

Once again, the difference between stochastic bandit formulation in (1.14) and stochastic optimization is
in the way the goal is defined.

A particularly interesting stochastic optimization problem is to minimize the convex function

z̃(f) = E`(f,Z) (1.15)

Even if distribution is known, the integration becomes computationally difficult whenever Z ⊂ Rd with
even modest-size d [40]. The idea then is to generate an i.i.d. sequence Z1, . . . , ZT and use it in place of
the difficult-to-compute integral. Since given the random draws we still need to perform optimization, we
suppose there is an oracle that returns random (sub)gradients G(f,Z) given the query (f,Z) such that

EG(f,Z) ∈ ∂z̃(f) = E∂f`(f,Z).

18
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Given access to such information about the function, two approaches can be considered: stochastic approx-
imation (SA) and sample average approximation (SAA). The SAA approach involves directly minimizing

1

T

T

∑
t=1

`(f,Zt)

as a surrogate for the original problem in (1.15). The SA approach consists of taking gradient descent steps
of the type ft+1 = ft − ηG(ft, Zt) with averaging of the final trajectory. We refer to [40] for more details.

Note that we have come a full circle! Indeed, (1.15) is the problem of Statistical Learning that we
started with, except we did not assume convexity of ` or F . But the connections go even further: we will
see in a few lectures that the SAA approach is a natural method called “Empirical Risk Minimization”,
while the SA method will make its appearance when we talk about sequential prediction problems.

Reinforcement Learning

Sequential learning problems considered so far have one thing in common: there is no notion of a state that
might be changing throughout the learning process. Presence of such a state, a feature of reinforcement
learning problems, complicates both theoretical analysis and the development of computationally efficient
methods. The applications, however, are plenty, and the reinforcement learning methods are considered to
be very powerful when it comes to acting in large environments. Many ideas in this area rely on dynamic
programming techniques and solving the Bellman equation.

Reinforcement learning can be a course in itself, and we only summarize the setting in a few lines, for
the sake of completeness. Suppose there is a set S of states of the environment and a set F of actions
of the learner. At each step of the learning process, the learner chooses an action ft, and then the state
transitions from the current state st to the new state st+1 (randomly or deterministically). The learner
then receives some signal ot+1 and a reward (or loss) rt+1 = `(ft, st, st+1). The goal is to maximize the
average ∑Tt=1 rt or the discounted sum of rewards ∑∞t=1 γ

trt. The rules for transitioning from st to st+1 often
determine the difficulty of the problem.

19
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2
Example: Linear Regression

Linear regression is, arguably, the most basic problem that can be considered within the scope of statistical
learning, classical regression, sequential prediction, and other frameworks stated earlier in the course.
Below, we arrive at very similar bounds on the performance of methods in three different scenarios, and then
make some unexpected connections. Using the terminology introduced earlier, we consider the supervised
setting, that is Z = X × Y, where Y = R. Let F = X = B2, the unit Euclidean ball in Rd. Each f ∈ F can
be thought of as a vector, or as a function f(x) = f Tx. Consider the square loss

`(f, (x, y)) = (f(x) − y)2 = (f Tx − y)2

to measure the quality of the prediction. We now show how various settings differ in their treatment of
linear regression.

2.1 Statistical Learning

In this setting we assume that {(Xt, Yt)}Tt=1 are i.i.d. from some unknown distribution PX×Y , and suppose
T is larger than d. We place no prior assumption on the relationship between X and Y . The goal is to
come up with f̂ such that

E(f̂ TX − Y )2 − inf
f∈F

E(f TX − Y )2 (2.1)

is small. Suppose the infimum in (2.1) is attained at some f∗. For any f ,

E(f TX − Y )2 −E(f T

∗X − Y )2 = E(f TX − f T

∗X + f T

∗X − Y )2 −E(f T

∗X − Y )2

= E((f − f∗)TX)2 + 2E [(f T

∗X − Y )X T(f − f∗)] . (2.2)

The cross-term in (2.2) is zero because

E [((XX T)f∗ − Y X)] = 0

is the optimality condition for f∗. In fact, this optimality condition gives rise to the closed-form solution
f∗ = Σ−1E(Y X) for Σ = E[XX T], assuming the inverse exists. With the usual notation ∥h∥2

M = hTMh for
a positive definite M , we can write (2.1) as

E∥f̂ − f∗∥2
Σ (2.3)

The invertability of Σ is an assumption on the marginal distribution, but not on the relationship between
X and Y .
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22 Example: Linear Regression

Now take a concrete estimator, namely the empirical risk minimizer (ordinary least squares estimator)

f̂ = arg min
f∈F

1

T

T

∑
t=1

(f TXt − Yt)2 (2.4)

which can be written in closed form, if the inverse exists, as

f̂ = ( 1

T

T

∑
t=1

XtX
T

t )
−1

( 1

T

T

∑
t=1

YtXt) = Σ̂−1Ê(Y X), where Σ̂ = 1

T

T

∑
t=1

XiX
T

i .

Here, Ê is expectation with respect to the empirical distribution on the data. Let us upper bound (2.3) as

E ∥f̂ − f∗∥
2

Σ
≤ 2E ∥f̂ −Σ−1Ê(Y X)∥2

Σ
+ 2E ∥Σ−1Ê(Y X) − f∗∥

2

Σ

= 2E ∥(Σ̂−1 −Σ−1)Ê(Y X)∥2

Σ
+ 2E ∥Σ−1(Ê(Y X) −E(Y X))∥2

Σ
(2.5)

Now, for the sake of simplicity, let us assume that the distribution PX is such that Σ = I. Under such a
convenient assumption, the upper bound of (2.5) becomes

2E ∥(Σ̂−1 − I)Ê(Y X)∥2 + 2E ∥Ê(Y X) −E(Y X)∥2
(2.6)

It can be shown that the eigenvalues of Σ̂ and Σ̂−1 are concentrated around 1 with high probability,
and the order of typical deviations is

√
d/T . Assuming boundedness of Y (or boundedness of the second

moment), we have ∥E(Y X)∥ ≤ 1 and, hence, the first term in (2.6) is O(d/T ). The second term can be
written as

E ∥Ê(Y X) −E(Y X)∥2 = E
d

∑
j=1

( 1

T

T

∑
t=1

YtXt(j) −E(YtXt(j)))
2

and also behaves as O(d/T ).

CONCLUSION: In the setting of Statistical Learning, without assuming any particular form of the
relationship between X and Y , we obtain an O (d/T ) rate for the out-of-sample error of the least squares
estimator relative to the best linear predictor. For simplicity of exposition, we made assumptions on the
covariance matrix of X (see [28] for a more general statement).

2.2 Classical Regression Analysis

We start with the so-called fixed design setting, where X1, . . . ,XT are assumed to be fixed and only Yt’s
are randomly distributed. Assume a linear model : there exists an f∗ such that

Yt = f T

∗Xt + εt, (2.7)

for some independent zero-mean noise εt with, say, bounded variance σ2. If our goal is “out of sample
error”, we would like to come up with an estimator f̂ such that

E∥f̂ − f∗∥2
Σ̂
= E{ÊX [(f̂(X) − f∗(X))2 ∣ Y T ]}

is small, where ÊX is the empirical distribution supported on the fixed design X1, . . . ,XT . Let f̂ be the
ordinary least squares estimator defined in (2.4). As before, f̂ = Σ̂−1Ê[Y X]. Multiplying (2.7) on both

sides by Xt and averaging over t, we arrive at f∗ = Σ̂−1Ê[(Y − ε)X], and thus

E ∥f̂ − f∗∥
2

Σ̂
= E ∥Σ̂−1Ê[εX]∥2

Σ̂

22



2.3 Prediction of Individual Sequences 23

Suppose for the sake of simplicity that Σ̂ = I, an assumption on the fixed design. Then the measure of
performance of f̂ is given by

E ∥Ê[εX]∥2 = E
d

∑
j=1

( 1

T

T

∑
t=1

εtXt(j))
2

which is, once again, O(d/T ). The random design analysis is similar, with the same O(d/T ) rate under
appropriate assumptions (see [28]).

CONCLUSION: In the setting of linear regression, we assume a linear relationship between predictor
and response variables, and obtain an O(d/T ) rate for both fixed and random design. Once again, for
simplicity of the exposition, we made assumptions on the marginal distribution of X. We remark that
the rates one gets in this setting are of the same order as those in the more general setting of statistical
learning, where the model is “misspecified”. We now show that we can push this misspecification idea even
further.

2.3 Prediction of Individual Sequences

In the individual sequence scenario, we are tasked with designing an estimator (forecaster) f̂t on round t in
an attempt to predict well on the next observation (xt, yt). Recall that the goal is to achieve small regret,
defined in the linear regression case as

1

T

T

∑
t=1

(f̂ T

t xt − yt)2 − inf
f∈F

1

T

T

∑
t=1

(f Txt − yt)2 . (2.8)

So, how do we choose f̂t+1 based on the data {(xs, ys)}ts=1 observed so far? It might be tempting to simply
define it as the least squares solution (2.4) on the prefix of data. However, to avoid suffering huge regret
in the beginning of the sequence, we need to add a small regularization term:

f̂t+1 = arg min
f∈Rd

t

∑
s=1

(f Txs − ys)2 + ∥f∥2 (2.9)

The influence of the extra term diminishes as t increases, thus approaching the least squares solution. The
method is readily recognized as ridge regression or regularized least squares and has a closed form solution

f̂t+1 = (I +
t

∑
s=1

xsx
T

s)
−1

(
t

∑
s=1

ysxs) . (2.10)

Roughly speaking, we need to regularize the problem as the outer product matrix is not invertible until
xt’s span all the dimensions. Denoting Σt = (I +∑ts=1 xsx

T
s), the update from f̂t to f̂t+1 can be written as

f̂t+1 = Σ−1
t (Σt−1f̂t + ytxt)

or, in an incremental form, as

f̂t+1 = f̂t −Σ−1
t (f̂txt − yt)xt . (2.11)

Using the definitions and straightforward algebra, the identity

(f̂ T

t xt − yt)2 − (f Txt − yt)2 = ∥f − f̂t∥2
Σt−1 − ∥f − f̂t+1∥2

Σt + ∥f̂t − f̂t+1∥2
Σt

can be shown to hold for any f . Averaging over T time steps, the equality

1

T

T

∑
t=1

(f̂ T

t xt − yt)2 − 1

T

T

∑
t=1

(f Txt − yt)2 = ∥f − f̂1∥2
Σ0

− ∥f − f̂T+1∥2
ΣT

+ 1

T

T

∑
t=1

∥f̂t − f̂t+1∥2
Σt (2.12)
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24 Example: Linear Regression

holds for any f . We upper bound the first term by 1 for any f ∈ F because f1 = 0, and we drop the second
term. Plugging in the update rule (2.11) into the third term, we find that

∥f̂t − f̂t+1∥2
Σt = (f T

t xt − yt)2 (xT

t Σ−1
t xt) ≤ 4 (xT

t Σ−1
t xt) (2.13)

since F = X is a Euclidean unit ball and Y = [−1,1]. We now use the identity

xT(Σ + xxT)−1x = 1 − det(Σ)
det(Σ + xxT) (2.14)

to obtain the following bound on the last term in (2.12):

T

∑
t=1

∥f̂t − f̂t+1∥2
Σt ≤ 4

T

∑
t=1

xT

t Σ−1
t xt = 4

T

∑
t=1

(1 − det(Σt−1)
det(Σt)

) ≤ 4 ln
det(ΣT )
det(Σ0)

= 4
d

∑
j=1

ln(1 + λj) (2.15)

where λi are the eigenvalues of ∑Tt=1 xtx
T
t . Since xt’s are in the unit ball, the sum of eigenvalues cannot be

more than T . The above upper bound is in fact maximized when all these eigenvalues are equal to T /d.
Hence, the third term in (2.12) is upper bounded by d ln(1 + T /d) and the overall bound on regret is

1

T

T

∑
t=1

(f̂ T

t xt − yt)2 − inf
f∈F

1

T

T

∑
t=1

(f Txt − yt)2 ≤ 1 + 4d ln(1 + T /d)
T

(2.16)

We refer to [16, Chapter 11] for more details of this proof.

CONCLUSION: In the setting of individual sequence prediction, with no assumptions on the mechanism
generating the data, we obtained an O (d logT

T
) bound on regret, only a factor of logT worse than those

under probabilistic assumptions! Moreover, the proof is straightforward (the majority of steps are equal-
ities), the constants are explicit, and the argument can be easily modified to hold in infinite-dimensional
Reproducing Kernel Hilbert spaces with an appropriate decay of the kernel eigenvalues. The proof, how-
ever, seems magical and it is unclear why it works. The ideas of using deviations of empirical and expected
quantities, as successfully employed in the previous sections, give us a hint of how to approach more com-
plex problems with i.i.d. data. But does the individual sequence proof generalize to other scenarios? A
major part of this course is on understanding how such algorithms and upper bounds arise.

2.4 From Individual Sequences to I.I.D

The bound (2.16) on regret holds for any sequence {(xt, yt)}Tt=1, which can even be adapted on the fly by

a malicious adversary. The only requirement is that (xt, yt) is not known to the learner when choosing f̂t.
Now, suppose that the data are actually i.i.d., drawn from some unknown distribution PX×Y . Let

f̄ = 1

T

T

∑
t=1

f̂t (2.17)

be the average of the moves played by the learner. We now claim that f̄ enjoys a guarantee of the type
studied in Statistical Learning:

Lemma 2.1. The estimator defined in (2.17) satisfies

E(f̄ TX − Y )2 − inf
f∈F

E(f TX − Y )2 ≤ 1 + 4d ln(1 + T /d)
T

(2.18)

for any distribution PX×Y .
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Proof. To prove this simple fact, take the expectation in (2.16) with respect to the (i.i.d.) data {(xt, yt)}Tt=1:

E{ 1

T

T

∑
t=1

(f̂ T

t Xt − Yt)2} ≤ E{ inf
f∈F

1

T

T

∑
t=1

(f TXt − Yt)2} + 1 + 4d ln(1 + T /d)
T

(2.19)

Observe that by Jensen’s inequality,

E{E{(f̄ TX − Y )2 ∣ (XT , Y T )}} = E
⎧⎪⎪⎪⎨⎪⎪⎪⎩
E
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝
( 1

T

T

∑
t=1

f̂t)
T

X − Y
⎞
⎠

2 RRRRRRRRRRRRR
(XT , Y T )

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ E{E{ 1

T

T

∑
t=1

(f̂ T

t X − Y )2 ∣ (XT , Y T )}}

= E{ 1

T

T

∑
t=1

E{(f̂ T

t X − Y )2 ∣ (Xt−1, Y t−1)}}

= E{ 1

T

T

∑
t=1

(f̂ T

t Xt − Yt)2} (2.20)

and

E{ inf
f∈F

1

T

T

∑
t=1

(f Txt − yt)2} ≤ inf
f∈F

E{ 1

T

T

∑
t=1

E(f TXt − Yt)2} = inf
f∈F

E(f TX − Y )2 (2.21)

Putting all the pieces together, we conclude the proof.

DISCUSSION It is indeed remarkable that the bound for all sequences, obtained in Section 2.3, can be
easily converted into a bound for the distribution-free Statistical Learning scenario of Section 2.1. Such a
bound also holds for the linear model assumption discussed in Section 2.2. The bounds for the estimator f̄
have an extra logT factor and require machinery that is markedly different from the one used for the least
squares solution f̂ . The former estimator can be viewed as arising from stochastic approximation (SA),
while the latter – from sample average approximation (SAA). What is quite curious, the Central Limit
Theorem, which played a key role in the first two i.i.d. results, does not seem to appear in the proof of
Lemma 2.1! We will show in this course that the CLT is implicitly contained in a regret guarantee. But
how is this possible? After all, regret is defined on deterministic sequences! We hope that there is now
enough motivation to proceed.
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3
Minimax Formulation of Learning Problems

Statistical Decision Theory introduced by A. Wald [55] unified various statistical problems, including
estimation and hypothesis testing, under the same umbrella. In the abstract formulation of statistical
decision theory, we may think of Nature and the Statistician as playing a zero-sum game. Suppose we have
a statistical model, that is a set of possible distributions P0 = {P f ∶ f ∈ F} on W. We assume that Nature
chooses f ∈ F and the statistician observes data from the distribution P f . These data are represented
abstractly as a random variable W with distribution P f (in case of i.i.d. data, think of W as taking
values in the product space). Based on W , the Statistician needs to make a decision (e.g. reject the null,
or compute a particular estimate, or, in the language of the previous lecture, summarize the relationship
between X and Y ). Let D bet the set of possible decisions, and let f̂ be a non-randomized decision function

f̂ ∶W ↦ D (or randomized f̂ ∶W ↦∆(D)). Fix a loss function ¯̀ ∶ D ×F ↦ R. The expected cost (or, risk)
is

EW ¯̀(f̂(W ), f) (3.1)

where the expectation is over the data from the distribution given by Nature’s choice of parameter f ∈ F .
This framework is abstract enough to capture an array of “statistical games” where Nature chooses a
distribution P f from a given set of statistical models F .

For instance, consider the realizable or label noise setting introduced in the previous lecture in (1.5).
We may set

¯̀(f̂(XT , Y T ), f) ≜ P (f̂(X) ≠ f(X) ∣ XT , Y T ) ,

with W being the training set (XT , Y T ). Then (3.1) becomes the expected loss in (1.4).

The games modeled by statistical decision theory can, in fact, be sequential in nature, whereby the
statistician makes a sequence of intermediate decisions as well as a decision to terminate the process. We
refer to Blackwell and Girshick [10] for a wonderful exposition that brings together the theory of games
and statistical decision theory. For another detailed exposition see the book of Berger [7].

The introductory lecture was a wind-whirl trip of a dozen topics in learning, estimation, and opti-
mization. We will now formalize some of these problems through the lens of minimax in a way similar to
statistical decision theory. However, we will also discuss distribution-free scenarios alongside those based on
statistical models. Of special interest is the minimax formulation of sequential prediction with individual
sequences, as the blend of ideas from Game Theory and Statistical Learning Theory will yield some new
tools.
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28 Minimax Formulation of Learning Problems

3.1 Minimax Basics

Let us start by introducing the idea of games and minimax values. We only focus on zero-sum games,
where the loss of Player I is the reward of Player II and vice-versa. Let A be the set of moves of Player I
and B the set of available moves of Player II. Let `(a, b) be the loss of the first player when she chooses an
action a ∈ A while the opponent chooses b ∈ B. Here, ` ∶ A × B ↦ R is a known loss function.

As an example, take the penny-matching game, with A = B = {0,1} and `(a, b) = I{a ≠ b}. That is,
Player I suffers a loss of 1 if her chosen bit is not equal to the one chosen by the opponent. This game
has a clear symmetry. If the players make their moves simultaneously, nobody has an advantage, and 1/2
should be the reasonable “expected” loss of either of the players. But how does 1/2 surface? To which
question is this an answer?

Let us consider the optimal moves that the players should choose. Since Player I is trying to minimize
the loss (and the opponent – maximize), we can write down an expression

min
a∈A

max
b∈B

`(a, b).

Unfortunately, something is wrong with this expression, and it has to do with the fact that the inner
maximization can be done as a function of a. In the penny-matching game, b can always be chosen
opposite of a to ensure `(a, b) = 1. If we instead write maxbmina, Player I now has the advantage and
guarantees zero loss. This does not match our intuition that the game is symmetric.

But the problem is really with the fact that “min max” breaks simultaneity of the two moves and instead
puts them in order of their occurrence. (This order will play an important role for sequential problems we
will be discussing.) So, is there a way to write down simultaneous moves as a min max? The answer is yes,
but under some conditions.

Let Q be the set of distributions on A and P the set of distributions on B, and let us write the expression

V + ≜ min
q∈Q

max
b∈B

Ea∼q`(a, b). (3.2)

That is, the first player chooses his mixed strategy q and tells the second player “hey, you can choose b based
on this q”. It seems that we have gained nothing: the second player still has the advantage of responding
to the first player move, and simultaneity is not preserved. It turns out that, under some condition (which
definitely holds for finite sets A and B), the above minimax expression is equal to the maximin variant

V − ≜ max
p∈P

min
a∈A

Eb∼p`(a, b). (3.3)

Moreover, both of the expressions are equal to V = Ea∼q∗,b∼p∗`(a, b) for some (q∗, p∗). It becomes irrelevant
who makes the first move, as the minimax value is equal to the maximin value! In such a case, we say that
the game has a value V = V + = V −. We will be interested in conditions under which this happens, proving
a generalization of the von Neumann Minimax Theorem. The “minimax swap”, as we call it, will hold for
infinite sets of moves A and B. To avoid the issue of attainability of min and max, we shall always talk
about inf and sup.

Let us mention a few facts which are easy to verify. First, the inner maximization (minimization) is
often achieved at a pure strategy if it is followed by an expectation:

min
q∈Q

max
p∈P

Ea∼q,b∼p`(a, b) = min
q∈Q

max
b∈B

Ea∼q`(a, b)

and

max
p∈P

min
q∈Q

Ea∼q,b∼p`(a, b) = max
p∈P

min
a∈A

Eb∼p`(a, b)

because the minimum (maximum) of a linear functional is achieved at a vertex of the simplex (or set of
distributions). The second observation is:
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Lemma 3.1. If `(a, b) is convex in a and A is a convex set, then the outer minimization

min
q∈Q

max
b∈B

Ea∼q`(a, b) = min
a∈A

max
b∈B

`(a, b)

is achieved at a pure strategy.

Proof. We have

min
a′∈A

max
b∈B

`(a′, b) = min
q∈Q

max
b∈B

`(Ea∼qa, b) ≤ min
q∈Q

max
b∈B

Ea∼q`(a, b) ≤ min
a∈A

max
b∈B

`(a, b) .

As a rather trivial observation, note that upper bounds on the minimax value in (3.2) can be obtained
by taking a particular choice q for Player I, while lower bounds arise from any choice b ∈ B. Indeed, this is
the approach that we take. Throughout the course, we will take the side of Player I, associating her with
the Statistician (player, learner), whereas Player II will be Nature (or, adversary, opponent).

Now, let us consider a two-stage game where both players make the first moves a1 ∈ A and b1 ∈ B, learn
each other’s moves, and then proceed to the second round, choosing a2 ∈ A and b2 ∈ B. Suppose the payoff
is a function `(a1, b1, a2, b2). We can then write down the minimax expression

min
q1∈Q

max
b1∈B

Ea1∼q1 min
q2∈Q

max
b2∈B

Ea2∼q2`(a1, b1, a2, b2) (3.4)

We will study such long expressions in great detail throughout the course, so it is good to ponder upon its
form for a minute. Notice that the first-stage moves are written first, followed by the second-stage. This
is indeed correct: by writing the terms in such an order we allow, for instance, the choice of q2 to depend
on both a1 and b1. This corresponds to the protocol that was just described: both players observe each
other’s moves. In fact, any minimum or maximum in the sequence is calculated with respect to all the
variables that have been “chosen” so far. Informally, by looking at the above expression, we can say that
when Player II makes the second move, she “knows” the moves a1 and b1 at the first time step, as well
as the mixed strategy q1 of Player I at the second step. Based on these, the maximization over b2 can
be performed. As the expressions in future lectures involve many more than two stages, it is good to go
through the sequence and make sure each player “knows” not more and not less than he is supposed to.

Another way to think of the long minimax expression is via operators. To illustrate, `(a1, b1, a2, b2) is a
function of 4 variables. The inner expectation over a2 is an operator (defined by q2), mapping the function
` to a function of 3 variables. The maximization over b2 maps it to a function of 2 variables, and so forth.
When each stage involves the same sequence of operators (e.g. min maxE), we collapse the long sequence
of operators and write

⟪min
qi∈Q

max
bi∈B

Eai∼qi⟫
i=1,2

{`(a1, b1, a2, b2)} .

There is yet another way to write the multiple-stage minimax value, such as (3.4). Consider the second
move of the two players. For different a1, b1, the best moves a2, b2 might be different, and so we will write
the second-stage choice as a function of a1, b1. To avoid the issue of simultaneity, assume that both players
choose mixed strategy q2 = π2(a1, b1) and p2 = τ2(a1, b1), respectively. The first-stage decisions are trivial
constant mappings q1 = π1(), p1 = τ1(), but the later-stage decisions depend on the past. We can write
π = (π1, π2) and τ = (τ1, τ2) as two-stage strategies of the players. We can then rewrite (3.4) as

min
π

max
τ

Ea1∼π1Eb1∼τ1Ea2∼π2(a1,b1)Eb2∼τ2(a1,b1)`(a1, b1, a2, b2) ,

or, more succinctly as

min
π

max
τ

E`(a1, b1, a2, b2) . (3.5)

We say that the above expression is written in terms of strategies, while (3.4) is in the extensive form.
As we already observed, the maximization over τ will be achieved at a non-randomized strategy, resulting
in the simplified stochastic process that evolves according to the randomized choice of Player I and the
deterministic choice of Player II. We notice that π can be thought of as a joint distribution over sequences
(a1, a2).
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30 Minimax Formulation of Learning Problems

3.2 Defining Minimax Values for Learning Problems

In the statistical decision theory formulation with risk defined in (3.1), the Statistician move consists of

a decision rule f̂ , while Nature’s moves are the possible distributions P f parametrized by f ∈ F . The
minimax value can be written as

inf
f̂

sup
f∈F

E¯̀(f̂(W ), f) (3.6)

where the infimum is over all decision rules, and expectation is over W ∼ P f and the randomization of f̂ . If
` is convex in f̂ , the minimization can be taken over deterministic decision rules. This stems from a useful
fact that a randomized rule can be represented as a random draw from a distribution over deterministic
rules.

Statistical Learning Theory

We assume that data are an i.i.d. sample of T pairs {(Xi, Yi)}Ti=1 ∈ (X × Y)T a learning algorithm (or,

estimator, prediction rule) is a mapping f̂ ∶ (X × Y)T ↦ YX , where YX is the space of all measurable

functions X ↦ Y. We either write f̂(x;XT , Y T ) to make the dependence on data explicit, or simply f̂(x)
if the dependence is understood. Let P denote the set of all distributions on X × Y. Consider the case
of regression with squared loss. For the distribution-free setting of Statistical Learning Theory, define the
minimax value is

Viid,sq(F , T ) ≜ inf
f̂

sup
P ∈P

{E(f̂(X) − Y )2 − inf
f∈F

E(f(X) − Y )2} (3.7)

= inf
f̂

sup
P ∈P,f∈F

{E(f̂(X) − Y )2 −E(f(X) − Y )2} ,

where the expected value in the first term is over T+1 i.i.d. random variables (X1, Y1), . . . , (XT , YT ), (X,Y ).
Note that the supremum ranges over all distributions on (X ×Y ). The minimax objective Viid,sq(F , T ) is
defined above in terms of predictive risk relative to the risk of a reference class F . Alternatively, it can be
re-written as follows:

Viid,sq(F , T ) = inf
f̂

sup
P ∈P

{E∥f̂ − fP ∥2 − inf
f∈F

∥f − fP ∥2} (3.8)

= inf
f̂

sup
P ∈P,f∈F

{E∥f̂ − fP ∥2 − ∥f − fP ∥2}

where fP (x) = E[Y ∣X = x] is the mean function associated with P , and the norm ∥ ⋅∥ = ∥ ⋅∥L2(PX). Recalling
that ∥g∥2

L2(PX) = ∫ g2(x)PX(dx) = Eg2(X), we can easily verify the equivalence of (3.7) and (3.8). For

absolute loss, let us define the analogue of (3.7) as

Viid,ab(F , T ) ≜ inf
f̂

sup
P ∈P

{E ∣f̂(X) − Y ∣ − inf
f∈F

E ∣f(X) − Y ∣} (3.9)

and for general losses as

Viid(F , T ) ≜ inf
f̂

sup
P ∈P

{E`(f̂ , (X,Y )) − inf
f∈F

E`(f, (X,Y ))} (3.10)

Let us now consider the distribution-dependent PAC framework for classification and write down its
minimax value:

Vpac(F , T ) ≜ inf
f̂

sup
Pf

P (f̂(X) ≠ f(X)) = inf
f̂

sup
Pf

E ∣f̂(X) − f(X)∣ (3.11)
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3.2 Defining Minimax Values for Learning Problems 31

where Pf ranges over distributions given by PX×P fY ∣X with P f
Y ∣X=x = δf(x) for f ∈ F , a class of {0,1}-valued

functions. In the label noise scenario, the distribution P f
Y ∣X=x puts some mass on 1 − f(x).

As we go forward, it is important to think of V(F , T ) as a measure of complexity of F . If F = {f}
contains only one function, the values defined above are zero since we can simply set f̂ = f . On the opposite
end of the spectrum, the complexity V(YX , T ) of the set of all possible functions is, in general, impossible
to make small. One goal of this course is to understand how this value fares for function classes between
these two extremes, and to understand what other (easier-to-grasp) measures of complexity of F are related
to V(F , T ).

Nonparametric Regression

We would like to compare the minimax problems studied in nonparametric regression and in statistical
learning theory. Let F be a class of functions X ↦ Y. Let PX denote a marginal distribution on X . For f ∈
F , let Pf denote the distribution on X ×Y obtained as a product of some PX and a conditional distribution
of Y given X = x being a normal N(f(x), σ2) with mean f(x) and variance σ2. This corresponds to the
model Y = f(x) + ε, where ε ∼ N(0, σ2).

Let P0 = PF = {Pf ∶ f ∈ F} ⊂ P be a subset of all probability distributions whose regression function
f(x) = E[Y ∣X = x] is a member of F and the marginal distribution PX is either arbitrary or fixed (if it is
part of the design). A goal in nonparametric regression is to study the following minimax value

N(F , T ) ≜ inf
f̂

sup
Pf ∈PF

E∥f̂ − f∥2 (3.12)

for the norm ∥ ⋅ ∥ = ∥ ⋅ ∥L2(PX) and some σ. Once again, one can view N(F , T ) as a measure of complexity
of the set of distributions parametrized by F , with the two extremes (a single distribution and all possible
distributions) having, respectively, complexities of 0 and a positive constant.

Let us show that N(F , T ) ≤ Viid,sq(F , T ), that is, the goal of statistical learning is more difficult than
that of nonparametric regression (at least in the particular setting we mentioned). To see this, replace the
supremum in (3.8) by the supremum over the smaller class PF ⊂ P:

Viid,sq(F , T ) ≥ inf
f̂

sup
Pg∈PF

{E∥f̂ − fPg∥2 − inf
f∈F

∥f − fPg∥2}

= inf
f̂

sup
Pg∈PF

E∥f̂ − g∥2

= N(F , T )

where it is understood in the first equality that data is distributed according to Pg for some g ∈ F . The
second term is then clearly zero.

A question of interest is to study the gap between N(F , T ) and Viid,sq(F , T ). The advantage of
studying the latter quantity is that tools from empirical process theory (which we will cover in the next
few lectures) can be used to get upper bounds.

One can interpolate between the values defined in statistical learning and in nonparametric regression
by placing prior knowledge both in the comparator and in the set of possible distributions for nature:

Viid,sq(F ,P0, T ) ≜ inf
f̂

sup
P ∈P0

{E∥f̂ − fP ∥2 − inf
f∈F

∥f − fP ∥2} (3.13)

where P0 ⊆ P and does not have to necessarily match F .

Universal Data Compression and Conditional Probability Assignment

In the non-sequential minimax settings considered so far, the move of the Statistician is a strategy f̂ is
a mapping from data (e.g. (XT , Y T )) to the space of functions X ↦ Y. Another way to write this fact
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32 Minimax Formulation of Learning Problems

is f̂(⋅∣XT , Y T ) ∶ X ↦ Y. For sequential problems, we talk of strategies as a sequence of mappings f̂t
which depend on the prefix of data. A good example of this is universal data compression where each
f̂t ∶ Zt−1 ↦ ∆(Z) is a conditional distribution. Specifying the sequence of f̂t’s is the same as specifying a

joint probability distribution f̂ on sequences (z1, . . . , zT ). Hence, we can write the minimax value (without
the normalization by T ) via the T -fold KL divergence as

R+(F , T ) = inf
f̂

sup
f∈F

E{log
f(ZT )
f̂(ZT )

} = inf
f̂

sup
f∈F

D(f, f̂)

where the infimum is over joint distributions and the expectation is over ZT = (Z1, . . . , ZT ) distributed
according to f ∈ F . This minimax value is called the minimax redundancy in universal coding. The
maximin redundancy defined as

R−(F , T ) = sup
p∈∆(F)

inf
f̂
Ef∼pD(f, f̂)

is related to an information-theoretic notion of a capacity of a channel.

Sequential Prediction of Individual Sequences

In this setting, the move of the learner at time t is based on the knowledge of its own previous moves
and the outcomes z1, . . . , zt−1. Let us use πt to denote the deterministic mapping πt ∶ Zt−1 ↦ F̄ , where F̄
denotes the space of moves of the player. Note that we omitted the dependence on strategy’s own past
moves: they can be calculated from the moves of the opponent whenever the strategy is deterministic.

We write π = {πt}Tt=1 to denote a T -stage strategy. While ft = πt(zt−1) is the move of the player at
time t, we should be thinking of π ∈ Π as the single move in the T -stage game. This is the analogue of
providing an estimator f̂ for i.i.d. learning. Let Π be the space of all such deterministic strategies and
∆(Π) a distribution on this space (suppose for now that such an object exists). Then, minimax regret
against a single comparator and an oblivious adversary can be defined as

Vobliv(F , T ) = inf
p∈∆(Π)

sup
(z1,...,zT )∈ZT

Eπ∼p {
1

T

T

∑
t=1

`(πt(zt−1), zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt)} (3.14)

If F̄ = F , the set of our moves coincides with the set of moves against which the loss is to be compared.
In this case, the algorithm is said to be proper , and it is called improper if F̄ ≠ F . Improper learning is
often useful for computational purposes, though it is not known (at least to us) whether improper learning
is strictly more powerful than proper learning in terms of regret bounds. In our notation, F in V(F , T )
denotes the comparator term. For improper learning, we will point out the set of moves of the player.

What do we do if sequences are generated by an adaptive (non-oblivious) adversary? We have to define
strategies τ = {τt}Tt=1 with τt ∶ F t−1 ↦ Z for the adversary and interleave it with the strategy of the learner.
The minimax value can then be written as

V(F , T ) = inf
p∈∆(Π)

sup
τ

Eπ∼p {
1

T

T

∑
t=1

`(πt, τt) − inf
f∈F

1

T

T

∑
t=1

`(f, τt)}

where it is understood that πt and τt are functions defined recursively. Unfortunately, the above expression
hides too much interdependence which we would like to bring out. We argue that the above value is equal
to

V(F , T ) = inf
q1∈∆(F)

sup
z1∈Z

E
f1∼q1

inf
q2∈∆(F)

sup
z2∈Z

E
f2∼q2

. . . inf
qT ∈∆(F)

sup
zT ∈Z

E
fT ∼qT

{ 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt)} .

(3.15)
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The fact that these expressions are equal requires a proof, already motivated for T = 2 in the earlier section
on minimax basics. As discussed previously, our home-grown notation for the long sequence in (3.15) is

V(F , T ) = ⟪ inf
qt∈∆(F)

sup
zt∈Z

E
ft∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt)} (3.16)

In particular, the value for sequential prediction with absolute loss in the supervised setting is

Vab(F , T ) = ⟪ inf
qt∈∆(F)

sup
(xt,yt)

E
ft∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

∣ft(xt) − yt∣ − inf
f∈F

1

T

T

∑
t=1

∣f(xt) − yt∣} . (3.17)

It is sometimes assumed that xt is revealed to the learner before she is required to predict the label. Such
a formulation can be seen as an “improper learning” version of (3.17):

Vab(F , T ) = ⟪sup
xt

inf
qt∈∆(Y)

sup
yt

E
ŷt∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

∣ŷt − yt∣ − inf
f∈F

1

T

T

∑
t=1

∣f(xt) − yt∣} . (3.18)

The set F in the last expression refers to the comparator term, and the distributions qt are over the outcome
space Y. To see why this setting is equivalent to (3.17) with an improper choice of ft ∈ YX , observe that
we can decide on ŷt for each possible xt before actually observing it. This amounts to choosing a function
ft ∈ YX instead of F as in (3.17).

Finally, let us mention what would happen to (3.16) if instead of regret we considered the sum of our
losses without the comparator term:

⟪ inf
qt∈∆(F)

sup
zt∈Z

E
ft∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

`(ft, zt)} = 1

T

T

∑
t=1

inf
qt∈∆(F)

sup
zt∈Z

E
ft∼qt

`(ft, zt) = V + (3.19)

where V + is the minimax value (3.2) for the two player game with the payoff `(f, z). The first equality
comes from the fact that the rounds are completely decoupled. There is no learning to do, as both players
will play the optimal move. Not so in the setting of regret minimization: the comparator term forces us to
“learn” the strategy of the opponent. It is for this reason that we refer to regret minimization as “learning
in games” and study it within the realm of Learning Theory.

Online Convex Optimization

Using the observation that the infimum is achieved at pure strategies when the cost of the learner’s decision
is a convex function, we can rewrite all the minimax values of the previous general setting. In particular,
the oblivious case can be written as

Vobliv = inf
π

sup
(z1,...,zT )∈ZT

{ 1

T

T

∑
t=1

zt(πt(zt−1)) − inf
f∈F

1

T

T

∑
t=1

zt(f)}

where we remind the convention that `(f, z) is written as z(f).
The extended form with non-oblivious adversary becomes

Voco = inf
f1∈F

sup
z1∈Z

inf
f2∈F

sup
z2∈Z

. . . inf
fT ∈F

sup
zT ∈Z

{ 1

T

T

∑
t=1

zt(ft) − inf
f∈F

1

T

T

∑
t=1

zt(f)} (3.20)

= ⟪ inf
ft∈F

sup
zt∈Z

⟫
T

t=1

{ 1

T

T

∑
t=1

zt(ft) − inf
f∈F

1

T

T

∑
t=1

zt(f)} . (3.21)

3.3 No Free Lunch Theorems

The so-called “No Free Lunch Theorems” say that one cannot achieve uniform (in a certain sense) rates
under no assumptions on the problem. We will first demonstrate such a statement in the context of
statistical learning theory and nonparametric regression.
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34 Minimax Formulation of Learning Problems

3.3.1 Statistical Learning and Nonparametric Regression

As discussed before, the difference between the statistical learning formulation in (3.8) and the nonpara-
metric regression definition in (3.12) is in the way the prior assumption F appears in the objective. Absence
of an assumption corresponds to taking F = YX , the space of all (measurable) functions from X to Y. In
this case,

Viid,sq (YX , T ) = inf
f̂

sup
P ∈P

E∥f̂ − fP ∥2 (3.22)

where the supremum is over all distributions, while

N(YX , T ) = inf
f̂

sup
Pf

E∥f̂ − f∥2 (3.23)

where Pf ranges over all distributions with an arbitrary mean function f ∈ YX , but Y being distributed
as a gaussian with mean f(X). Both values Viid,sq (YX , T ) and N(YX , T ) can be lower bounded via a
simple argument. Let us focus on the former value, and the latter will follow. We employ the following
well-known lower bound, based on binary-valued functions.

Theorem 3.2. If ∣X ∣ ≥ 2T , it holds that

Viid,sq (YX , T ) ≥ 1

4
(3.24)

Proof. To lower-bound Viid,sq (YX , T ), let us pass to a smaller set of distributions PF ⊂ P, where F is

specified below. The distributions P f ∈ PF will be defined by a uniform marginal distribution PX supported
on a subset X ′ ⊂ X of size ∣X ′∣ = 2T , and the conditional P f

Y ∣X parametrized by f ∈ F via P f
Y ∣X=x = δf(x).

Let F consists of 22T functions taking on all possible configurations of values {0,1} on X ′ and defined as
f(x) = 0 on X ∖X ′. Then

Viid,sq (YX , T ) ≥ inf
f̂

sup
Pf ∈PF

E∣f̂(X) − f(X)∣

≥ inf
f̂
Eq {E{∣f̂(X) − f(X)∣ ∣ f}}

= inf
f̂
EXT ,X {Ef {∣f̂ (X;XT , f(XT )) − f(X)∣ ∣ X,XT }}

where q is a uniform distribution on F and f is distributed according to q. The equality follows by
exchanging the order of integration, which is possible because the distribution of Xt’s is independent of f .
The notation (XT , f(XT )) stands for {(Xt, f(Xt))}Tt=1. Consider the inner conditional expectation and let
us further condition on the event {X ∉XT } which holds with probability at least 1/2. For any f ∈ F there

is f ′ ∈ F which agrees with f on all of X ′ except X. However, f̂(X; (XT , f(XT ))) = f̂(X; (XT , f ′(XT ))),
and thus the expected loss is at least 1/2, given that X ∉XT . The statement follows.

Note that the simple construction of Theorem 3.2 corresponds to the setting of nonparametric regression
with a gaussian noise of zero variance. This, of course, makes the regression only easier, and thus the lower
bound of Theorem 3.2 is also applicable.

3.3.2 Sequential Prediction with Individual Sequences

We now turn to sequential prediction of individual sequences. The No-Free-Lunch Theorem is a simple
variation on the expression (3.19) without the comparator. To start, consider the value defined in (3.18) for
the supervised setting with absolute loss. Suppose we remove the prior knowledge of F . That is, as before
F = YX . Suppose for simplicity that Y = [−1,1]. Assuming xt’s are distinct, which we can do because we
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3.3 No Free Lunch Theorems 35

are exhibiting a strategy for the adversary in order to obtain a lower bound, we can always find a function
that perfectly fits the data. The value then becomes “comparator-less”, just as in (3.19):

Vab(YX , T ) = ⟪sup
xt

inf
qt∈∆(Y)

sup
yt

E
ŷt∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

∣ŷt − yt∣}

= ⟪ inf
qt∈∆(Y)

sup
yt

E
ŷt∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

∣ŷt − yt∣}

≥ ⟪ inf
qt∈∆(Y)

E
yt

E
ŷt∼qt

⟫
T

t=1

{ 1

T

T

∑
t=1

∣ŷt − yt∣}

where yt ∈ {±1} are i.i.d. Rademacher random variables (fair coin flips). Writing ∣ŷt − yt∣ = 1 − ŷt ⋅ yt,
exchanging the order of expectations, and unwinding the minimax value

⟪ inf
qt∈∆(Y)

E
yt

E
ŷt∼qt

⟫
T

t=1

{1 − 1

T

T

∑
t=1

ŷtyt} = ⟪ inf
qt∈∆(Y)

E
yt

E
ŷt∼qt

⟫
T−1

t=1

{ inf
qT ∈∆(Y)

E
ŷT ∼qT

E
yT

(1 − 1

T

T

∑
t=1

ŷtyt)}

= ⟪ inf
qt∈∆(Y)

E
yt

E
ŷt∼qt

⟫
T−1

t=1

{1 − 1

T

T−1

∑
t=1

ŷtyt}

we conclude that Vab (YX , T ) ≥ 1.
The i.i.d. coin flip strategy yt for the adversary is an example of an equalizer strategy: the move of the

learner becomes irrelevant. It turns out many lower bounds in learning theory arise in this way, and we
will revisit this idea several times in the course.
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4
Learnability, Oracle Inequalities, Model Selection, and
the Bias-Variance Trade-off

4.1 Statistical Learning

The No-Free-Lunch Theorem 3.2 for Statistical Learning says that, for any T , the value Viid,sq (YX , T )
cannot be made small. If we think of T as a fixed quantity, this lower bound should be taken seriously:
no matter what the learning algorithm f̂ is, there will be a distribution such that the expected loss
E(f̂(X)−Y )2 of the estimator will be much greater than the best achievable over all measurable functions
(which, for the case of square loss, is achieved at the regression (or, Bayes) function fP (x) = E[Y ∣X = x]).

The interpretation of Theorem 3.2 becomes quite murky when T is considered to be variable and
increasing to infinity. In this case, the construction of the lower bound is somewhat unsatisfying because
the “bad distribution” depends on T . The lower bound says that no matter what our learning rules
{f̂T ∶ (X ×Y)T ↦ YX} are, for any T there is a distribution on which f̂T performs unsatisfactory. One
can argue, however, that such a lower bound is overly pessimistic. It might still be possible that for any
particular distribution, with enough data the performance of our procedure will be good. Yes, for the
given T our estimator might be bad on a particular distribution, but if we eventually get better, then why
worry? In other words, the No Free Lunch Theorem does not exclude the possibility that for any particular
distribution, we can drive the difference E(f̂T (X) − Y )2 − inff∈YX E(f(X) − Y )2 to zero.

The subtlety between the two notions of learning is in the order of quantifiers. Specifically, the distinc-
tion boils down to existence of rates that hold uniformly for all distributions. To illustrate this, let us first
define a shorthand

L(f) ≜ E`(f, (X,Y )) (4.1)

where the expectation is with respect to (X,Y ). We have the following two possible definitions of “learn-
ability”:

Uniform Consistency
There exists a sequence {f̂t}∞t=1 of estimators, such that for any ε > 0, there exists Tε such that
for any distribution P ∈ P and T ≥ Tε,

EL(f̂T ) − inf
f∈YX

L(f) ≤ ε

The smallest value Tε = T (ε) is called sample complexity.
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Universal Consistency
There exists a sequence {f̂t}∞t=1 of estimators, such that for any distribution P ∈ P and any ε > 0,
there exists Tε such that for T ≥ Tε,

EL(f̂T ) − inf
f∈YX

L(f) ≤ ε

For a given P , the smallest value Tε = T (ε, P ) is called sample complexity.

The first notion will be called uniform consistency, while the second will be called universal consistency.1

The first can be written as

lim sup
T→∞

inf
f̂T

sup
P ∈P

{EL(f̂T ) − inf
f∈YX

L(f)} = 0

while the second as

inf
{f̂t}∞t=1

sup
P ∈P

lim sup
T→∞

{EL(f̂T ) − inf
f∈YX

EL(f)} = 0

The fact that uniform consistency is not possible without restricting the set P of distributions (as shown
in our lower bound of Theorem 3.2) is well known: there is no non-trivial uniform rate at which estimators
would converge to the regression function for all distributions simultaneously. Lower bounds in the study
of universal consistency are generally harder to obtain, and they are called individual lower rates. We refer
to [24] for a detailed exposition in the regression setting.

Let us illustrate the difference with an example.

Example 1. Let X = Y = [0,1] and P0 ⊂ P the set all distributions on X ×Y given by a uniform marginal

distribution PX and P f
Y ∣X = δf(x) for some continuous mean function f ∶ [0,1] ↦ [0,1]. Given T samples

{(Xt, f(Xt))}Tt=1, an estimator f̂ is a function [0,1] ↦ [0,1]. No matter what this function is, there is
another distribution with a very different mean function f ′ and the same marginal PX that passes through
the data, yet differs from f̂ . Hence, there is no hope for uniform consistency. However, suppose an arbitrary
P ∈ P is fixed. As we obtain more and more samples, we can approximate the mean function arbitrarily
well via kernel or other well-known methods, implying universal consistency.

Uniform and universal consistency can be defined with respect to a smaller class F ⊆ YX , in which case
the sample complexities are defined, respectively, as T (ε,F) and T (ε, P,F).

We now show that by modifying the comparison yardstick in the definition of Viid,sq (YX , T ), we can
pass from uniform to universal consistency. This observation will lead us directly to the ideas of model
selection and oracle inequalities. Since

V(YX , T ) = inf
f̂

sup
P ∈P

{EL(f̂T ) − inf
f∈YX

L(f)} (4.2)

cannot be made small (at least for the square loss) without restricting the set of models, let us redefine the
comparator term by making it larger. A particularly interesting modification (which seems rather arbitrary
right now, but will be explained in a few moments) is to consider

W (F , T ) = inf
f̂T

sup
P ∈P

{EL(f̂T ) −C inf
k

[ inf
f∈Fk

L(f) + pen(k, T )]} (4.3)

where F = ∪k≥1Fk is either all of YX , or a very large set of functions. The subdivision of the large class F
into “manageable” pieces {Fk} is called a sieve, and inequalities of the type

EL(f̂T ) ≤ C inf
k

[ inf
f∈Fk

L(f) + pen(k, T )] (4.4)

1The almost-sure (rather than in-probability) version of this statement is called universal strong consistency [21].
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are called oracle inequalities. We assume that pen(k, T )→ 0 as T increases. If C = 1, the oracle inequality
is called exact. It is typically assumed that F1 ⊆ F2 ⊆ . . . and pen(k, T ) is increasing with k.

We may think of Fk as nested models. The smaller the class, the easier it is to learn, yet the worse is
the comparison to the Bayes error. The first term in

{EL(f̂) − inf
f∈Fk

L(f)} + { inf
f∈Fk

L(f) − inf
f∈YX

L(f)} (4.5)

is known as the estimation error, and the second – as the approximation error, associated with the choice
of the model Fk. This is precisely a bias-variance trade-off. The choice of a good k is known as the model
selection problem. One may think of choosing among the set f̂1

T , f̂
2
T , . . . of estimators, where f̂kT is the

prediction rule associated with Fk.
If pen = 0 and C = 1, we get back (4.2), but for a nonzero penalty the goal (4.3) appears more viable,

as we subtract a larger value. But what is the meaning of this expression? The idea is that we cannot
compete with all functions in the large class ∪kFk with the same uniform rate: some functions are more
complex and require more data. This “complexity” is captured in the penalty function pen(k, T ).

We now show that a control on W (F , T ) guarantees universal consistency. Such a result is reassuring
because we can focus on obtaining oracle inequalities.

Lemma 4.1. If it holds that
lim sup
T→∞

W (F , T ) = 0

for W (F , T ) defined as an exact oracle (C = 1), then there exists a universally consistent estimator {f̂t}∞t=1.

Proof. Indeed,

0 = lim sup
T→∞

W (F , T ) ≥ inf
{f̂t}∞t=1

sup
P ∈P

lim sup
T→∞

{EL(f̂T ) − inf
k

[ inf
f∈Fk

L(f) + pen(k, T )]}

The inequality holds by exchanging the order of supP and the lim sup. We can now reason conditionally
on P . Assume that the minimizer f∗ = f∗(P ) = arg minf∈F E`(f, (X,Y )) belongs to some Fk∗ , where the
expected loss is with respect to (X,Y ) ∼ P . Since limT→∞ pen(k, T ) = 0, for any ε > 0 there exists Tε such
that pen(k∗, T ) ≤ ε for T ≥ Tε. For any such T ≥ Tε,

EL(f̂T ) − inf
k

[ inf
f∈Fk

L(f) + pen(k, T )] ≥ EL(f̂T ) − [ inf
f∈Fk∗

L(f) + pen(k∗, T )] ≥ EL(f̂T ) −L(f∗) − ε,

and the statement follows.

Oracle inequalities of the form (4.4) are interesting in their own right, without the implication of
universal consistency. An oracle inequality ensures that we are able to do almost as well as if an Oracle
told us the model class Fk to which f∗ belongs.

Of course, it remains to be seen whether W (F , T ) defined in (4.3) can be made small, and what kinds
of penalties one should use. These penalties can be distribution-independent, i.e. of the form pen(k, T ),
or distribution-dependent, i.e. of the form pen(k, T,P ). What is interesting, a distribution-independent
penalty pen(k, T ) should be roughly be on the order of the value V(Fk, T ). While not immediately
apparent, it is indeed a good rule of thumb: the penalty should roughly correspond to a measure of
“complexity” of Fk. Of course, the penalty can be larger than that since it only makes it easier to show
decay of W (F , T ). But a penalty too large leads to less meaningful statements. A penalty too small will
make it impossible to ensure smallness of W (F , T ).

Let us sketch an argument showing that the penalty should be at least on the order of the value
V(Fk, T ). Suppose that lim supT→∞W (F , T ) = 0, where C = 1 and pen(k, T ) = V(Fk, T ) − ψ(k, T ) for
some nonnegative ψ. In other words, we are assuming that the penalty is smaller by some amount ψ(k, T )
than the difficulty of learning Fk in a distribution-free manner. We would like to argue that ψ(k, T )
cannot be an “interesting” function of k that captures any dependence beyond what is already captured
by V(Fk, T ).
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40 Learnability, Oracle Inequalities, Model Selection, and the Bias-Variance Trade-off

Lemma 4.2. If it holds that

lim sup
T→∞

W (F , T ) = 0

for C = 1, and pen(k, T ) = V(Fk, T )−ψ(k, T ) for some nonnegative ψ is a distribution-independent penalty
function, then

lim sup
T→∞

sup
k
ψ(k, T ) ≤ 0

Proof. Denoting f∗k ≜ arg minf∈Fk L(f), we have

W (F , T ) = inf
f̂T

sup
P ∈P

{EL(f̂T ) − inf
k

[L(f∗k ) + V(Fk, T ) − ψ(k, T )]}

= inf
f̂T

sup
k

sup
P ∈P

⎧⎪⎪⎨⎪⎪⎩
EL(f̂T ) −L(f∗k ) − inf

f̂k
T

sup
P ′∈P

[EL(f̂kT ) −L(f∗k )] + ψ(k, T )
⎫⎪⎪⎬⎪⎪⎭

= inf
f̂T

sup
f̂k
T

sup
k

[sup
P ∈P

{EL(f̂T ) −L(f∗k )} − sup
P ′∈P

{EL(f̂kT ) −L(f∗k )} + ψ(k, T )]

where f̂kT in the definition of V(Fk, T ) is given the knowledge of k. Clearly, this knowledge should not hurt,
so the difference of the two suprema is non-negative. Since the limsup of W (F , T ) is zero, the statement
follows. Thus, ψ(k, T ) has to have a uniform rate of decay (for each k) in terms of T . Thus, in the
asymptotic sense, ψ(k, T ) cannot capture any non-trivial dependence on k.

In this somewhat hand-waving argument, we conclude that distribution-independent penalties used in
W (F , T ) should be upper bounds on V(Fk, T ). Can we show that W (F , T ) is in fact controlled if the
penalty is defined as pen(k, T ) = V(Fk, T )? The answer is yes. Suppose that F1 ⊆ F2 ⊆ . . .. The particular
method we will use is penalized empirical risk minimization:

f̂ = arg min
f

{ 1

T

T

∑
t=1

`(f, (Xt, Yt)) + p̃en(f)} (4.6)

where

p̃en(f) ≜ {V(Fk, T ) ∶ k = inf{k ∶ f ∈ Fk}} .

This method guarantees W (F , T ) → 0 under some reasonable assumptions, but we will postpone the
discussion until later in the course.

While pen(k, T ) is a distribution-independent penalty, one can obtain better bounds with distribution-
dependent penalties pen(k, T,P ). These, in turn, lead to data-dependent penalties p̂en that can be used
in (4.6). There is a large body of literature on such penalties, and a formal understanding of the types
of penalties one can use is an interesting subject. We refer to [4, 37] and [33] for more insights. What is
important to note for us is that the tools required for understanding data-dependent penalties in fact arise
from the study of each Fk, a “manageable” part of the larger set. These basic tools will be introduced in
the next few lectures, and we will return to oracle inequalities towards the end of the course. We will also
prove oracle inequalities for the sequential prediction setting with individual sequences.

P Exercise (⋆ ⋆ ⋆): Suppose F = ∪i∈NFi is a countable union, and the learning problem with each Fi
is Uniformly Consistent. Prove that the learning problem with respect to F is Universally Consistent.

4.2 Sequential Prediction

The definitions of Universal and Uniform Consistency in the setting of Statistical Learning have their
analogues in the study of Sequential Prediction.
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Let regret with respect to f ∈ F be defined as

RegT (f) =
1

T

T

∑
t=1

`(ft, zt) −
1

T

T

∑
t=1

`(f, zt)

Uniform Sequential Consistency
There exists a strategy for the learner such that for any ε > 0, there exists Tε such that for any
T ≥ Tε, irrespective of Nature’s strategy, the regret RegT (f) with respect to any f ∈ F is at
most ε in expectation, that is

E sup
f∈F

RegT (f) ≤ ε

Universal Sequential Consistency
There exists a strategy for the learner such that for any f ∈ F and any ε > 0, there exists
Tε such that for T ≥ Tε, irrespective of Nature’s strategy, the regret RegT (f) is at most ε in
expectation, that is

ERegT (f) ≤ ε

We remark that the notion of Hannan consistency (as defined, for instance, in [16]), is equivalent
to Uniform Sequential Consistency that holds almost surely instead of in expectation. For the sake of
conciseness, we do not expand on the “almost sure” or “in probability” definitions.

Many of the results of the previous section on model selection and oracle inequalities can be extended
in the straightforward way to the case of sequential prediction, and we will touch upon these at the end of
the course, time permitting. An exercise on page 110 asks to prove an analogue of the last exercise in the
previous section, now in the setting of sequential prediction.

4.3 Remarks

The minimax formulation is a succinct way to represent the problem. Once written down, it is clear what
are the sets of moves of the Statistician and Nature, who makes the first move, and whether the distribution
is allowed to be changed for each T . Furthermore, it is possible to compare different minimax values with
different sets of moves of Nature and Statistician.

Let us mention that the minimax viewpoint is not always the most interesting object of study. In
particular, much interest in statistical learning theory is in obtaining data-dependent bounds, a key step
towards oracle inequalities and model selection discussed above. These would not be possible if we pass
to the worst distribution. However, one can argue that the data-dependent bound can be incorporated
into the minimax framework. To illustrate this point, let us consider the value defined in (3.9) for i.i.d.
supervised learning. Instead of

inf
f̂

sup
P ∈P

{E`(f̂ , (X,Y )) − inf
f∈F

E`(f, (X,Y ))} (4.7)

it is quite desirable to get data-dependent bounds of the form

E{`(f̂ , (X,Y )) ∣ XT , Y T } − inf
f∈F

E`(f, (X,Y )) ≤ Ψ(F ,XT , Y T )

for some function Ψ. While it is often possible to include such a data-dependent bound in a minimax
formulation through, for instance, a uniform bound on a ratio of the deviation to Ψ, we will avoid such
complications. It is important to note that data-dependent upper bounds can often be isolated as inter-
mediate steps in proving minimax bounds. This will be the case when we study statistical learning in
depth.
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5
Stochastic processes, Empirical processes, Martingales,
Tree Processes

Learning theory is intimately related to the study of stochastic processes. Statistical learning is concerned
with empirical and Rademacher processes, while the study of sequential prediction, as we will see soon,
involves a martingale-type processes. Think of this part of the course as a bag of tools we need to study
the values of various learning problems introduced earlier.

5.1 Motivation

Let us first motivate the need to study stochastic processes in the settings of statistical learning and
sequential prediction.

5.1.1 Statistical Learning

For the setting of statistical learning, the motivation is quite simple. Consider the value Viid(F , T ) defined

in (3.10). Let us take a particular estimator f̂ , namely the empirical risk minimizer (ERM)

f̂ = arg min
f∈F

L̂(f), where L̂(f) ≜ 1

T

T

∑
t=1

`(f, (Xt, Yt)).

Denoting

f∗ = arg min
f∈F

L(f)

we have for any (XT , Y T ),

L(f̂) − inf
f∈F

L(f) = {L(f̂) − L̂(f̂)} + {L̂(f̂) − L̂(f∗)} + {L̂(f∗) −L(f∗)} . (5.1)

The second term is negative by the definition of f̂ , and the third term is zero in expectation over (XT , Y T ).
Hence

EL(f̂) − inf
f∈F

L(f) ≤ E{L(f̂) − L̂(f̂)} ≤ E sup
f∈F

{L(f) − L̂(f)} (5.2)

As we will see later in the lecture, the last quantity is the expected supremum of an empirical process.
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5.1.2 Sequential Prediction

Instead of a full-blown T -round prediction problem, let us consider the two-round game discussed in the
previous section. Recall that the players make moves (a1, b1) at the first step, and then (a2, b2) at the next
step. Consider the minimax value defined in (3.4), and suppose it is equal to the maximin value

sup
p1∈P

inf
a1∈A

Eb1∼p1 sup
p2∈P

inf
a2∈A

Eb2∼p2`(a1, b1, a2, b2)

Since the object of sequential prediction studied so far is regret, we set

`(a1, b1, a2, b2) = `(a1, b1) + `(a2, b2) − inf
a∈A

{`(a, b1) + `(a, b2)} .

We can now write the value of the two-stage game as

sup
p1∈P

inf
a1∈A

Eb1∼p1 sup
p2∈P

inf
a2∈A

Eb2∼p2 {`(a1, b1) + `(a2, b2) − inf
a∈A

{`(a, b1) + `(a, b2)}}

= sup
p1∈P

inf
a1∈A

Eb1 [`(a1, b1) + sup
p2∈P

inf
a2∈A

{Eb2`(a2, b2) −Eb2 inf
a∈A

{`(a, b1) + `(a, b2)}}]

= sup
p1∈P

[ inf
a1∈A

Eb1`(a1, b1) +Eb1 sup
p2∈P

{ inf
a2∈A

Eb2`(a2, b2) −Eb2 inf
a∈A

{`(a, b1) + `(a, b2)}}]

= sup
p1∈P

Eb1 sup
p2∈P

Eb2 [ inf
a1∈A

Eb1`(a1, b1) + inf
a2∈A

Eb2`(a2, b2) − inf
a∈A

{`(a, b1) + `(a, b2)}]

≤ sup
p1∈P

Eb1 sup
p2∈P

Eb2 sup
a∈A

[Eb1`(a, b1) +Eb2`(a, b2) − {`(a, b1) + `(a, b2)}]

where in the last step we replaced the infima over a1 and a2 with the particular choice a from the third
term. The operator supp1∈P Eb1 supp2∈P Eb2 can be simply written as suppE(b1,b2)∼p where p is a joint
distribution. Hence, the value of the game is upper bounded by

sup
p

E(b1,b2) sup
a∈A

{Eb1∼p1`(a, b1) − `(a, b1) +Eb2∼p2(⋅∣b1)`(a, b2) − `(a, b2)} , (5.3)

and p2(⋅∣b1) is the conditional distribution on b2 given b1.
We have arrived at an expression which can be recognized as the expected supremum of a stochastic

process. Those familiar with the subject observe that the two differences in the last expression form a
(rather short) martingale difference sequence. Unlike the statistical learning scenario, the process appears
to be non-i.i.d. Next, we precisely define various stochastic processes, and then proceed to study their
properties. Equipped with some basic inequalities, we will turn to the study of the suprema of the relevant
processes.

Before proceeding, let us agree on some notation. Whenever talking about abstract processes, we
will refer to F as the function class. For learning applications, however, the function class is really
`(F) ≜ {`(f, ⋅) ∶ f ∈ F}. We can always switch between the two by thinking of ` ○ f = `(f, ⋅) as our
functions on Z = X ×Y. For the abstract study of stochastic processes, this distinction will be immaterial.

5.2 Defining Stochastic Processes

Definition 5.1. Let (Ω,A,P) be a probability space. A real-valued random variable U is a measurable
mapping Ω ↦ R. A stochastic process is a collection {Us ∶ s ∈ S} of random variables on Ω indexed by a
set S.

More generally, we can define B-valued random variables for B = Rd or some abstract Banach space B.
In such a case, a random variable is a measurable map from (Ω,A,P) into B equipped with Borel σ-algebra
generated by the open sets of B [35].
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A stochastic process is defined through its state space (that is, R or B), the index set S, and the joint
distributions of the random variables. If S is infinite, care should be taken to ensure measurability of
events. In this course, we will omit these complications, and assume that necessary conditions hold to
ensure measurability.

The first important stochastic process we study is the one that arises from averaging over i.i.d. data:

Definition 5.2. An empirical process is a stochastic process {Gf} indexed by a function class f ∈ F and
defined as

Gf ≜
1

T

T

∑
t=1

(Ef(Z) − f(Zt)) = E(f) − Ê(f)

where Z1, . . . , ZT , Z are i.i.d. (Oftentimes in the literature, the normalization factor is 1√
T

instead of 1
T

).

Definition 5.3. A random variable ε taking on values {±1} with equal probability is called a Rademacher
random variable.1

Definition 5.4. Let ε1, . . . , εT ∈ {±1} be independent Rademacher random variables. A Rademacher
process is a stochastic process {Sa} indexed by a set F ⊂ RT of vectors a ∈ F and defined as

Sa ≜
1

T

T

∑
t=1

εtat

Given data zT = {z1, . . . , zT } ∈ ZT and a class F of functions Z ↦ R, we define the Rademacher process
on F as

Sf ≜
1

T

T

∑
t=1

εtf(zt)

for f ∈ F . Since zT is fixed, we may think of a = (f(z1), . . . , f(zT )) as a vector that corresponds to
f , matching the earlier definition. From this point of view, the behavior of the functions outside zT is
irrelevant, and we may view the set

F = F ∣(z1,...,zT ) = {(f(z1), . . . , f(zT )) ∶ f ∈ F} (5.4)

as the finite-dimensional projection of the function class F onto zT .
The processes defined so far are averages of functions of independent random variables. We now bring

in the notion of temporal dependence, which will play an important role for the analysis of sequential
prediction problems.

Definition 5.5. Let S = {0,1,2, . . . ,}. A stochastic process {Us} is a discrete-time martingale if

E{Us+1 ∣ U1, . . . , Us} = Us

and E∣Us∣ < ∞ for all s ∈ S. More generally, a stochastic process {Us} is a martingale with respect to
another stochastic process {Vs} if

E{Us+1 ∣ V1, . . . , Vs} = Us
and E∣Us∣ <∞. A stochastic process {Us} is a martingale difference sequence (MDS) if

E{Us+1 ∣ V1, . . . , Vs} = 0

for some stochastic process {Vs}. Any martingale {Vs} defines a martingale difference sequence Us =
Vs − Vs−1.

We now define a “dependent” version of the i.i.d. empirical process.

1Did you know that Hans Adolph Rademacher (1892-1969) was a professor here at UPenn?
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Definition 5.6. An empirical process with dependent data is a stochastic process {Mf} indexed by a
function class f ∈ F and defined as

Mf ≜
1

T

T

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt))

where (Z1, . . . , ZT ) is a discrete-time stochastic process with a joint distribution P .

Clearly, the sequence {E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)} is a martingale-difference sequence for any f .

Furthermore, the notion of an empirical process with dependent data boils down to the classical notion if
Z1, . . . , ZT are i.i.d.

When specifying martingales, we can talk more generally about filtrations, defined as an increasing
sequence of σ-algebras

A0 ⊂ A1 ⊂ . . . ⊂ A.
A martingale is then defined as a sequence of As-measurable random variables Us such that E{Us+1 ∣ As} =
Us.

Of particular interest is the dyadic filtration {At} on Ω = {−1,1}N given by At = σ(ε1, . . . , εt), where
εt’s are independent Rademacher random variables. Fix Z-valued functions zt ∶ Ωt−1 ↦ Z for all t ≥ 1.
Then the random variables zt(ε1, . . . , εt−1) are At−1-measurable with respect to the dyadic filtration, and
the discrete-time stochastic process

{εtzt(ε1, . . . , εt−1)}

is a martingale difference sequence. Indeed,

E{εtzt(ε1, . . . , εt−1) ∣ ε1, . . . , εt−1} = 0 .

A sequence z = (z1, . . . ,zT ) is called a Z-valued tree.

Example 2. To give a bit of intuition about the tree and the associated martingale difference sequence,
consider a scenario where we start with a unit amount of money and repeatedly play a fair game. At each
stage, we flip a coin and either gain or lose half of our current amount. So, at the first step, we either
lose 0.5 or gain 0.5. If we gain 0.5 (for the total of 1.5) the next differential will be ±0.75. If, however, we
lost 0.5 at the first step, the next coin flip will result in a gain or loss of 0.25. It is easy to see that this
defines a complete binary tree z. Given any prefix, such as (1,−1,1), the gain/loss z4(1,−1,1) at round 4
is determined. The sum ∑Tt=1 εtzt(ε1, . . . , εt−1) determines the total payoff.

We may view the martingale {Us} with

Us =
s

∑
t=1

εtzt(ε1, . . . , εt−1)

as a random walk with symmetric increments ±zs which depend on the path that got us to this point. Such
martingales are known as the Walsh-Paley martingales. Interestingly enough, these martingales generated
by the Rademacher random variables are, in some sense, “representative” of all the possible martingales
with values in Z. We will make this statement precise and use it to our advantage, as these tree-based
martingales are much easier to deal with than general martingales.

A word about the notation. For brevity, we shall often write zt(ε), where ε = (ε1, . . . , εT ), but it is
understood that zt only depends on the prefix (ε1, . . . , εt−1).

Now, given a tree z and a function f ∶ Z ↦ R, we define the composition f ○ z as a real-valued tree
(f ○ z1, . . . , f ○ zT ). Each f ○ zt is a function {±1}t−1 ↦ R and

{εtf(zt(ε1, . . . , εt−1))}

is also a martingale-difference sequence for any given f .
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Definition 5.7. Let ε1, . . . , εT ∈ {±1} be independent Rademacher random variables. Given a tree z, a
stochastic process {Tf} defined as

Tf ≜
1

T

T

∑
t=1

εtf(zt(ε1, . . . , εt−1))

will be called tree process indexed by F .

Example 2, continued Let f be a function that gives the level of excitement of a person observing his
fortune Us going up and down, as in the previous example. If the increment zt at the next round is large,
the person becomes very happy (large +f(zt)) upon winning the round, and very unhappy −f(zt) upon
losing. A person who does not care about the game might have a constant level f(zt) = 0 throughout
the game. On the other extreme, suppose someone becomes agitated when the increments zt become
close to zero, thus having a large ±f(zt) ups and downs. Suppose F contains the profiles of a group
of people observing the same outcomes. An interesting object of study is the largest cumulative level
supf∈F ∑Tt=1 εtf(z(ε1, . . . , εt−1)) after T rounds.

We may view the tree process Tf as a generalization of the Rademacher process Sf . Indeed, suppose
z = (z1, . . . ,zT ) is a sequence of constant mappings such that zt(ε1, . . . , εt−1) = zt for any (ε1, . . . , εt−1). In
this case, Tf and Sf coincide. Generally, however, the tree process can behave differently (in a certain
sense) from the Rademacher process. Understanding the gap in behavior of the two processes will have an
implication on the understanding of learnability in the i.i.d. and adversarial models.

5.3 Application to Learning

Turning to the setting of statistical learning theory, we see from (5.2) that the excess loss of the empirical
minimizer is upper bounded by

EL(f̂) − inf
f∈F

L(f) ≤ E sup
f∈F

{L(f) − L̂(f)} = E sup
g∈`(F)

Gg, (5.5)

the expected supremum of the empirical process indexed by the loss class. Thus, to obtain upper bounds
on the excess loss EL(f̂) − inff∈F L(f) of empirical risk minimizer it is sufficient to obtain upper bounds
on the expected supremum of the empirical process. Furthermore, a distribution-independent upper bound
on the expected supremum leads to an upper bound on the minimax value.

Theorem 5.8. Let f̂ be the ERM algorithm. Then

EL(f̂) − inf
f∈F

L(f) ≤ E sup
g∈`(F)

Gg, (5.6)

and hence

Viid(F , T ) ≤ sup
P

{EL(f̂) − inf
f∈F

L(f)} ≤ sup
P

⎧⎪⎪⎨⎪⎪⎩
E sup
g∈`(F)

Gg
⎫⎪⎪⎬⎪⎪⎭

(5.7)

Now, consider the setting of sequential prediction with individual sequences. The proof given in Sec-
tion 5.1.2 for T = 2 can be readily generalized for any T , and we then arrive at the following upper bound
on the value V(F , T ) defined in (3.15) :

Theorem 5.9. The value of the sequential prediction problem is upper bounded as

V(F , T ) ≤ sup
P

{E sup
f∈F

1

T

T

∑
t=1

(E{`(f,Zt) ∣ Zt−1} − `(f,Zt))} = sup
P

⎧⎪⎪⎨⎪⎪⎩
E sup
g∈`(F)

Mg

⎫⎪⎪⎬⎪⎪⎭
(5.8)

where the supremum is over all joint distributions P on sequences (Z1, . . . , ZT ).
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The next key step is to pass from the stochastic processes Gg and Mg to the simpler processes Sg and
Tg which are generated by the Rademacher random variables. The latter two processes turn out to be
much more convenient. To make this happen, we appeal to the so-called symmetrization technique.

5.4 Symmetrization

We now employ a symmetrization device to pass from the supremum of the empirical process to the
supremum of the Rademacher process.

Theorem 5.10. For a class F of functions bounded by C, the expected suprema of empirical and Rademacher
processes satisfy

E sup
f∈F

∣Gf ∣ ≤ 2E sup
f∈F

∣Sf ∣

and the same statement holds without absolute values. Furthermore,

E sup
f∈F

∣Gf ∣ ≥
1

2
E sup
f∈F

∣Sf ∣ −
C

2
√
T

For symmetric classes, the statement without absolute values and without the negative term.

Proof. We prove the statement without the absolute values. Observe that

E sup
f∈F

Gf = E sup
f∈F

{Ef(Z) − 1

T

T

∑
t=1

f(Zt)}

= E sup
f∈F

{E [ 1

T

T

∑
t=1

f(Z ′
t)] −

1

T

T

∑
t=1

f(Zt)}

where the “ghost sample” Z ′
1, . . . , Z

′
T is i.i.d. and all Z ′

t’s have the same distribution as Zt’s. By exchanging
supremum and the expectation over the ghost sample, we arrive at an upper bound

E sup
f∈F

Gf ≤ E sup
f∈F

{ 1

T

T

∑
t=1

(f(Z ′
t) − f(Zt))}

where the expectation is now over the double sample. And now for the tricky part. Let us define a function
h as

h(Z1, . . . , ZT , Z
′
1, . . . , Z

′
T ) = sup

f∈F
{ 1

T

T

∑
t=1

(f(Z ′
t) − f(Zt))} .

Then for any fixed sequence (ε1, . . . , εT ) ∈ {±1}T , the expression

sup
f∈F

{ 1

T

T

∑
t=1

εt(f(Z ′
t) − f(Zt))}

is simply a permutation of the coordinates of h(Z1, . . . , ZT , Z
′
1, . . . , Z

′
T ). To illustrate, consider

g(1,1, . . . ,1) = h(Z1, Z2, . . . , ZT , Z
′
1, Z

′
2, . . . , Z

′
T )

while
g(−1,1, . . . ,1) = h(Z ′

1, Z2, . . . , ZT , Z1, Z
′
2, . . . , Z

′
T ) .

The sequence of signs permutes the respective pairs of coordinates of the function h. But since all the
random variables are independent and identically distributed, any such permutation hardly changes the
expectation with respect to the data. Hence,

E sup
f∈F

{ 1

T

T

∑
t=1

(f(Z ′
t) − f(Zt))} = E sup

f∈F
{ 1

T

T

∑
t=1

εt(f(Z ′
t) − f(Zt))}
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with the expectation over the double sample and over the Rademacher random variables ε1, . . . , εT . We
now split the expression into two suprema:

E sup
f∈F

{ 1

T

T

∑
t=1

εt(f(Z ′
t) − f(Zt))} ≤ E sup

f∈F
{ 1

T

T

∑
t=1

εtf(Z ′
t)} +E sup

f∈F
{ 1

T

T

∑
t=1

−εtf(Zt)}

= 2E sup
f∈F

{ 1

T

T

∑
t=1

εtf(Z ′
t)}

because the distributions of −εt and εt are the same. We have arrived at

E sup
f∈F

Gf ≤ E{E{sup
f∈F

1

T

T

∑
t=1

εtf(Zt) ∣ Z1, . . . , ZT}}

= 2E{E{sup
f∈F

Sf ∣ Z1, . . . , ZT}}

= 2E sup
f∈F

Sf

The other direction also holds:

E sup
f∈F

∣Sf ∣ = E{sup
f∈F

∣ 1

T

T

∑
t=1

εtf(Zt)∣}

= E{sup
f∈F

∣ 1

T

T

∑
t=1

(εt(f(Zt) −Ef(Z)) + εtEf(Z))∣}

≤ E{sup
f∈F

∣ 1

T

T

∑
t=1

εt(f(Zt) −Ef(Z))∣} +E ∣( 1

T

T

∑
t=1

εt) sup
f∈F

Ef(Z)∣ ,

and the last term is upper bounded by ∣ supf∈F Ef ∣
√

1
T

. We now proceed to introduce a ghost sample and

then eliminate the random signs in the same way as they were initially introduced.

E{sup
f∈F

∣ 1

T

T

∑
t=1

εt(f(Zt) −Ef(Z))∣} ≤ E{sup
f∈F

∣ 1

T

T

∑
t=1

εt(f(Zt) − f(Z ′
t))∣}

= E{sup
f∈F

∣ 1

T

T

∑
t=1

(f(Zt) − f(Z ′
t))∣}

≤ 2E{sup
f∈F

∣ 1

T

T

∑
t=1

(Ef(Z) − f(Zt))∣}

If the class F is symmetric, then performing the same steps without the absolute values we see that the
term E{( 1

T ∑
T
t=1 εt) supf∈F Ef(Z)} = 0, and symmetry is invoked in the last step.

We now apply the symmetrization technique to the empirical process with dependent data. Note that
any such process is an average of martingale difference sequences (MDS).

The symmetrization argument for MDS is more delicate than the one for the i.i.d. case, as swapping Zt
and Z ′

t changes every history for martingale differences with index greater than t. The very same problem
has been previously experienced by the characters of “The End of Eternity” (by Isaac Asimov): by traveling
into the past and changing it, the future is changed as well. One way to go around this conundrum is to
pass to the worst-case future, a pessimistic yet instructive approach. For this purpose, we will perform
symmetrization from inside out and pass to the worst-case martingale difference sequence.

Theorem 5.11. The following relation holds between the empirical process with dependent data and the
tree process:

E sup
f∈F

Mf ≤ 2 sup
z

E sup
f∈F

Tf (5.9)
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50 Stochastic processes, Empirical processes, Martingales, Tree Processes

where the supremum is taken over all Z-valued binary trees of depth T . Furthermore,

1

2
(sup

z
E sup
f∈F

Tf −
C√
T
) ≤ sup

MDS
E sup
f∈F

Mf ≤ 2 sup
z

E sup
f∈F

Tf (5.10)

where C = supf∈F ∣f ∣∞.

Proof. By definition,

E sup
f∈F

Mf = E sup
f∈F

1

T

T

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)) (5.11)

Omitting the normalization factor T , let us do the argument for the last time step T :

E sup
f∈F

{
T−1

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)) + (E{f(ZT ) ∣ Z1, . . . , ZT−1} − f(ZT ))}

≤ E sup
f∈F

{
T−1

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)) + (f(Z ′
T ) − f(ZT ))}

= E sup
f∈F

{
T−1

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)) + εT (f(Z ′
T ) − f(ZT ))}

where it is important to keep in mind that Z ′
T and ZT are (conditionally) independent and distributed

identically given Z1, . . . , ZT−1. We now make a very bold step. We upper bound the last quantity by the
supremum over Z ′

T and ZT :

E sup
zT ,z′T ∈Z

EεT sup
f∈F

{
T−1

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)) + εT (f(z′T ) − f(zT ))}

Certainly, this is allowed since the expectation can only be smaller. What have we achieved? When we do
the same trick for T − 1, there will be no random variable with a distribution that depends on ZT−1. That
is, by passing to the worst-case zt’s we can always perform symmetrization for the previous time step. For
T − 2, we obtain an upper bound of

E sup
zT−1,z′T−1

EεT−1 sup
zT ,z′T

EεT sup
f∈F

{
T−2

∑
t=1

(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt))

+εT−1(f(z′T−1) − f(zT−1)) + εT (f(z′T ) − f(zT ))}

Proceeding in this manner, we get an upper bound of

sup
z1,z′1

Eε1 sup
z2,z′2

Eε2 . . . sup
zT ,z′T

EεT sup
f∈F

{
T

∑
t=1

εt(f(z′t) − f(zt))} ≤ 2 sup
z1

Eε1 sup
z2

Eε2 . . . sup
zT

EεT sup
f∈F

{
T

∑
t=1

εtf(zt)}

(5.12)

“Abandon all hope, ye who enter here”, you might say, as we seem to have lost all the randomness of
Zt’s and replaced them with some worst-case deterministic choices. Let us examine the T th operator
EZT ,Z′TEεT , which we replaced with supzT ,z′T

EεT . Had we instead used EεT supzT ,z′T
, the resulting value

would indeed be too large. However, if the zt’s are chosen before the sign εT is drawn, we still have the
hope that the εT ’s are carrying enough “randomness”. Indeed, the dyadic (Walsh-Paley) martingales are
“representative” of all the martingales, as this proof shows.

Now, we claim that the right-hand side of (5.12) is nothing but a tree process for the worst-case tree.
Indeed, the first supremum is achieved at some z∗1 ∈ Z. The second supremum is achieved at z∗2(+1) if
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5.5 Defining Rademacher Averages 51

ε1 = +1 and at some potentially different value z∗2(−1) if ε1 = −1. Proceeding in this manner, it is not
difficult to see that

sup
z1

Eε1 sup
z2

Eε2 . . . sup
zT

EεT sup
f∈F

{
T

∑
t=1

εtf(zt)} = sup
z

Eε1,...,εT sup
f∈F

{
T

∑
t=1

εtf(zt(ε1, . . . , εt−1))} (5.13)

= T sup
z

E sup
f∈F

Tf

Conclusion of Theorem 5.11: the expected supremum of the worst-case empirical process with
dependent data is within a factor of 2 from the expected supremum of the worst-case tree process.
That is, when it comes to studying the supremum, the dyadic martingales are representative of
all the martingales.

5.5 Defining Rademacher Averages

The expected supremum of the Rademacher and tree processes is so important in our developments that
we will give it a special name.

Definition 5.12. The expected supremum of a Rademacher process

Riid(F) ≜ E sup
f∈F

Sf = E{sup
f∈F

1

T

T

∑
t=1

εtf(Zt)} (5.14)

is variably called Rademacher averages or Rademacher complexity of a class F . Define conditional Rademacher
averages as

R̂iid(F ∣Z1, . . . , ZT ) ≜ E{sup
f∈F

1

T

T

∑
t=1

εtf(Zt) ∣ Z1, . . . , ZT} , (5.15)

where the expectation is only with respect to the i.i.d. Rademacher random variables ε1, . . . , εT .

If conditioning on data is understood, we shall omit the word “conditional”.

Definition 5.13. The expected supremum of a worst-case tree process

Rseq(F) ≜ sup
z

E sup
f∈F

Tf = sup
z

E{sup
f∈F

1

T

T

∑
t=1

εtf(zt(ε1∶t−1))} (5.16)

is called sequential Rademacher averages or sequential Rademacher complexity of a class F . Define condi-
tional sequential Rademacher averages on a given tree x as

Rseq(F ,z) ≜ E{sup
f∈F

1

T

T

∑
t=1

εtf(zt(ε1∶t−1))} . (5.17)

P Exercise (⋆): Show that

Riid(F) ≤ sup
z1,...,zT

R̂iid(F ∣z1, . . . , zT ) ≤Rseq(F) (5.18)
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5.6 Skolemization

This is probably a good point to make precise the exchange of expectations and suprema that has taken
place several times by now: a) when the interleaved expectations and suprema were collapsed to an
expectation over a joint distribution in (5.3), and b) when the sequence of suprema and expectations over
random signs became a tree in (5.13). Both of these exchanges follow the same simple (yet very useful)
logic. Consider a quantity Ea supb∈B ψ(a, b) where a is a random variable with values in A. We now claim
that

Ea sup
b∈B

ψ(a, b) = sup
γ

Eaψ(a, γ(a))

where the supremum ranges over all functions γ ∶ A ↦ B. A simple proof of this statement is left as an
exercise.

Whenever faced with a long sequence of expectations and suprema, the trick described above (which we
call skolemization) is very handy. In particular, the trick gives rise to the joint distribution in Theorem 5.9
and in Eq. (5.3). It also gives rise to the concept of a tree in Eq. (5.13), which is nothing but a sequence
of skolemized mappings.

5.7 ... Back to Learning

Putting together Theorem 5.8 and Theorem 5.10, as well as Theorem 5.9 and Theorem 5.11, we get the
following two corollaries for learning.

Corollary 5.14. Let f̂ be the ERM algorithm. Then

EL(f̂) − inf
f∈F

L(f) ≤ E sup
g∈`(F)

Gg ≤ 2E sup
g∈`(F)

Sg, (5.19)

and hence

Viid(F , T ) ≤ 2 sup
P

E sup
g∈`(F)

Sg (5.20)

Corollary 5.15. The value of the sequential prediction problem is upper bounded as

V(F , T ) ≤ 2 sup
z

E sup
g∈`(F)

Tg (5.21)
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6
Example: Learning Thresholds

To illustrate the behavior of stochastic processes in conjunction with learning, consider the simplest clas-
sification problem possible – thresholds on a unit interval. To this end, let X = [0,1], Y = {0,1}, and

F = {fθ(x) = I{x ≤ θ} ∶ θ ∈ [0,1]}.

The loss function is the indicator of a mistake: `(f, (x, y)) = I{f(x) ≠ y} = ∣f(x) − y∣.
We now consider the problem of learning thresholds in various scenarios.

6.1 Statistical Learning

Suppose PX×Y is an arbitrary distribution on X × Y. Given the data {(Xt, Yt)}Tt=1, we can construct an

empirical minimizer f̂ = fθ̂ via

θ̂ ∈ arg min
θ∈[0,1]

1

T

T

∑
t=1

∣fθ(Xt) − Yt∣,

a threshold location that incurs the smallest number of mistakes.

0

1

✓̂

With the tools from the previous section we can almost immediately answer the question: does the excess
risk EL(f̂) − inff∈F L(f) decay as T increases? Along the way, we will illustrate a couple of techniques
that will be useful in the next lecture. First, observe that by Corollary 5.14,

EL(f̂) − inf
f∈F

L(f) ≤ E sup
g∈`(F)

Gg ≤ 2E sup
g∈`(F)

Υg = 2E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εt∣fθ(Xt) − Yt∣] (6.1)

It is easy to verify that ∣a − b∣ = a(1 − 2b) + b for a, b ∈ {0,1}. We can then simplify the supremum of the
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Rademacher process as

E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εt∣fθ(Xt) − Yt∣] = E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εt(1 − 2Yt)fθ(Xt) + εtYt] (6.2)

= E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εtfθ(Xt)] (6.3)

The last equality follows by noticing that εtYt is zero-mean. Furthermore, conditionally on Y1, . . . , YT , the
distribution of (1 − 2Yt)εt is again Rademacher and can, therefore, be replaced by εt.

The last quantity is the supremum of the Rademacher process, but without the Y component and
without the loss function:

E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εt∣fθ(Xt) − Yt∣] = E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εtfθ(Xt)] (6.4)

This step is a precursor of a general technique called a contraction principle. Since the class F of step
functions fθ(x) = I{x ≤ θ} is somewhat easier to deal with than the loss class `(F), so it is convenient to
“erase” the loss function. Now, let us pass to the supremum of the empirical process via Theorem 5.10:

E sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εtfθ(Xt)] ≤ 2E sup
θ∈[0,1]

∣ 1

T

T

∑
t=1

(Efθ(X) − fθ(Xt))∣ +
1√
T

Combining all the steps together,

EL(f̂) − inf
f∈F

L(f) ≤ 4E sup
θ∈[0,1]

∣EI{X ≤ θ} − 1

T

T

∑
t=1

I{Xt ≤ θ}∣ +
2√
T

(6.5)

This quantity might be familiar. Let F (θ) = P (X ≤ θ) be the cumulative distribution function for a random
variable X with a marginal distribution PX . Let F̂T (θ) be the empirical distribution function. By the Law
of Large Numbers, F̂T (θ) converges to F (θ) for any given θ. A stronger statement

sup
θ

∣F̂T (θ) − F (θ)∣→ 0 almost surely

was shown by Glivenko and Cantelli in 1933, and it gives us the desired result: the upper bound in (6.5)
converges to zero. Kolmogorov showed that, in fact, supθ ∣F̂T (θ)−F (θ)∣ converges to zero at the rate T −1/2,
the same rate as that for a single θ. In some sense, we get supθ for free! This remarkable fact serves as the
motivation for the next few lectures.

We conclude that the excess loss EL(f̂) − inff∈F L(f) of the empirically-best threshold decays at the
rate of T −1/2 for all distributions PX×Y . Thus, Viid(F , T ) = O(T −1/2).

P Exercise (⋆⋆): Prove that this rate is not improvable if one is allowed to choose any distribution
PX×Y .

6.2 Separable (Realizable) Case

Let us describe a non-distribution-free case. One (very strong) assumption we could make is to suppose
that Yt = fθ∗(Xt) for some threshold θ∗ ∈ [0,1]. Recall that this assumption lands us right into the PAC
framework discussed in the introductory lecture. Such a problem is called “separable” (or, realizable), as
the examples labeled with 0 and 1 are on the opposite sides of the threshold. It is not hard to see that the
expected loss

EL(f̂) = EI{fθ̂(X) ≠ fθ∗(X)}
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0

1

✓⇤✓̂

Figure 6.1: Separable case: the ERM solution θ̂ quickly converges to θ∗.

of the empirically best threshold θ̂ should behave as T −1 rather than the previously shown rate of T −1/2.
To gain intuition, suppose PX is uniform on [0,1]. Then

I{fθ̂(X) ≠ fθ(X)} = E∣θ̂ − θ∣.

Since data are separable, θ̂ can be chosen as the middle of the interval between the right-most value with
label 1 and the left-most value with label 0. The distance ∣θ̂ − θ∣ is then at most half the distance between
two such extreme values. With T points, the distance should be roughly of the order T −1, up to logarithmic
factors which can be removed with a bit more work.

P Exercise (⋆): Prove the O(T −1 logT ) rate.

6.3 Noise Conditions

Less restrictive assumptions that lead to rates between T −1 and T −1/2 are assumptions on the noise around
the decision boundary. Let η(x) = fP (x) = E[Y ∣X = x] be the regression function. It is well known (see
e.g. [21]) that the best classifier with respect to the indicator loss is f∗ = I{η(x) ≥ 1/2}. Of course, the
classifier cannot be computed as P is unknown. Suppose, however, that f∗ = fθ∗ ∈ F . That is, the label 1 is
more probable than 0 for x ≤ θ∗ and less probable for any x > θ∗. Various assumptions about the behavior
of fP around θ∗ translate into intermediate rates, as discussed above. Such conditions are the so-called
Tsybakov’s noise condition and Massart’s noise condition. Of course, these extend beyond the setting of
learning thresholds.

0

1

⌘(x)

Figure 6.2: In this example, the Bayes classifier f∗ = I{η(x) ≥ 1/2} is a threshold function. The behavior
of η(x) around 1/2 determines the difficulty of the prediction problem.

Importantly, we are not making assumptions about the behavior of the distribution other than through
the behavior of fP at the decision boundary. For the purposes of prediction, it is not important to know the
global properties of the underlying distribution, in contrast to the typical assumptions made in statistics.

6.4 Prediction of Individual Sequences

We now consider the same problem in the sequential prediction framework, with no assumption on the
sequence {(xt, yt)}Tt=1 ∈ (X × Y)T . According to the protocol of sequential prediction, at each round we
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56 Example: Learning Thresholds

pick ft ∈ F and Nature chooses (xt, yt). As discussed earlier, the improper learning version, one that gives
more power to the learner, is to choose arbitrary ft. In this case we may simply state the protocol as: at
round t we observe the “side information” xt, predict ŷt ∈ {0,1} and observe the label yt ∈ {0,1} chosen
(simultaneously with ŷt) by Nature. The question is whether regret

1

T
∑
t=1

I{ŷt ≠ yt} − inf
θ∈[0,1]

1

T
∑
t=1

I{fθ(xt) ≠ yt}

can be made small.
By Corollary 5.15, the value of the sequential prediction problem is upper bounded as

V(F , T ) ≤ 2 sup
z

Eε1,...,εT sup
θ∈[0,1]

T`(fθ) (6.6)

where the supremum is over all (X × Y)-valued trees z of depth T . Let us write a (X × Y)-valued tree
equivalently as (x,y) where x and y are X and Y-valued. That is, the [0,1]-valued tree in our example
has values in the space of covariates, and the y tree gives labels {0,1} on the corresponding nodes.

We now construct a particular pair (x,y) which will make the supremum in (6.6) large. Take y as the
tree with all zeros. Define x1 = 1

2
, x2(−1) = 1

4
, x2(1) = 3

4
, x3(−1,−1) = 1

8
, x3(−1,1) = 3

8
, x3(1,−1) = 5

8
,

x3(1,1) = 7
8

and so forth. The first three levels of the tree are illustrated in the following figure:

x1

x2(+)x2(�)

x3(+, +)x3(�,�)

✓⇤

0 1
1

2

1

4

3

4

Figure 6.3: Construction of a bad binary tree.

In principle, we can construct an infinite dyadic tree in this manner. Such a tree will play an important
role later.

Say, T = 3 and the tree x is exactly as just described. Let y = 0 and take a path, say (−1,+1,−1). For
this path,

sup
θ∈[0,1]

T`(fθ) = sup
θ∈[0,1]

1

T

T

∑
t=1

εtfθ(xt(ε1∶t−1))

= sup
θ∈[0,1]

1

3
( − fθ(x1) + fθ(x2(−1)) − fθ(x3(−1,+1)))

= sup
θ∈[0,1]

1

3
( − I{x1 ≤ θ} + I{x2(−1) ≤ θ} − I{x3(−1,+1) ≤ θ})

Observe that there is a θ∗ (shown in Figure 6.3) such that the first and third indicators are zero while the
second is one. In other words, there is a threshold that annihilates all the indicators with a negative sign
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6.5 Discussion 57

in front of them, and keeps the positive ones. This θ∗ gives an average of 1/3 for the supremum, and it
is clearly the maximum for the path (−1,1,−1). Now take the “opposite” path (1,−1,1). The threshold
1 − θ∗ yields 2/3 for the value of the supremum on this path. It is easy to see that all the paths can be
paired in this manner to squeeze the value of 1/2 on average. We thus have

Eε1,...,εT sup
θ∈[0,1]

1

T

T

∑
t=1

εtfθ(xt(ε1∶t−1)) =
1

2

and conclude that with the constructed tree x and y = 0, the expected supremum of the tree process does
not go to zero.

Theorem 6.1. For X = [0,1], Y = {0,1}, F the class of thresholds on [0,1] and the indicator loss,

sup
(x,y)

E
⎧⎪⎪⎨⎪⎪⎩

sup
θ∈[0,1]

T`(fθ)

⎫⎪⎪⎬⎪⎪⎭
≥ 1

2

with x,y ranging, respectively, over all X and Y-valued trees.

Why do we care that an upper bound on V(F , T ) does not go to zero with T? Maybe the tree process
is an overkill, and it is still possible to play the sequential prediction game, ensuring smallness of V(F , T )?
We now show that this is not the case, and the prediction problem is itself hopeless. What is interesting,
Nature can use precisely the same tree x constructed above to ensure the learner incurs T mistakes.

We outline the strategy for Nature. At iteration t = 1, x1 is presented as side information and the
learner makes the prediction ŷ1 ∈ {0,1}. In the meantime, the Nature flips a fair coin y′1 ∈ {±1} and
presents the outcome y1 = (y′1 + 1)/2 ∈ {0,1}. With probability 1/2, the prediction ŷ1 ≠ y1. In the second
round, x2(y′1) is presented by Nature to the learner who chooses ŷ2, and the outcome is compared to a fair
coin y2 ∈ {0,1}.

In general, the choice xt(y′1, . . . , y′t−1) specifies the strategy of nature. The fair coin flips y′1, . . . , y
′
T make

the move of the player irrelevant, as

E{ 1

T

T

∑
t=1

I{ŷt ≠ yt}} = 1

2
.

The comparator term, however, is zero, thanks to the structure given by x. Indeed, any time that y′t = −1,
the next move is the left child of xt(y′1, . . . , y′t−1), while for y′t = 1 it is the right child. Note that any time
an element xt is followed by the left child, no other xt′ to the right of xt will ever be presented, simply
given the structure of the tree. By doing so, we are guaranteed that there will be a “consistent” threshold
on xt. It is easy to convince yourself that this strategy ensures existence of a threshold θ∗ such that

1

T

T

∑
t=1

I{I{xt(y′1, . . . , y′t−1) ≤ θ∗} ≠ yt} = 0 .

Theorem 6.2. The class of thresholds on the unit interval is not learnable in the setting of binary prediction
of individual sequences: V(F , T ) ≥ 1

2
.

6.5 Discussion

We have considered the problem of learning thresholds in the distribution-free setting of statistical learning,
in the setting of PAC learning (the separable case), in the setting of learning with some assumptions on the
Bayes function E[Y ∣X = x], and in the setting of prediction of individual sequences. In the first scenario,
the study of learnability was possible thanks to the Rademacher and Empirical processes. In the last
scenario, we showed that the expected supremum of the associated tree process is not decaying to zero,
and for a good reason: the prediction problem is not feasible. We will show that in the supervised learning
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58 Example: Learning Thresholds

setting convergence of the expected supremum of the tree process takes place if and only if the associated
prediction problem is feasible. This is quite nice, as we do not even need to “play” the prediction game
to know whether there is a strategy for predicting well: we can simply study the supremum of the tree
process!

In the next lecture, we develop tools to study suprema of stochastic processes. Such statements are
called maximal inequalities.
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7
Maximal Inequalities

7.1 Finite Class Lemmas

At this point, we are hopefully convinced that suprema of various stochastic processes is an object of
interest for learning theory. Let us start this endeavor by considering stochastic processes indexed by a
finite set.

Lemma 7.1. Suppose {Us}s∈S is a finite collection of random variables, and assume that there exists a

c > 0 such that for all s ∈ S, E exp(λUs) ≤ ec
2λ2/2 for all λ > 0. Then

Emax
s∈S

Us ≤ c
√

2 log ∣S ∣ .

Proof. By Jensen’s inequality,

exp(λEmax
s∈S

Us) ≤ E exp(max
s∈S

λUs) = Emax
s∈S

exp (λUs) ≤ E∑
s∈S

exp (λUs) = ∑
s∈S

E exp (λUs) ≤ ∣S ∣ec
2λ2/2 .

Taking logarithms of both sides and dividing by λ,

Emax
s∈S

Us ≤
log ∣S ∣
λ

+ c
2λ

2
.

The proof is concluded by choosing λ =
√

2c−2 log ∣S ∣.

The moment generating condition in Lemma 7.1 should be recognized as a condition on the tail decay
of the variables Us. Variables satisfying such a condition are called subgaussian. Examples include gaussian
random variables as well as bounded random variables.

Lemma 7.2 (Hoeffding). For a zero-mean random variable U bounded almost surely as a ≤ U ≤ b,

E exp(λU) ≤ exp{λ
2(b − a)2

8
} (7.1)

Besides the subgaussianity assumption, the bound of Lemma 7.1 holds for any finite collection of
random variables. However, the stochastic processes of interest to us are not arbitrary – they have a
particular structure. In particular, all four processes we’ve discussed (empirical process, Rademacher
process, empirical process with dependent data, and the tree process) are all defined as averages of random
quantities. We thus expect to obtain more specific statements for the processes of interest. In particular,
the typical deviations of averages given by the Central Limit Theorem are 1/

√
T , so we expect that c in
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60 Maximal Inequalities

Lemma 7.1 will be a function of T as well as of magnitudes of the random variables being averaged. Let
us make this more precise.

Let us consider the empirical process with dependent data.

Lemma 7.3. Let F be a finite class of [−1,1]-valued functions on Z. Then

Emax
f∈F

Mf ≤ 2

√
2 log ∣F ∣

T

Proof. We need to check the subgaussianity condition and find the appropriate (smallest) constant c.
Denote dt = 1

T
(E{f(Zt) ∣ Z1, . . . , Zt−1} − f(Zt)) and observe that by (7.1)

E{ exp{dt} ∣Zt−1} ≤ exp{2λ2

T 2
}

because each dt ∈ [−2,2]. We then have

E exp{λMf} = E exp{
T

∑
t=1

dt} = E [
T

∏
t=1

exp{dt}] = E [
T−1

∏
t=1

exp{dt}E{ exp{dT } ∣ZT−1}]

which is upper bounded by

E [
T−1

∏
t=1

exp{dt}] × exp{2λ2

T 2
}

Repeating the process, we arrive at

E exp{λMf} ≤ exp{2λ2

T
}

Appealing to Lemma 7.1 with c = 2√
T

yields the statement.

Of course, the bound of Lemma 7.3 holds for the i.i.d. empirical process Gf as well. The proofs for
the Rademacher and the tree processes are basically identical. Nevertheless, there is an important point
to make regarding the boundedness assumption. Since the empirical processes involve random data Zt, we
were forced to make a global assumption on the boundedness of F over Z. Alternatively, we could follow
the proof of Lemma 7.3 and replace the global bound on the magnitude of dt by a conditional variance
bound per step. Such results are known and have their merits. For the reasons that will become apparent
in the next few lectures, we prefer to deal with the Rademacher and the tree processes, as the magnitudes
of dt are fixed. Indeed, we assume that z1, . . . , zT in the Rademacher process (or the tree z in the tree
process) are fixed. We can then give upper bounds in terms of these fixed quantities.

Let us consider the unnormalized sum to simplify the notation.

Lemma 7.4. Let V ⊂ RT be a set of N vectors. Then

Emax
v∈V

T

∑
t=1

εtvt ≤

¿
ÁÁÀ2 logN max

v∈V

T

∑
t=1

v2
i

Hence, for a finite class F of functions Z ↦ R and a fixed set zT = {z1, . . . , zT } ∈ ZT , it holds that

Emax
f∈F

Sf ≤ r
√

2 log ∣F ∣
T

where r2 = maxf∈F
1
T ∑

T
t=1 f

2(zt).
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Proof. For a fixed v ∈ V , define dt = εtvt. We then have E exp{dt} ≤ exp{(2vt)2λ2/8}. Following the proof
of Lemma 7.3,

E exp{λ
T

∑
t=1

εtvt} ≤ exp{(
T

∑
t=1

v2
t )λ2/2}

and the statement follows.

We finish this section with a more powerful lemma that holds for a tree process over a finite index set.
Of course, Lemma 7.4 follows from Lemma 7.5 if the trees in the set V are taken to be constant functions
vt(ε1∶t−1) = vt for all ε1∶t−1.

Lemma 7.5. Let V be a set of N real-valued trees of depth T . Then

Emax
v∈V

T

∑
t=1

εtvt(ε1∶t−1) ≤

¿
ÁÁÀ2 logN max

v∈V
max
ε1∶T

T

∑
t=1

vt(ε1∶t−1)2

Hence, for a finite class F of functions Z ↦ R and a fixed Z-valued tree z of depth T , it holds that

Emax
f∈F

Tf ≤ r
√

2 log ∣F ∣
T

where

r2 = max
f∈F

max
ε1,...,εT

1

T

T

∑
t=1

f2(zt(ε1, . . . , εt−1)).

The proof of this lemma is a bit more involved than the previous proofs, as we ask for the upper bound
to scale with the largest `2-norm along any path in the trees. To preserve the path structure, we need to
peel off the terms in the moment generating function one by one, starting from the last term. We remark
that Lemma 7.5 is crucial for the further developments.

Proof. Fix λ > 0 and a R-valued tree v ∈ V . For t ∈ {0, . . . , T − 1} define a function At ∶ {±1}t ↦ R by

At(ε1, . . . , εt) = max
εt+1,...,εT

exp{λ
2

2

T

∑
s=t+1

vs(ε1∶s−1)2}

and AT (ε1, . . . , εT ) = 1. We have that for any t ∈ {1, . . . , T}

Eεt {exp(λ
t

∑
s=1

εsvs(ε1∶s−1)) ×At(ε1, . . . , εt) ∣ ε1, . . . , εt−1}

= exp(λ
t−1

∑
s=1

εsvs(ε1∶s−1)) × (1

2
eλvt(ε1∶t−1)At(ε1, . . . , εt−1,+1) + 1

2
e−λvt(ε1∶t−1)At(ε1, . . . , εt−1,−1))

≤ exp(λ
t−1

∑
s=1

εsvs(ε1∶s−1)) × max
εt∈{±1}

At(ε1, . . . , εt) (
1

2
eλvt(ε1∶t−1) + 1

2
e−λvt(ε1∶t−1))

≤ exp(λ
t−1

∑
s=1

εsvs(ε1∶s−1)) ×At−1(ε1, . . . , εt−1)

where in the last step we used the inequality (ea + e−a)/2 ≤ ea2/2. Hence,

Eε1,...,εT {exp(λ
T

∑
s=1

εsvs(ε1∶s−1))} ≤ A0 = max
ε1,...,εT

exp{λ
2

2

T

∑
s=1

vs(ε1∶s−1)2} .

We conclude that

exp(λEmax
v∈V

T

∑
t=1

εtvt(ε1∶t−1)) ≤ N max
v∈V

max
ε1,...,εT

exp{λ
2

2

T

∑
s=1

vs(ε1∶s−1)2}

and the rest of the proof follows the proof of Lemma 7.1.
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8
Statistical Learning: Classification

We are now armed with a powerful tool: an upper bound on the expected supremum of Gf ,Sf ,Mf , and
Tf indexed by a finite set F . How about an infinite class F? In this lecture we address this question for
classification problems within the scope of Statistical Learning.

8.1 From Finite to Infinite Classes: First Attempt

The first idea that comes to mind is to approximate the class by a finite “representative” set. The set will
be called a “cover”. Intuitively, the larger the set, the better is the approximation, but the worse is the
log-size-of-finite-set bound.

As the first attempt, let us implement the idea of a cover to upper bound Gf for the simple case of
thresholds in one dimension, studied in Section 6.1. Effectively, we are aiming at an upper bound on

E sup
θ∈[0,1]

[EI{X ≤ θ} − 1

T

T

∑
t=1

I{Xt ≤ θ}] (8.1)

(see Eq. (6.5)) which was graciously provided to us by Kolmogorov. Recall that there is an unknown
underlying probability distribution PX×Y on which we place no restriction. Let ΘN = {θ1, . . . , θN} be
equally-spaced on the interval [0,1] and let c(θ) ∈ ΘN be the element of the representative set closest to
θ. With the notation

Gθ = EI{X ≤ θ} − 1

T

T

∑
t=1

I{Xt ≤ θ}

we can then write

E sup
θ∈[0,1]

[Gθ] = E sup
θ∈[0,1]

[Gc(θ) +Gθ −Gc(θ)] ≤ E sup
θ∈[0,1]

[Gc(θ)] +E sup
θ∈[0,1]

[Gθ −Gc(θ)] (8.2)

The first term is the expected supremum over the finite set ΘN :

E sup
θ∈[0,1]

[Gc(θ)] = E max
θi∈ΘN

[Gθi]

but how do we control the second term? Since θ and c(θ) are close, we are tempted to say that it is small.
However, we made no assumption on PX , so it is very well possible that all of its mass is concentrated
on some interval [θi, θi+1], in which case the above expression is equal to the one in (8.1). Hence, we
have achieved nothing by passing to the finite subset! Clearly, the discretization needs to depend on the
unknown distribution PX .
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To rescue the situation, we may try to place the elements θ1, . . . , θN such that EI{θi ≤X ≤ θi+1} is
the same for all the intervals [θi, θi+1]. This path might get us somewhere close to the desired result for
thresholds in one dimension, but it is rather unsatisfying: we need to reason about the unknown distribution
PX . For more general situations, such an analysis will be loose and impractical. A better way to do it is
by working with the Rademacher process directly. Since the supremum of this process is within a factor 2
from the supremum of the empirical process (Theorem 5.10), we are not losing much.

8.2 From Finite to Infinite Classes: Second Attempt

For the example of thresholds, let us stay with the Rademacher averages of F rather than pass to the
empirical process (8.1). We now reason conditionally on X1, . . . ,XT and provide an upper bound on
conditional Rademacher averages

E
⎧⎪⎪⎨⎪⎪⎩

sup
θ∈[0,1]

[ 1

T

T

∑
t=1

εtI{Xt ≤ θ}]
RRRRRRRRRRR
X1, . . . ,XT

⎫⎪⎪⎬⎪⎪⎭
(8.3)

An upper bound on the latter quantity that is independent of X1, . . . ,XT would be quite interesting. It
would effectively say that the unknown distribution PX was edged out of the picture and replaced with
random signs.

Conditional Rademacher averages in (8.3) can be equivalently written as

Eε sup
a∈F ∣

XT

[ 1

T

T

∑
t=1

εtat] (8.4)

where F ∣XT = {(fθ(X1), . . . , fθ(XT ))} ⊆ {0,1}T , the projection of F onto XT . How big is this projection?

Since (X1, . . . ,XT ) is held fixed, by varying θ we can realize vectors of the form (1, . . . ,1,0, . . . ,0), and
there are T + 1 of them. Clearly, the Euclidean length of the vectors a ∈ F ∣XT is at most

√
T , so by

Lemma 7.4,

Emax
f∈F

Sf ≤
√

2 log(T + 1)
T

8.3 The Growth Function and the VC Dimension

The size of the projection F ∣XT played an important role in obtaining an upper bound on Rademacher
averages for the case of classification with thresholds. The same ideas carry over to a general classification
setting.

Definition 8.1. For a binary valued function class F ⊂ {0,1}X , the growth function is defined as

ΠF(T ) = max{card (F ∣x1,...,xT ) ∶ x1, . . . , xT ∈ X} (8.5)

We have the following proposition that follows immediately from our previous arguments.

Proposition 8.2. For classification with some domain X , label set Y = {0,1}, class of function F ⊆ YX
and loss function `(f, (x, y)) = I{f(x) ≠ y}, it holds that for any distribution PX×Y ,

E sup
g∈`(F)

Gg ≤ 2E sup
f

Sf ≤ 2

√
2 log ΠF(T )

T

The growth function measures expressiveness of F . In particular, if F can produce all possible signs
(that is, ΠF(T ) = 2T ), the bound becomes useless.
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8.3 The Growth Function and the VC Dimension 65

Definition 8.3. We say that F shatters some set x1, . . . , xT (a term due to J. Michael Steele) if F ∣xT =
{0,1}T . That is,

∀(b1, . . . , bT ) ∈ {0,1}T , ∃f ∈ F s.t. f(xt) = bt ∀t ∈ {1, . . . , T}

It is possible to show that if a set x1, . . . , xT is shattered for some T , then not only is the bound of
Proposition 8.2 vacuous, but the learning problem itself (for the given T ) is impossible.

P Exercise (⋆ ⋆ ⋆): Prove the above statement.

We see that the growth function is quite important as a measure of complexity of F when it comes to
distribution-free learning. But what is the behavior of the growth function? The situation turns out to be
quite interesting. Define the following combinatorial parameter of F :

Definition 8.4. The Vapnik-Chervonenkis (VC) dimension of the class F ⊆ {0,1}X is defined as

vc (F) ≜ max{t ∶ ΠF(t) = 2t}

or vc (F) =∞ if max does not exist. Further, for x1, . . . , xT ∈ X , define

vc (F , x1, . . . , xT ) ≜ vc (F ∣x1,...,xT ) ≜ max{t ∶ ∃i1, . . . , it ∈ {1, . . . , T} s.t. card (F ∣xi1 ,...,xit ) = 2t}

Vapnik-Chervonenkis dimension is the largest t such that F can produce all possible sequences of bits
{0,1} on some set of examples. Clearly, the bound of Proposition 8.2 is useless for T ≤ vc (F). What about
T > vc (F)? The following beautiful and surprising result was proved around the same time by Vapnik and
Chervonenkis, Sauer, and Shelah.1

Lemma 8.5 (Vapnik-Chervonenkis, Sauer, Shelah). It holds that

ΠF(T ) ≤
d

∑
i=0

(T
i
)

whenever vc (F) = d <∞.

There are several ways to prove this lemma, and we give one that will be useful later in the course.
Importantly, the sum that upper bounds the growth function has a O(T d) behavior. In fact,

d

∑
i=0

(T
i
) ≤ (eT

d
)
d

, (8.6)

and we leave the proof as an easy exercise. It is quite remarkable that the growth function is 2t for t ≤ d
and polynomial afterwards, a non-obvious fact that make the Vapnik-Chervonenkis results appealing.

As an immediate corollary of Proposition 8.2 we have

Corollary 8.6. Under the setting of Proposition 8.2, if vc (F) = d,

E sup
g∈`(F)

Gg ≤ 2E sup
f

Sf ≤ 2

√
2d log(eT /d)

T

Example 3. The class of thresholds

F = {fθ(x) = I{x ≤ θ} ∶ θ ∈ [0,1]}.

on X = [0,1] has vc (F) = 1. Indeed, one cannot find x1, x2 ∈ X such that some threshold gives a label 0 to
x1 and 1 to x2. Thus, no set of two points is shattered by F .

1 Thanks to Léon Bottou http://leon.bottou.org/news/vapnik-chervonenkis_sauer for figuring out the sequence of
events (which, by the way, involves Paul Erdös) that led to these publications.
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66 Statistical Learning: Classification

Example 4. The class of step-up and step-down thresholds

F = {fθ(x) = I{x ≤ θ} ∶ θ ∈ [0,1]} ∪ {gθ(x) = I{x ≥ θ} ∶ θ ∈ [0,1]}

on X = [0,1] has vc (F) = 2.

The latter example has the following analogue in d dimensions:

Example 5. Define the class of linear thresholds in Rd by

F = {fθ(x) = I{⟨θ, x⟩ ≥ 0} ∶ θ ∈ Rd}

Then vc (F) = d + 1, which justifies our use of the same letter d for both dimensionality of the space and
the combinatorial dimension of F .

Example 6. Let the set H of functions X ↦ R be a subset of a d-dimensional vector space. Then the class

F = {I{h(x) ≥ 0} ∶ h ∈H}

has VC dimension at most d.

As the next example shows, it is not correct to think of the VC dimension as the number of parameters.

Example 7. The VC dimension of the class

F = {fα(x) = I{sin(αx)} ∶ α ∈ R}

is infinite despite the fact that F is parametrized by a single number.

We now turn to the proof of the Vapnik-Chervonenkis-Sauer-Shelah lemma:

Proof of Lemma 8.5. Define a function

g(d, T ) =
d

∑
i=0

(T
i
)

for d, T ≥ 0. We would like to prove ΠF(T ) ≤ g(d, T ) for d = vc (F). By the way of induction, assume that
the statement holds for (d−1, T−1) and (d−1, T ). Fix any x1, . . . , xT ∈ X , and suppose vc (F , x1, . . . , xT ) = d.
Define

F = {r ∈ F ∣x2,...,xT ∶ (0, r), (1, r) ∈ F ∣x1,...,xT }

the set of projections of F on (x2, . . . , xT ) such that both labels are realized on x1. Let F ′ = F ∣x2,...,xT ,
the set of all projections of F on (x2, . . . , xT ). Observe that F ⊂ F ′. We claim that

card (F ∣x1,...,xT ) = card (F ) + card (F ′) . (8.7)

To see this, suppose r ∈ F . Then both (0, r) and (1, r) are counted on the left-hand side of (8.7), and
this is matched by counting r twice (in F and F ′). If r ∈ F ′ ∖ F , then only (0, r) or (1, r) appears on the
left-hand side, and the same is true for the right-hand side.

We now claim that vc (F,x2, . . . , xT ) is at most d− 1, for otherwise vc (F ∣x1,...,xT ) = d+ 1 (indeed, both
0 and 1 can be appended to the full projection of size 2d to create a projection of size 2d+1). Then

card (F ∣x1,...,xT ) = card (F ) + card (F ′) ≤ g(d − 1, T − 1) + g(d, T − 1) (8.8)

by the induction hypothesis. Since this holds for any x1, . . . , xT , we also have

ΠF(T ) ≤ g(d − 1, T − 1) + g(d, T − 1).

The induction step follows from the identity

g(d, T − 1) + g(d − 1, T − 1) = g(d, T ).

The base of the induction is easy to verify.
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The proof of Lemma 8.5 might appear magical and unintuitive. Let us point (in a very informal way)
to a few important pieces that make it work. In fact, the technique is rather general and will be used once
again in a few lectures when we prove an analogue of the combinatorial lemma for sequential prediction.
The abstract idea is that the behavior of F on a sample can be separated into two pieces (F and F ′). Let
us now forget about the way that these pieces are defined, and rather look into how their respective sizes
can be used to unwind a recursion. Imagine that a split into F and F ′ can be done so that the smaller piece
F is always of size 1. The recursion would then unfold as g(d, T ) ≤ g(d, T − 1)+ 1 ≤ g(d, T − 2)+ 2 ≤ . . . ≤ T .
Of course, such a recursion is rather trivial. Now, imagine another type of recursion: both pieces are of
the same size. Then we would have g(d, T ) ≤ 2g(d, T − 1) ≤ 4g(d, T − 2) ≤ . . . ≤ 2T . Once again, such a
recursion is rather trivial, and the bound is not useful. In some sense, these two cases are extremes of
how a recursion might play out. But note that we did not use d in the two recursions. Imagine now that
each time we perform the split into F and F ′, a “counter” d is decreased for the smaller piece. That is,
g(d, T ) ≤ g(d − 1, T − 1) + g(d, T − 1). This situation is in-between the bounds of T and 2T , and, in fact, it
is of the order T d as the proof shows.

The above observation is a rather general recipe: for a problem at hand, find a parameter (“counter”)
so that the size of the smaller set being split off has to have a smaller value for this parameter. In this
case, the recursion gives a polynomial rather than exponential size.

67



68 Statistical Learning: Classification

68



9
Statistical Learning: Real-Valued Functions

In the real-valued supervised learning problem with i.i.d. data, we consider a bounded set Y = [−1,1]. Fix
a set F of functions X ↦ Y, for some input space X . In the distribution-free scenario, we have i.i.d. data
{(Xt, Yt)}Tt=1 from an unknown PX×Y , on which we place no assumption.

Recall that the cardinality of the set

F ∣x1,...,xT = {(f(x1), . . . , f(xT )) ∶ f ∈ F}

played an important role in the analysis of classification problems. For real-valued functions, however, the
cardinality of this set is of little use since it is, in general, uncountable. However, two functions f and g
with almost identical values

f(xt) ≈ g(xt), t ∈ {1, . . . , T}
on the sample are essentially the same for our purposes, and we need to find a way to measure complexity
of F ∣x1,...,xT without paying attention to small discrepancies between functions. This idea is captured by
the notion of covering numbers.

9.1 Covering Numbers

Recall our shorthand xT = {x1, . . . , xT }.

Definition 9.1. A set V ⊂ RT is an α-cover on x1, . . . , xT with respect to `2 norm if

∀f ∈ F , ∃v ∈ V s.t. ( 1

T

T

∑
t=1

(f(xt) − vt)2)
1/2

≤ α. (9.1)

An α-covering number is defined as

N2(F , α, xT ) = min{card (V ) ∶ V is an α-cover}.

As far as the cover is concerned, the values of functions outside x1, . . . , xT are immaterial. Hence,
we may equivalently talk of a cover for the set F ∣xT ⊆ [−1,1]T . We may then write N2(F ∣xT , α) for the
α-covering number.

It is important to note that here and below we refer to `p norms, but the definitions in fact use an extra

normalization factor 1/T . We may equivalently write the α-closeness requirement (9.1) as ∥f − v∥2 ≤
√
Tα

where f = (f(x1), . . . , f(xt)) ∈ F ∣x1,...,xT .
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x1 x2 xT

Figure 9.1: Two sets of levels provide an α-cover for the four functions. Only the values of functions on
x1, . . . , xT are relevant.

If the set V is realized as V = {(g(x1), . . . , g(xT )) ∶ g ∈ G} for some collection G ⊆ F , we say that the

cover is proper. A proper cover picks a subset G of F so that any f ∈ F is close to some g ∈ G on x1, . . . , xT
in the `2 sense. The distinction between proper and improper covers is minor, and one can show that a
proper covering number at the α level is sandwiched between improper covering numbers at α and α/2
levels.

Of course, we can define `p-covers as

Definition 9.2. A set V ⊂ RT is an α-cover on x1, . . . , xT with respect to `p norm, for p ∈ [1,∞), if

∀f ∈ F , ∃v ∈ V s.t. ( 1

T

T

∑
t=1

∣f(xt) − vt∣p)
1/p

≤ α,

and with respect to `∞ norm if

∀f ∈ F , ∃v ∈ V s.t. ∣f(xt) − vt∣ ≤ α ∀t ∈ {1, . . . , T}.

The α-covering numbers Np(F , α, xT ) and N∞(F , α, xT ) are defined as before.

The above notions of a cover can be seen as instances of a more general idea of an α-cover for a metric
space (T, d). A subset T ′ ⊂ T is an α-cover of T if for any t ∈ T there exists a s ∈ T ′ such that d(t, s) ≤ α.
Above definitions correspond to endowing F with an empirical metric Lp(µT ) where µT is the empirical
distribution on the data x1, . . . , xT , thus explaining the extra 1/T normalization factor.

↵

Figure 9.2: An α-cover for a metric space (T, d).

P Exercise (⋆): Prove that for any 1 ≤ p ≤ q ≤∞, Np(F , α, xT ) ≤ Nq(F , α, xT ).

Covering of F allows us to squint our eyes and view the set F ∣xT as a finite set at a granularity α.
We can then apply the maximal inequalities for stochastic processes indexed by finite sets. Of course, by
doing so we lose α of precision. Clearly, smaller α means larger α-cover, so there is tension between fine
granularity and small cover. This is quantified in the following proposition.
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Proposition 9.3. For any xT = {x1, . . . , xT }, conditional Rademacher averages of a function class F ⊆
[−1,1]X satisfy

R̂iid(F) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
α +

√
2 logN1(F , α, xT )

T

⎫⎪⎪⎬⎪⎪⎭

Proof. Fix x1, . . . , xT and α > 0. Let V be a minimal α-cover of F on xT with respect to `1-norm. For
f ∈ F , denote by v[f] ∈ V any element that “α-covers” f in the sense given by the definition. Denote by
v[f]t the tth coordinate of the vector. Write the conditional Rademacher averages as

R̂iid(F) = E{sup
f∈F

1

T

T

∑
t=1

εtf(xt)}

= E{sup
f∈F

1

T

T

∑
t=1

εt (f(xt) − v[f]t) + εtv[f]t}

≤ E{sup
f∈F

1

T

T

∑
t=1

εt (f(xt) − v[f]t)} +E{sup
f∈F

1

T

T

∑
t=1

εtv[f]t}

≤ sup
f∈F

1

T

T

∑
t=1

∣f(xt) − v[f]t∣ +E{max
v∈V

1

T

T

∑
t=1

εtvt}

By definition of α-cover, the first term is upper bounded by α. The second term is precisely controlled by
the maximal inequality of Lemma 7.4, which gives an upper bound of

√
2 log ∣V ∣

T
,

due to the fact that ∥v∥2 ≤
√
T for any v ∈ V . Note that if any coordinate of v is outside the interval [−1,1],

it can be truncated.
Since α > 0 is arbitrary, the statement follows.

Example 8. For certain classes F , one can show that Fx1,...,xT is a subset of [−1,1]T of dimension lower
than T . This happens, for instance, if

F = {f(x) = ⟨f, x⟩ ∶ f ∈ Bp} and X = Bq,

where Bp and Bq are `p and `q unit balls in Rd, with 1/p + 1/q = 1. For instance, for p =∞, the function
class is identified with [−1,1]d and it is easy to check that

N∞(F , α, xT ) ≤ ( 2

α
)
d

by a discretization argument. The bound of Proposition 9.3 then yields

R̂iid(F) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
α +

√
2d log(2/α)

T

⎫⎪⎪⎬⎪⎪⎭
(9.2)

Up to constant factors, the best choice for α is T −1/2, which yields an upper bound of the order O (
√

d logT
T

).

Since Bp ⊆ B∞ for any p > 0, the above bound also holds for other F , though it might be loose. We
also remark that an `∞ cover is quite a stringent requirement, as Proposition 9.3 only requires the `1
cover. Finally, we note that the discretization argument yields more than an `∞ cover on xT : it yields a
pointwise cover for all x ∈ X . In general such pointwise bounds are not possible as soon as we consider
infinite-dimensional F .
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9.2 Chaining Technique and the Dudley Entropy Integral

An application of Proposition 9.3 in Example 8 yields an O (
√

d logT
T

) upper bound, containing an extra-

neous logT factor. How do we know that it is extraneous? Well, because we can get a bound without this
factor. While we might not care about a logarithmic factor, the situation is actually more serious: we can
provide an example where Proposition 9.3 gives the wrong rate. Somehow, squinting our eyes and looking
at F at a single level of granularity does not give the right picture. What if we looked at F at different
coarseness levels and integrated them to build a full-resolution panorama? The next theorem does exactly
that.

Theorem 9.4. For any xT = {x1, . . . , xT }, conditional Rademacher averages of a function class F ⊆
[−1,1]X satisfy

R̂iid(F) ≤ D̂iid(F)

where

D̂iid(F) ≜ inf
α≥0

{4α + 12√
T
∫

1

α

√
logN2(F , δ, xT )dδ} (9.3)

Proof. Fix x1, . . . , xT and let F = F ∣xT . Let αj = 2−j for j = 1,2, . . .. Let Vj be a minimal αj-cover of size
N2(F , αj , xT ). For any f ∈ F , let v[f]j ∈ Vj be an element αj-close to f, as promised by the definition of
an αj-cover. Each f is therefore associated with a chain of approximations v[f]1, v[f]2, . . . at increasingly
fine levels of granularity. Let ε = (ε1, . . . , εT ) denote the vector of Rademacher random variables. Then we
may succinctly write conditional Rademacher averages as

R̂iid(F) = E{sup
f∈F

1

T

T

∑
t=1

εif(xi)} = 1

T
E sup

f∈F
⟨ε, f⟩

where ⟨a, b⟩ is the inner product. We now rewrite the (unnormalized) averages as in Proposition 9.3, but
with a chain of N telescoping differences (N to be determined later):

E sup
f∈F

⟨ε, f⟩ = E sup
f∈F

⎧⎪⎪⎨⎪⎪⎩
⟨ε, f − v[f]N ⟩ +

N

∑
j=1

⟨ε, v[f]j − v[f]j−1⟩
⎫⎪⎪⎬⎪⎪⎭

≤ E sup
f∈F

⟨ε, f − v[f]N ⟩ +
N

∑
j=1

E sup
f∈F

⟨ε, v[f]j − v[f]j−1⟩

The first term is upper bounded above by Cauchy-Shwartz inequality as

E sup
f∈F

⟨ε, f − v[f]N ⟩ ≤ E sup
f∈F

∥ε∥ ⋅ ∥f − v[f]N∥ =
√
T sup

f∈F
(
T

∑
t=1

(ft − v[f]Nt )2)
1/2

= TαN (9.4)

by definition. Turning to the second term, observe that, for a given j, the difference v[f]j − v[f]j−1 takes
on at most card (Vj) × card (Vj−1) possible values. This allows us to invoke the maximal inequality of
Lemma 7.4:

E sup
f∈F

⟨ε, v[f]j − v[f]j−1⟩ = r
√

2 log(card (Vj) × card (Vj−1))

where r = supf∈F ∥v[f]j − v[f]j−1∥. For any f ∈ F ,

∥v[f]j − v[f]j−1∥ ≤ ∥v[f]j − f∥ + ∥v[f]j−1 − f∥ ≤
√
Tαj +

√
Tαj−1 = 3

√
Tαj .
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Since size of the minimal cover does not decrease for finer resolution, it holds that

card (Vj) × card (Vj−1) ≤ card (Vj)2
.

We conclude that conditional Rademacher averages are upper bounded as

1

T
E sup

f∈F
⟨ε, f⟩ ≤ αN + 6√

T

N

∑
j=1

αj
√

log card (Vj)

Using the simple identity 2(αj − αj+1) = αj , as well as the fact that each Vj is a minimal cover, we may
rewrite the upper bound as

αN + 12√
T

N

∑
j=1

(αj − αj+1)
√

logN2(F , αj , xT ) ≤ αN + 12√
T
∫

1

αN+1

√
logN2(F , δ, xT )dδ.

Now, fix any α > 0 and let N = sup{j ∶ αj ≥ 2α}. Then αN+1 < 2α and 4α > αN ≥ 2α. Hence, αN+1 =
αN /2 > α and

1

T
E sup

f∈F
≤ inf
α>0

{4α + 12√
T
∫

1

α

√
logN2(F , δ, xT )dδ}

The result also holds for α = 0, and this completes the proof.

9.3 Example: Nondecreasing Functions

Before discussing the virtues of Theorem 9.4, let us mention that N (F , α, xT ) is always finite for a class
F of bounded functions. Indeed, one can create a cover (let’s say in `∞) by discretizing the interval [−1,1]
to the level of α for the values of functions on each of x1, . . . , xT . Then, let V be a set of vectors obtained
by taking any of the 2/α possible values on x1, any of the 2/α possible values on x2, and so on. Clearly,

the size of such a cover is ( 2
α
)T . This is illustrated in Figure 9.3. We conclude that for any class F of

x1 x2 xT

↵

Figure 9.3: Without any assumptions on the function, the size of an α-cover is Ω ((1/α)T )

bounded functions, the covering numbers on x1, . . . , xT are finite, yet they yield vacuous upper bounds
in both Proposition 9.3 and in Theorem 9.4. Without any assumptions on F , learning is not possible, in
which case we should not expect to obtain any meaningful upper bounds.

Consider a class of functions F on X = R. Let us place only one restriction on the functions: they are

non-decreasing. What happens to the covering numbers? Do we still require Ω ((1/α)T ) vectors to provide

an α-cover for F on x1, . . . , xT ? Is the associated prediction problem (say, with absolute loss) learnable?
To answer these questions, let us construct an `∞ cover V of F on xT . Without loss of generality, suppose
x1, . . . , xT are ordered on the real line. Then the elements of V should be T -dimensional vectors with
non-decreasing coordinates. How many such vectors v ∈ V are required to provide α-approximation to any
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x1 x2 xT

↵

Figure 9.4: The class of non-decreasing functions on R has a manageable covering number.

non-decreasing function? For any ȳ in the set of (2/α) discretized discretized y-values, we need to specify
the coordinate i ∈ {1, . . . , T} such that the i-th coordinate of v is below ȳ but i+1th is greater than ȳ. This
gives all the possibilities. A simple counting argument gives ∣V ∣ ≤ T 2/α, and, therefore,

N∞(F , α, xT ) ≤ T 2/α. (9.5)

for any x1, . . . , xT . Observe that the seemingly innocuous assumption of monotonicity drastically decreased
the covering number from (2/α)T to T 2/α.

Let us now apply the upper bound of Proposition 9.3 to the class of non-decreasing functions on R:

R̂iid(F) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
α +

√
2(2/α) logT

T

⎫⎪⎪⎬⎪⎪⎭

Optimizing the bound leads to α = ( 4 logT
T

)1/3
, and the final bound of

R̂iid(F) ≤ 2(4 logT

T
)

1/3
.

Let us now compare this to the bound given by Theorem 9.4 and see if our efforts paid off. We have

R̂iid(F) ≤ D̂iid(F) ≤ inf
α≥0

{4α + 12√
T
∫

1

α

√
(2/δ) logTdδ}

Simplifying the integral

∫
1

α

√
2/δdδ = 2

√
2 [

√
δ]

1

α
≤ 2

√
2

and taking α = 0, we obtain

R̂iid(F) ≤ 24

√
2 logT

T
, (9.6)

a qualitatively different (almost “parametric”) rate from that given by Proposition 9.3.
As a final remark, we mention that the domain X = R of the functions in the above example is unbounded

and there is no hope to have a finite pointwise cover of F over X . Early results in statistical learning theory
relied on the availability of such covering numbers, which greatly limited the applicability of the results.
The symmetrization technique allows us to treat data as fixed and to only consider covering numbers of F
on the data xT .

P Exercise (⋆⋆): Show that the bound of Theorem 9.4 removes the extraneous logarithmic factor in
the upper bound (9.2) of Example 8.
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9.4 Improved Bounds for Classification

Classification scenario (that is, F ⊆ {0,1}X ) can also benefit from the upper bound of Theorem 9.4. First,
notice that a projection F ∣x1,...,xT is nothing but a cover of F at scale α = 0. Indeed, for any function
f ∈ F , trivially, there exists an element v ∈ V = F ∣x1,...,xT such that f(xt) = vt for all t. Henceforth, we
shall refer to such a cover as a zero-cover or exact cover, and the covering number by N0(F , x1, . . . , xT ).
For such a cover at scale α = 0, we need not specify the `p norm. Alternatively, we can denote the zero
cover by N∞(F , xT , α) for any 0 ≤ α < 1/2.

The Vapnik-Chervonenkis-Sauer-Shelah lemma (Lemma 8.5) states that for any x1, . . . , xT ,

N0(F , x1, . . . , xT ) ≤ (eT
d

)
d

(9.7)

for d = vc (F).
Recall that Proposition 8.2 yielded an upper bound with an extra logT factor. In fact, it is not possible

to avoid this factor if we are dealing with the exact cover. However, what if we obtain `2 covering numbers
for F and apply Theorem 9.4? Recall from the last section (see the last exercise) that this indeed removes
the extraneous factor.

Refining the proof of Dudley [22], Mendelson [38] gives a nice probabilistic argument that for any
x1, . . . , xT , the `p-covering numbers of the class F of {0,1}-valued functions satisfy

Np(F , α, xT ) ≤ ((2pe2) log
2e2

α
)
d

( 1

α
)
pd

. (9.8)

Taking p = 2, for classification problems with vc (F) = d, Theorem 9.4 yields an O (
√

d
T
) upper bound

without the superfluous logarithmic factors.

9.5 Combinatorial Parameters

Back to the setting of real-valued prediction, a natural question to ask is whether there is a combinatorial
parameter of F ⊆ [−1,1]X that controls the behavior of covering numbers. Historically, the first such
parameter was pseudo-dimension, due to D. Pollard:

Definition 9.5. The pseudo-dimension of F ⊆ RX is defined as the Vapnik-Chervonenkis dimension of
the class

G = {g(x, y) = I{f(x) − y ≥ 0} ∶ f ∈ F} .

Equivalently, pseudo-dimension is the largest d such that there exist (x1, . . . , xT ) ∈ X T and (y1, . . . , yT ) ∈ RT
with the following property:

∀(b1, . . . , bT ) ∈ {0,1}T , ∃f ∈ F s.t. f(xt) ≥ yt ⇔ bt = 1

Pseudo-dimension of F is a measure of its expressiveness. To show that F has pseudo-dimension at
least d one needs to provide d input variables x1, . . . , xT and d real-valued “levels” yt such that for any bit
sequence b1, . . . , bT , there is a function that passes above and below these levels at x1, . . . , xT as dictated
by the bit sequence.

It turns out that finiteness of pseudo-dimension is sufficient to guarantee an upper bound on the covering
numbers, but not necessary. For instance, consider the class of non-decreasing functions on the real line,
as discussed earlier. Let us prove that the pseudo-dimension is infinite. Indeed, for d as large as we want,
let xt = t and yt = t/d, for each t ∈ {1, . . . , d}. Then, for any bit sequence (b1, . . . , bd) ∈ {0,1}, there is a
non-decreasing function that passes above the level yt if bt = 1 and under if bt = 0. This is clearly due to the
fact that there is enough wiggle room between yt = t/d and yt+1 = (t + 1)/d for a non-decreasing function
to pass either above or below the threshold.
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While the pseudo-dimension is infinite for the class of non-decreasing functions, we saw earlier that the
covering numbers grow at most as T 2/α, yielding a near-parametric rate of

√
(logT )/T . Thus, the pseudo-

dimension is not a satisfactory parameter for capturing the problem complexity. Intuitively, at least in
the above example, the problem stems from the fact that there is no notion of scale in the definition of
pseudo-dimension. For instance, if the requirement was to pass α-above and α-below the levels yt, the
above construction of a shattered set with yt = t/d would break as soon as α = 1/d. This intuition indeed
leads to the “right” combinatorial notion, introduced by Kearns and Schapire [31]:

Definition 9.6. We say that F ⊆ RX α-shatters a set (x1, . . . , xT ) if there exist (y1, . . . , yT ) ∈ RT (called
a witness to shattering) with the following property:

∀(b1, . . . , bT ) ∈ {0,1}T , ∃f ∈ F s.t. f(xt) > yt +
α

2
if bt = 1 and f(xt) < yt −

α

2
if bt = 0

The fat-shattering dimension of F at scale α, denoted by fat(F , α), is the size of the largest α-shattered
set.

x1 x2 xT

↵/2

x1 x2 xT

Figure 9.5: Left: Pseudo-dimension can be infinite for functions that barely wiggle. Right: In contrast,
fat-shattering dimension requires the functions to pass above and below levels yt by a margin α/2. Here,
yt’s are constant.

Example 9. For the class of non-decreasing functions on the real line, the fat-shattering dimension satisfies
fat(F , α) ≤ 4/α. Indeed, suppose x1 < x2 . . . < xd are α-shattered by F . Suppose y1 ≤ . . . ≤ yT is a witness
to shattering, and take the alternating sequence (0,1,0,1, . . .) of bits. For simplicity, suppose d is even.
Then, there must be a non-decreasing function that passes below every odd-indexed and above every even-
indexed yt by a margin α. The jump of the function is then at least α between every odd and even index,
and there can be at most 2/α such jumps for a non-decreasing [−1,1]-valued function. Thus,

fat(F , α) ≤ 4/α (9.9)

The first part of the following theorem is due to Mendelson and Vershynin [39], and the second to [47]
(the proofs are difficult and go well beyond this course):

Theorem 9.7. For F ⊆ [−1,1]X and any 0 < α < 1,

N2(F , α, xT ) ≤ ( 2

α
)
K⋅fat(F,cα)

(9.10)

where K,c are positive absolute constants. Furthermore, for any δ ∈ (0,1),

logN∞(F , α, xT ) ≤ Cd log ( T
dα

) logδ(T /d), (9.11)

where d = fat(F , cδα) for some positive constant c.

The first result can be seen as a generalization of (9.8) to real-valued functions, and the second – as
a generalization of the Vapnik-Chervonenkis-Sauer-Shelah lemma. To the best of our knowledge, it is an

76



9.6 Properties of Rademacher Averages 77

open question whether the extra term involving logδ(T /d) can be removed, and it is believed that a more
natural bound logN∞(F , α, xT ) ≤ Cd log ( T

dα
) with d = fat(F , cα) should be possible.

k Prove this fact and earn an A+ in the course.

A few more remarks about Theorem 9.7. First, upper bounds on Np for 1 ≤ p < ∞ are of the same
form as (9.10), with constants c,K depending only on p (see [38, 39]). Second, note that the `∞ covering
numbers depend on T , a feature already observed in the upper bound of the Vapnik-Chervonenkis-Sauer-
Shelah lemma (see Eq.(9.7)). In fact, this dependence is inevitable for N∞. On the other hand, `p covering
numbers (1 ≤ p < ∞) are independent of T . Thankfully, the bound of Theorem 9.4 is in terms of an `2
covering number, so we need not concern ourselves with covering in the `∞ norm. Finally, we remark that
for sequential problems, the analogue of (9.11) is relatively easy to prove without the extra logarithmic
factor, which is somewhat surprising. We will later point out the place where the difficulty arises in the
i.i.d. but not in the sequential proof.

Example 10. We turn again to the example of non-decreasing functions on the real line. Recall that we
calculated `∞ covering numbers in (9.5) and used this upper bound in conjunction with Theorem 9.4 to get

an O (
√

logT
T

) upper bound in Eq. (9.6). We have also calculated an upper bound fat(F , α) ≤ 4/α on the

fat-shattering dimension in (9.9). Using this bound together with Theorem 9.7, we get a direct estimate

N2(F , α, xT ) ≤ ( 2

α
)
c/α

, for some constant c > 0

on the `2 covering numbers without a detour through the inferior `∞ covering numbers. Theorem 9.4 then
yields for any x1, . . . , xT

R̂iid(F) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T
∫

1

α

√
c

δ
log (2

δ
)dδ

⎫⎪⎪⎬⎪⎪⎭
Taking α = 1/

√
T , we observe that the integral above is bounded by the integral of a polynomial of power

larger than δ−1: say, δ−3/4. The latter integral over [α,1] is bounded by a constant, yielding an upper
bound

R̂iid(F) ≤ C√
T

for some absolute constant C. We conclude that a more careful analysis with a fat-shattering dimension
and the Dudley Entropy Integral removes the superfluous logarithmic factor. In other situations, this
approach can also lead to “correct” rates.

Of course, putting together Theorem 9.4 and the bound (9.10) of Theorem 9.7 leads to a general upper
bound

Corollary 9.8. For F ⊆ [−1,1]X , for any x1, . . . , xT ∈ X ,

D̂iid(F) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T
∫

1

α

√
Kfat(F , cδ) log (2

δ
)dδ

⎫⎪⎪⎬⎪⎪⎭
for some absolute constants c,K.

9.6 Properties of Rademacher Averages

So far, we have developed many tools for upper bounding the Rademacher averages of a function class. The
following properties of Rademacher averages greatly expand the scope of problems that can be attacked
with the introduced tools. These and further results can be found in Bartlett and Mendelson [5]:
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Theorem 9.9. The following properties of conditional Rademacher averages hold:

1. If F ⊆ G, then R̂iid(F) ≤ R̂iid(G)

2. R̂iid(F) = R̂iid(conv (F))

3. For any c ∈ R, R̂iid(cF) = ∣c∣R̂iid(F)

4. If φ ∶ R↦ R is L-Lipschitz (that is, φ(a) − φ(b) ≤ L∣a − b∣ for all a, b ∈ R), then

R̂iid(φ ○F) ≤ LR̂iid(F)

Proof. We leave the first three properties as an easy exercise, and only prove the last one. For brevity, let
us prove the result for L = 1. We have

R̂iid(φ ○F) = Eε1,...,εT sup
f∈F

1

T

T

∑
t=1

εtφ(f(xt))

= 1

2
{Eε1,...,εT−1 sup

f∈F
[ 1

T

T−1

∑
t=1

εtφ(f(xt)) + φ(f(xT ))] +Eε1,...,εT−1 sup
g∈F

[ 1

T

T−1

∑
t=1

εtφ(g(xt)) − φ(g(xT ))]}

= 1

2
Eε1,...,εT−1 sup

f,g∈F
[ 1

T

T−1

∑
t=1

εt(φ(f(xt)) + φ(g(xt))) + φ(f(xT )) − φ(g(xT ))]

= 1

2
Eε1,...,εT−1 sup

f,g∈F
[ 1

T

T−1

∑
t=1

εt(φ(f(xt)) + φ(g(xt))) + ∣f(xT )) − g(xT )∣]

In the first step, we expanded the expectation over εT as a sum of two terms; in the second, we combined
two suprema into one, and in the third used the Lipschitz property. Now, fix ε1∶T−1 and suppose the
supremum is achieved at some (f∗, g∗). If f∗(xT ) ≥ g∗(xT ), we can remove the absolute values in the
last term. Otherwise, the pair (g∗, f∗) gives the same value as the last expression, and we can remove the
absolute values once again. Thus, the last expression is upper bounded by

1

2
Eε1,...,εT−1 sup

f,g∈F
[ 1

T

T−1

∑
t=1

εt(φ(f(xt)) + φ(g(xt))) + (f(xT )) − g(xT ))]

≤ 1

2
{Eε1,...,εT−1 sup

f∈F
[ 1

T

T−1

∑
t=1

εtφ(f(xt)) + f(xT )] +Eε1,...,εT−1Eε1,...,εT−1 sup
f∈F

[ 1

T

T−1

∑
t=1

εtφ(f(xt)) − f(xT )]}

= Eε1,...,εT sup
f∈F

[ 1

T

T−1

∑
t=1

εtφ(f(xt)) + εT f(xT )]

Continuing in this fashion, we “remove” φ for every term.

The last property of Theorem 9.9 will be called “Contraction Principle”. This result is indeed the missing
link that allows us to relate the supremum of the Rademacher processes over `(F) to the supremum of
the Rademacher process over F itself whenever ` is a Lipschitz function. In the case of the indicator loss
(which is not Lipschitz), we already observed in (6.4) that

E sup
g∈`(F)

Sg = E sup
f∈F

Sf .

Now, using Theorem 9.9, we also conclude that

E sup
g∈`(F)

Sg ≤ L ⋅E sup
f∈F

Sf

whenever the loss function is L-Lipschitz.
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9.7 Discussion

We now have a full arsenal of tools for proving upper bound on the supremum of the Rademacher process
and, hence, on the excess risk

EL(f̂) − inf
f∈F

L(f)

of an empirical risk minimizer f̂ . Any distribution-independent upper bound also yields an upper bound on
the minimax value Viid(F), but the tools we developed in fact also give us data-dependent upper bounds.
In a few lectures, we will show certain concentration arguments that allow us to estimate the supremum
of the Rademacher process, opening a door to fully data-driven (rather than worst-case) results.

Since we have covered so many techniques, let us give a short recipe of how one can proceed with
a new problem. To obtain an upper bound on the performance of empirical risk minimization, first
pass to the supremum of the empirical process and then to the supremum of the Rademacher process,
as in Theorem 5.10. Then use the properties of the Rademacher averages to simplify the class over
which the Rademacher averages are taken, using Theorem 9.9. This can involve stripping away any
Lipschitz compositions (e.g. loss function), and passing from convex hulls of functions to a set of vertices.
Then attempt to build a covering, preferably in the `2 sense. If a fat-shattering or VC-dimension can be
calculated, use it to immediately deduce the size of the cover, e.g. with the help of Theorem 9.7. Use it
in conjunction with the Dudley entropy integral bound of Theorem 9.4 to obtain the final bound. This
development for an L-Lipschitz loss can be summarized by the following series of upper bounds:

EL(f̂) − inf
f∈F

L(f) ≤ E sup
f∈F

{L(f) − L̂(f)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G`(f)

≤ 2E{Eε sup
f∈F

S`(f)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂iid(`(F))

≤ 2LE{Eε sup
f∈F

Sf}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R̂iid(F)

≤ 2LE inf
α≥0
{4α + 12√

T
∫

1

α

√
logN2(F , δ, xT )dδ} ≤ 2L inf

α≥0

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T
∫

1

α

√
Kfat(F , cδ) log (2

δ
)dδ
⎫⎪⎪⎬⎪⎪⎭

As the next section shows, the sequence of upper bounds is (in a certain sense) tight.

9.8 Supplementary Material: Back to the Rademacher

In Theorem 5.10, we showed that the supremum of an empirical process is within a factor of 2 from the
supremum of the Rademacher process, both as an upper and a lower bound. Hence, not much is lost
by working with the latter. We then upper bounded the supremum of the Rademacher process by the
Dudley entropy integral D̂iid(F). We now show that this upper bound is also quite tight, as it is within a
logarithmic factor from the worst-case statistical Rademacher averages.

Definition 9.10. Worst-case statistical Rademacher averages are defined as

R̄iid(F , T ) ≜ sup
x1,...,xT

R̂iid(F , x1, . . . , xT ).

Lemma 9.11. For any T and α > 2R̄iid(F , T ),

fat(F , α) ≤ 8T R̄iid(F , T )2

α2
(9.12)

Proof. Let d = fat(F , α) and x∗1, . . . , x
∗
d be the set of points α-shattered by F with the witness y∗1 , . . . , y

∗
d .

First, suppose by the way of contradiction that d ≥ T . Then, the worst-case statistical Rademacher based
on the first (x∗1, . . . , x∗T ) out of the shattered set gives

R̄iid(F , T ) ≥ R̂iid(F , x1, . . . , xT ) = Eε1,...,εT sup
f∈F

1

T

T

∑
t=1

εtf(x∗t ) = E sup
f∈F

1

T

T

∑
t=1

εt(f(x∗t ) − y∗t ) ≥ α/2,
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contradicting our assumption that α > 2R̄iid(F , T ). Hence, necessarily d < T .
For simplicity of exposition, assume that T = kd for some integer k > 0 (otherwise, can take T ′ to be the

nearest multiple of d, with T ≤ T ′ ≤ 2T ). We can then take the set (x1, . . . , xT ) as (x∗1, . . . , x∗1, . . . , x∗d, . . . , x∗d),
where each element x∗i is repeated k times, and perform the same concatenation for the witnesses y1, . . . , yT .
We then lower bound

R̄iid(F , T ) ≥ R̂iid(F , x1, . . . , xT )

= Eε1,...,εT sup
f∈F

1

T

T

∑
t=1

εt(f(xt) − yt)

= Eε1,...,εT sup
f∈F

1

T

d

∑
i=1

(f(x∗i ) − y∗i )
⎛
⎝
k

∑
j=1

ε(i−1)k+j
⎞
⎠

For a given sequence (ε1, . . . , εT ), let σi be the majority vote of the signs ε(i−1)k+1, . . . , εik on the ith block.
By the definition of α-shattering, there exists a function f ∈ F that passes above/below y∗i on x∗i by a
margin α/2 according to the sign σi, for each i. This yields

R̄iid(F , T ) ≥ Eε1,...,εT sup
f∈F

1

T

d

∑
i=1

(α/2)
RRRRRRRRRRR

k

∑
j=1

ε(i−1)k+j

RRRRRRRRRRR
≥ (α/2)

√
1

2k
=
√

α2fat(F , α)
8T

With the upper bound on fat(F , α) given by Lemma 9.11, we can further upper bound the integral in
Corollary 9.8 to obtain

Corollary 9.12. For F ⊆ [−1,1]X , for any x1, . . . , xT ,

R̂iid(F) ≤ D̂iid(F) ≤ R̄iid(F , T ) ⋅O(log3/2 T ) .

Proof. Taking α = 2R̄iid(F , T )/c, for the absolute constant c given in (9.10). Then

R̂iid(F) ≤ 4α + 12√
T
∫

1

α

√
Kfat(F , cδ) log (2

δ
)dδ ≤ 4α + 12√

T
∫

1

α

√
K

8T R̄iid(F , T )2

c2δ2
log (2

δ
)dδ

Simplifying the above expression, we obtain an upper bound

R̄iid(F , T )
⎛
⎝

8/c + 12∫
1

α

√
8K

c2δ2
log (2

δ
)dδ

⎞
⎠
= R̄iid(F , T ) ⋅O(log3/2 T )

9.9 Supplementary Material: Lower Bound on the Minimax Value

We now show a lower bound on the value of statistical learning with absolute loss (Eq. (3.9)) in terms of
the worst-case statistical Rademacher averages R̄iid defined in the previous section, with the caveat that
we only consider proper learning methods (see page 32).

Lemma 9.13 ([49]). Consider the i.i.d. setting of supervised learning with absolute loss, and let F ⊆
[−1,1]X . Let us only consider estimators f̂ that take values in F (that is, proper learning). Then

Viid,ab(F , T ) ≥ R̄iid(F ,2T ) − 1

2
R̄iid(F , T ) (9.13)
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Proof. Recall that ∣y − f(x)∣ = 1 − yf(x) for y ∈ {±1} and f(x) ∈ [−1,1]. Hence, we can write

E ∣f̂(X) − Y ∣ − inf
f∈F

E ∣f(X) − Y ∣ = E (1 − Y f̂(X)) − inf
f∈F

E (1 − Y f(X))

= sup
f∈F

E (Y f(X)) −E (Y f̂(X))

where the expectation in the second term is over the draw of data (of size T ) as well as another i.i.d. copy
(X,Y ). Take any x1, . . . , x2T ∈ X and let PX be the uniform distribution on these 2T points. For any
ε = (ε1, . . . , ε2T ) ∈ {±1}2T , let the distribution Pε be such that the marginal distribution of the variable X
is PX while the conditional of Y ∣X = xi is deterministically εi, for all i ∈ [2T ]. This defines a family of

distributions Pε indexed by ε ∈ {±1}2T . Recall that, by definition, an estimator f̂ is a mapping T samples
drawn i.i.d. from this discrete distribution into F . Then

Viid,ab(F , T ) = inf
f̂

sup
P

{E ∣f̂(X) − Y ∣ − inf
f∈F

E ∣f(X) − Y ∣}

≥ inf
f̂

sup
x1,...,x2T ∈X

Eε {sup
f∈F

E (Y f(X)) −E (Y f̂(X))}

≥ { sup
x1,...,x2T ∈X

Eε sup
f∈F

E (Y f(X))} −
⎧⎪⎪⎨⎪⎪⎩

sup
f̂

sup
x1,...,x2T ∈X

EεE (Y f̂(X))
⎫⎪⎪⎬⎪⎪⎭

The first term above is precisely

sup
x1,...,x2T ∈X

Eε sup
f∈F

E (Y f(X)) = sup
x1,...,x2T ∈X

Eε sup
f∈F

{ 1

2T

2T

∑
t=1

εtf(xt)} = R̄iid(F ,2T ).

For the second term, note that a uniform draw of T data points from 2T with replacement is equivalent
to drawing indices i1, . . . , iT uniformly at random from {1, . . . ,2T}, and let J stand for the set of unique
indices, ∣J ∣ ≤ T . We can then write the second term as

sup
f̂

sup
x1,...,x2T ∈X

EεE (Y f̂(X)) = sup
f̂

sup
x1,...,x2T ∈X

Ei1,...,iTEε {
1

2T

2T

∑
t=1

εtf̂(xt)}

= sup
f̂

sup
x1,...,x2T ∈X

Ei1,...,iTEε {
1

2T
∑
t∈J
εtf̂(xt)}

where the last equality is due to the fact that

Eε
⎧⎪⎪⎨⎪⎪⎩

1

2T
∑
t∉J
εtf̂(xt)

⎫⎪⎪⎬⎪⎪⎭
= 0 .

However, we can upper bound

sup
f̂

sup
x1,...,x2T ∈X

Ei1,...,iTEε {
1

2T
∑
t∈J
εtf̂(xt)} ≤ sup

f̂

Ei1,...,iT sup
x1,...,x∣J ∣∈X

Eε {
1

2T
∑
t∈J
εtf̂(xt)}

≤ sup
f̂

sup
x1,...,xT ∈X

Eε {
1

2T

T

∑
t=1

εtf̂(xt)}

≤ sup
x1,...,xT ∈X

Eε sup
f∈F

{ 1

2T

T

∑
t=1

εtf(xt)}

which is 1
2
R̄iid(F , T ). This concludes the proof.
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10
Sequential Prediction: Classification

We now turn to the setting of sequential prediction, with the goal of mimicking many of the results of
the previous few lectures. Within sequential prediction, “T -tuples of data” are replaced with “trees”, the
empirical process with the martingale process, and the Rademacher process – with the tree process. We
already observed certain similarities in the way that the suprema over finite classes are bounded both in
the i.i.d. and sequential cases. We also saw that the simple example of thresholds on an interval is “easy”
for i.i.d. learning, but “hard” for sequential prediction, constituting an apparent divide between the two
settings. How much of the i.i.d.-style analysis can be pushed through for the sequential prediction, and
what are the key differences? This is the subject of the next few lectures.1

In particular, we first focus on the supervised scenario. Let us consider the improper learning version:
at each round t, the learner observes xt ∈ X , makes a prediction ŷt, and observes the outcome yt which
is chosen by Nature simultaneously with the learner’s choice. The sequence of xt’s and yt’s is chosen
by Nature, possibly adaptively based on the moves ŷ1, . . . , ŷt−1 of the player. The classification problem
involves prediction of a binary label yt ∈ {0,1}, and the goal of the learner is to have small regret

1

T

T

∑
t=1

I{ŷt ≠ yt} − inf
f∈F

1

T

T

∑
t=1

I{f(xt) ≠ yt}

against some class F of binary-valued functions. The indicator loss can be equivalently written as the
absolute value of the difference. According to Theorems 5.9 and 5.11, the value of the sequential prediction
problem is upper bounded by

V(F , T ) ≤ 2 sup
x,y

E sup
g∈`(F)

Tg = 2 sup
x,y

E sup
f∈F

1

T

T

∑
t=1

εtI{f(xt(ε1∶t−1)) ≠ yt(ε1∶t−1)} (10.1)

Just as we did in Eq. (6.4), we pass to the tree process on F itself, rather than the loss class. This step is
a version of the contraction principle as stated in Theorem 9.9 for the i.i.d. case.

Lemma 10.1. For Y = {0,1}, F ⊆ YX , and `(f, (x, y)) = I{f(x) ≠ y},

sup
x,y

E sup
g∈`(F)

Tg = sup
x

E sup
f∈F

Tf (10.2)

With the definition of sequential Rademacher complexity, the statement can be written more succinctly
as

Rseq(`(F)) =Rseq(F).
A proof of this lemma requires a few intermediate steps, and postponing it until the end of the lecture
seems like a good idea.

1Most of the results in the next few lectures can be found in [43, 45].
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10.1 From Finite to Infinite Classes: First Attempt

Lemma 7.5 gives us a handle on the supremum of the tree process for a finite class F . Mimicking the
development for the i.i.d. case, we would like to now encompass infinite classes as well. The threshold
example is not interesting since the tree process does not converge to zero, according to Theorem 6.1.
Consider a different example instead. The example is rather trivial, but will serve us for the purposes of
demonstration. Let X = [0,1] and

F = {fa ∶ a ∈ [0,1], fa(x) = 0 ∀x ≠ a, fa(a) = 1} (10.3)

the class of functions that are zero everywhere except on one designated point. This is an infinite class
and the question is whether the expected supremum of the tree process decays to zero with increasing T
for any X -valued tree x. Now, recall our development for the i.i.d. case with the class of thresholds. We
argued that if we condition on the data, the effective number of possible values that the functions take is
finite even if the class is infinite. This led us to the idea of the growth function.

Following the analogy, let us define F ∣x as the set of all {0,1}-valued trees

F ∣x = {f ○ x ∶ f ∈ F}

where f ○ x is defined as a tree (f ○ x1, f ○ x2, . . . , f ○ xT ). Since xt is a function from {±1}t−1 to X , the
t-th level f ○xt of the f ○x tree is a function from {±1}t−1 to {0,1}. Thinking of F ∣x as the projection (or,
an “imprint”) of F on x, we can write

E sup
f∈F

1

T

T

∑
t=1

εtf(xt(ε1∶t−1)) = E max
v∈F ∣x

1

T

T

∑
t=1

εtvt(ε1∶t−1) (10.4)

because the set F ∣x is clearly finite.
Given x, how can we describe F ∣x? For any fa ∈ F , fa ○ x is a tree that is zero everywhere except for

those (if any) nodes in the tree which are equal a. Observe that for two functions fa, fb ∈ F , fa ○x = fb ○x
if and only if a, b ∈ [0,1] both do not appear in the tree x:

fa ○ x = fb ○ x ⇔ a, b ∉ Img(x) or a = b.

Suppose x is such that xT ∶ {±1}T−1 ↦ [0,1] takes on 2T−1 distinct values for each path. Then

card (F ∣x) = 2T−1 .

Since this cardinality is exponential in T , Lemma 7.5 gives a vacuous bound.
It appears that there is no hope for passing from a finite to an infinite class by studying the size of the

projection of F on x, as it will be exponential in T for any nontrivial class and a “diverse enough” x. But
maybe this is for a good reason, and the problem is not learnable, just like in the case of thresholds? This
turns out to be not the case:

P Exercise (⋆⋆): Provide a strategy for the learner that will suffer O(
√

(logT )/T ) regret for the binary

prediction problem with the class defined in (10.3). Can you get a O(1/
√
T ) algorithm? (This should be

doable.)

Of course, one may hypothesize that the problem might be learnable but the bound of Theorem 5.9 is
loose. This is again not the case, and one can prove that the expected supremum of the tree process indeed
converges to zero for any x, but F ∣x is a wrong quantity to consider.

10.2 From Finite to Infinite Classes: Second Attempt

As we have already noticed, the cardinality of the set F ∣x is too large. However, this does not reflect the
fact that every fa ○ x, in the case of the function class defined in (10.3), is quite “simple”: the values are
zero, except when xt = a.
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First, for illustration purposes, consider the case when the tree x contains unique elements along any
path (left-most tree in Figure 10.1). That is, for any (ε1, . . . , εT ), if xt(ε1∶t−1) = xs(ε1∶s−1) then s = t. In this
case, f ○x is a tree with at most a single value 1 along any path. Consider the set V = {v(0),v(1), . . . ,v(T )}

a

cd e
b e

b

v(1) v(2) v(3)

Figure 10.1: Left: an X -valued tree x with unique elements within any path. Right: first three of the T +1
covering trees. Circled nodes are defined to be 1 while the rest are 0.

of T +1 binary-valued trees defined as follows. The tree v(0) is identically 0-valued. For j ≥ 1, the tree v(j)

has zeros everywhere except for the j-th level. That is, for any j ∈ {1, . . . , T}, v
(j)
t (ε1∶t−1) = 1 whenever

t = j and zero otherwise. These trees are depicted in Figure 10.1. Given the uniqueness of values of x along
any path, we have the following important property:

∀f ∈ F , ∀(ε1, . . . , εT ) ∈ {±1}T , ∃v ∈ V s.t. f(xt(ε1∶t−1)) = vt(ε1∶t−1) ∀t ∈ {1, . . . , T} (10.5)

That is, for any f ∈ F and any path, there exists a “covering tree” v in V such that f on x agrees with v
on the given path. For instance, consider a function fd ∈ F which takes values zero everywhere except on
x = d. Consider the left-most path ε = (−1,−1,−1, . . .). Then, for the x given in Figure 10.1, the function
takes on a value 1 at the third node, since x3(−1,−1) = d, and zero everywhere else. But then the covering
tree v(3) in Figure 10.1 provides exactly these values on the path (−1,−1,−1, . . .). It is not hard to convince
oneself that the property (10.5) holds true. What is crucial is that for such a tree x,

Rseq(F ,x) = E sup
f∈F

1

T

T

∑
t=1

εtf(xt(ε1∶t−1)) = Emax
v∈V

1

T

T

∑
t=1

εtvt(ε1∶t−1) ≤
√

2 log(T + 1)
T

(10.6)

by Lemma 7.5 since card (V ) = T + 1. While this achieves our goal, the argument crucially relied on the
fact that x contains unique elements along any path. What if x has several identical elements a along
some path? In this case, the function fa will take on the value 1 on multiple nodes on this path, and the
set V defined above no longer does the job. A straightforward attempt to create a set V with all possible
subsets of rows (taking on the value 1) will fail, as there is an exponential number of such possibilities.

It is indeed remarkable that there exists a set of {0,1}-valued trees V of cardinality at most T + 1
that satisfies property (10.5) without the assumption of uniqueness of elements along the paths. Here is
how such a set can be constructed inductively. Suppose we have at our disposal two sets V ` and V r of
covering trees of depth T − 1 for the left and right subtrees of x at the root. Suppose that, inductively,
on the two subtrees the sets V ` and V r satisfy property (10.5). For a v` ∈ V ` and vr ∈ V r define a joined
tree v as having 0 at the root and v` and vr as the two subtrees at the root (see Figure 10.2). In this
fashion, take pairs from both sets such that each element of V ` and V r occurs in at least one pair. This
construction gives a set V of size max{card (V `) , card (V r)}. We add to V one more tree v0 defined as
zero everywhere except on those nodes where x has the same value as the root x1 (in Figure 10.2, x1 = a
and v0 is constructed accordingly). That is,

v0
t (ε1∶t−1) = 1 if xt(ε1∶t−1) = x1 and v0

t (ε1∶t−1) = 0 otherwise

We claim that the set V satisfies (10.5) and its size is larger than that of V ` and V r by at most 1. Indeed,
for fx1 ∈ F the tree v0 matches the values along any path. For other f ∈ F , the value at the root is zero,
and (10.5) holds by induction on both subtrees.

85



86 Sequential Prediction: Classification

. . . . . .

V ` V r a

c

d

b

a
a a

a

v0

x

c

Figure 10.2: V is constructed inductively by pairing up trees in V ` and V r, plus an additional tree v0

(bottom right) which takes on value 1 only when x (top right) at the corresponding node takes on the
value x1.

The size of V increases by at most one when passing from depth T − 1 to T . For the base of the
induction, we require 2 trees for T = 1: one with the value 0 and one with the value 1 at the single vertex.
We conclude that the size of the set satisfying (10.5) is at most T + 1. As a consequence, the bound of
(10.6) holds for any x. We conclude that for the example under the consideration with the function class
F defined in (10.3),

V(F , T ) ≤ 2 sup
x

E sup
f∈F

Tf ≤ 2

√
2 log(T + 1)

T
(10.7)

10.3 The Zero Cover and the Littlestone’s Dimension

To summarize the development so far, we have seen that the size of the projection F ∣x is not the right
quantity to consider. However, if we can find a set V of binary-valued trees such that property (10.5) holds,
the supremum over the class F is equal to the maximum over the trees in V . Let us make this statement
more formally.

Definition 10.2. A set V of {0,1}-valued trees of depth T is called a zero-cover of F on a given X -valued
tree x if

∀f ∈ F , ∀(ε1, . . . , εT ) ∈ {±1}T , ∃v ∈ V s.t. f(xt(ε1∶t−1)) = vt(ε1∶t−1) ∀t ∈ {1, . . . , T}

A zero-covering number is defined as

N0(F ,x) = min{card (V ) ∶ V is an zero-cover}.

Recall that in Section 9.4 we defined an i.i.d. zero cover on tuples of points and observed that it is
the same as the projection F ∣xT . For trees, however, the zero cover is different from the projection F ∣x.
This is a key departure from the non-tree definitions. Observe that the difference is really in the order of
quantifiers: the covering tree v can be chosen according to the given path (ε1, . . . , εT ). It is not required
that there exists a tree v equal to f ○x on every path, but rather that we can find some v for any path. It
is indeed because of this correct order of quantifiers that we are able to control the supremum of the tree
process even though F ∣x is an exponentially large set.

We have the following analogue of Proposition 8.2:

Proposition 10.3. Let x be an X -valued tree of depth T , and suppose F ⊆ {0,1}X . Then

Rseq(F ,x) ≜ E sup
f∈F

1

T

T

∑
t=1

εtf(xt(ε1∶t−1)) ≤
√

2 logN0(F ,x)
T
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In a somewhat surprising turn, we can define a combinatorial dimension analogous to the Vapnik-
Chervonenkis dimension, which controls the size of the zero-cover in exactly the same way that the VC
dimension controls the size of the zero cover (Lemma 8.5).

Definition 10.4. We say that F ⊆ {0,1}X shatters a tree x of depth T if

∀(ε1, . . . , εT ) ∈ {±1}T , ∃f ∈ F s.t. f(xt(ε1∶t−1)) = ε̃t ∀t ∈ {1, . . . , T}

where ε̃t = (εt + 1)/2 ∈ {0,1}

Definition 10.5. The Littlestone’s dimension ldim (F) of the class F ⊆ {0,1}X is defined as the depth
of the largest complete binary X -valued tree x that is shattered by F , and infinity if the maximum does
not exist. Further, for a given x, define ldim (F ,x) as the depth of the largest complete binary tree with
values in Img(x).

It is easy to see that the Littlestone’s dimension becomes the VC dimension if the trees x are only
allowed to have constant mappings xt(ε1∶t−1) = xt for all ε1∶t−1. Hence, we have the rather easy lemma:

Lemma 10.6. For any F ⊆ {0,1}X ,
vc (F) ≤ ldim (F)

Example 11. The Littlestone’s dimension of the class of thresholds F = {fθ(x) = I{x ≤ θ} ∶ θ ∈ [0,1]}
is infinite. Indeed, a [0,1]-valued tree x of arbitrary depth can be constructed as in Figure 6.3, and it is
shattered by F . In contrast, vc (F) = 1.

Example 12. The Littlestone’s dimension of the class defined in (10.3) is 1.

We are now ready to state an analogue of the Vapnik-Chervonenkis-Sauer-Shelah Lemma:

Theorem 10.7. For any x,

N0(F ,x) ≤
d

∑
i=0

(T
i
)

whenever ldim (F) = d <∞.

With the help of Eq. 8.6, we have the following analogue of Corollary 8.6:

Corollary 10.8. Under the setting of Proposition 10.3, if ldim (F) = d,

Rseq(F) ≤ 2

√
2d log(eT /d)

T

Proof of Theorem 10.7. As in the proof of Lemma 8.5, define the function g(d, T ) = ∑di=0 (T
i
). The

theorem claims that the size of a minimal zero-cover is at most g(d, T ). The proof proceeds by induction
on T + d.

Base: For d = 1 and T = 1, there is only one node in the tree, i.e. the tree is defined by the constant
x1 ∈ X . Functions in F can take at most two values on x1, so N0(F ,x) ≤ 2. Using the convention (T

0
) = 1,

we indeed verify that g(1,1) = 2. The same calculation gives the base case for T = 1 and any d ∈ N.
Furthermore, for any T ∈ N if d = 0, then there is no point which is 1-shattered by F . This means that all
functions in F are identical, proving that there is a zero-cover of size 1 = g(0, T ).

Induction step: Suppose by the way of induction that the statement holds for (d, T−1) and (d−1, T−1).
Consider any tree x of depth T with ldim (F ,x) = d. Define the partition F = F0 ∪F1 with Fi = {f ∈ F ∶
f(x1) = i} for i ∈ {0,1}. We first argue that it cannot be the case that ldim (F0,x) = ldim (F1,x) = d.
For, otherwise there exist two trees z and w of depth d, shattered by F0 and F1, respectively, and with
Img(z), Img(w) ⊆ Img(x). Since functions within F0 take on the same value on x1, we conclude that
x1 ∉ Img(z) (this follows immediately from the definition of shattering). Similarly, x1 ∉ Img(w). We now
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. . . . . .

V ` V r

x1

x` xr

vrv`

1

1

Figure 10.3: The joined trees provide a zero cover for F1. For any path, the induction hypothesis provides
a zero-cover on the subtree, as illustrated.

join the two shattered z and w trees with x1 at the root and observe that F0 ∪F1 shatters this resulting
tree of depth d + 1, which is a contradiction. We conclude that ldim (Fi,x) = d for at most one i ∈ {0,1}.

Without loss of generality, assume ldim (F0,x) ≤ d and ldim (F1,x) ≤ d − 1. By induction, there are
zero-covers V ` and V r of F1 on the subtrees x` and xr, respectively, both of size at most g(d − 1, T − 1).
Out of these covers we can create a zero-cover V for F1 on x by pairing the covering trees in V ` and V r.
Formally, consider a set of pairs (v`,vr) of trees, with v` ∈ V `, vr ∈ V r and such that each tree in V ` and
V r appears in at least one of the pairs. Clearly, this can be done using at most g(d − 1, T − 1) pairs, and
such a pairing is not unique. We join the subtrees in every pair (v`,vr) with a constant 1 as the root,
thus creating a set V of trees, card (V ) ≤ g(d − 1, T − 1). We claim that V is a zero cover for F1 on x (see
Figure 10.3). Note that all the functions in F1 take on the same value 1 on x1 and by construction v1 = 1
for any v ∈ V . Now, consider any f ∈ F1 and ε ∈ {±1}T . Without loss of generality, assume ε1 = −1. By
assumption, there is a v` ∈ V ` such that v`t(ε2∶t) = f(xt+1(ε1∶t)) for any t ∈ {1, . . . , T − 1}. By construction
v` appears as a left subtree of at least one tree in V , which, therefore, matches the values of f for ε1∶T .
The same argument holds for ε1 = +1 by finding an appropriate subtree in V r. We conclude that V is a
zero cover of F1 on x. A similar argument yields a zero cover for F0 on x of size at most g(d, T − 1) by
induction. Thus, the size of the resulting zero cover of F on x is at most

g(d, T − 1) + g(d − 1, T − 1) = g(d, T ),

completing the induction step and yielding the statement of the theorem.

10.4 Removing the Indicator Loss, or Fun Rotations with Trees

Finiteness of the Littlestone’s dimension is necessary and sufficient for the expected supremum of the tree
process for the worst-case tree to converge to zero. However, for the study of sequential prediction in the
supervised setting, it remains to connect the tree process indexed by F to that indexed by `(F) for the
indicator loss. This is the contents of Lemma 10.1, and we now provide the proof.

We start by proving two supporting lemmas, which can be found in [45]. To motivate the first lemma,
take a fixed vector s ∈ {±1}T , and let ε1, . . . , εT be i.i.d. Rademacher random variables. Then, surely,
the vector (ε1s1, . . . , εT sT ) is a vector of i.i.d. Rademacher random variables. Surprisingly, Lemma 10.9
below says that such a statement can be pushed much further: st does not need to be fixed but can
be chosen according to (ε1, . . . , εt−1). This exactly means that for any {±1}-valued tree s, the sequence
(ε1s1, ε2s2(ε1), . . . , εT sT (ε1∶T−1)) is still i.i.d. Rademacher. The result can also be interpreted as a bijection
between the set of sign sequences (ε1, . . . , εT ) and the set of sign sequences (ε1s1, . . . , εT sT (ε1∶T−1)).

For vectors a, b ∈ {±1}T , let the operation a⋆ b denote element-wise multiplication. Further, for a {±1}-
valued tree s, let s1∶T (ε) = (s1(ε), . . . , sT (ε)) denote the vector of elements on the path ε = (ε1, . . . , εT ). Let
us recall the convention that we write xt(ε) even though xt only depends on ε1∶t−1.
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Lemma 10.9. Let s be any {±1}-valued tree and let ε = (ε1, . . . , εT ) be a vector of i.i.d. Rademacher
variables. Then the elements of the vector ε ⋆ s1∶T (ε) are also i.i.d. Rademacher.

Proof. We just need to show that the set of sign patterns P (s) = {ε ⋆ s1∶T (ε) ∶ ε ∈ {±1}T } is the same as
all sign patterns, i.e. P (s) = {±1}T . This is easy to do by induction on T . Lemma is obvious for T = 1.
Assume it for T = k and let us prove it for T = k + 1. Fix a tree s of depth k + 1. Let sL and sR be the left
and right subtrees (of depth k), i.e.

sLt (ε) = st+1(−1, ε), sRt (ε) = st+1(+1, ε)

Now, by definition of P (s), we have

P (s) = {(−s1,b) ∶ b ∈ P (sL)} ∪ {(+s1,b) ∶ b ∈ P (sR)}

where s1 is simply the root of s. Invoking induction hypothesis this is equal to

P (s) = {(−s1,b) ∶ b ∈ {±1}k} ∪ {(+s1,b) ∶ b ∈ {±1}k}

and thus P (s) = {±1}k+1 no matter what s1 ∈ {+1,−1} is.

Lemma 10.9 can now be used to prove the following result.

Lemma 10.10. For any X -valued tree x and {±1}-valued tree s, there exists another instance tree x′ such
that

E [sup
f∈F

T

∑
t=1

εtst(ε)f(xt(ε))] = E [sup
f∈F

T

∑
t=1

εtf(x′t(ε))] .

Specifically, x′ is defined by xt(ε) = x′t(ε ⋆ s1∶T (ε)) for t = 1, . . . , T .

Proof. First, x′ is well-defined because {ε⋆ s1∶T (ε) ∶ ε ∈ {±1}T} = {±1}T by Lemma 10.9. Next, for any f ,

T

∑
t=1

εtst(ε)f(xt(ε)) =
T

∑
t=1

εtst(ε)f(x′t(ε ⋆ s1∶T (ε))) .

Taking sup over f ’s followed by expectation over ε’s on both sides gives us

E [sup
f∈F

T

∑
t=1

εtst(ε)f(xt(ε)] = E [sup
f∈F

T

∑
t=1

[ε ⋆ s1∶T (ε)]tf(x′t(ε ⋆ s1∶T (ε))]

The proof is complete now by appealing to Lemma 10.9 that asserts that the distribution of ε ⋆ s1∶T (ε) is
also i.i.d. Rademacher no matter what the signed tree s is.

One can interpret the statement of Lemma 10.10 as an equality due to the “rotation” of the tree x
provided by the tree s of signs. For instance, suppose for the illustration purposes that s is a tree of all
−1’s. Hence,

εtst(ε)f(xt(ε)) = −εtf(xt(ε)) = −εtf(x′t(−ε))

where x′ is the mirror reflection of x defined as x′t(ε1∶t−1) = xt(−ε1∶t−1). It is then not surprising that
Lemma 10.10 holds for this particular choice of s. As another example, take the tree s with −1 at the root
and +1 everywhere else. Then the resulting tree x′ has the left and right subtrees of x reversed. What is
interesting, the result of Lemma 10.10 holds for any {±1}-valued tree s, and this is exactly what we need
to “erase” the indicator loss.
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Proof of Lemma 10.1. Fix any X -valued tree x and any {0,1}-valued tree y, both of depth T . Using
I{a ≠ b} = a(1 − 2b) + b for a, b ∈ {0,1},

E sup
f∈F

{ 1

T

T

∑
t=1

εtI{f(xt(ε)) ≠ yt(ε)}} = E sup
f∈F

{ 1

T

T

∑
t=1

εt(1 − 2yt(ε))f(xt(ε))} +E{ 1

T

T

∑
t=1

εtyt(ε)} (10.8)

and the second term disappears under the expectation, thanks to the fact that yt(ε) and εt are independent.
Using Lemma 10.10 with the {±1}-valued tree s = 1 − 2y, the expression in (10.8) is equal to

E sup
f∈F

1

T

T

∑
t=1

εtf(x′t(ε))

for another tree x′ specified in Lemma 10.10. We conclude that

E sup
f∈F

T`(f) ≤ sup
x′

E sup
f∈F

Tf .

Since this holds for all x,y, the statement follows.

10.5 The End of the Story

We finish this section with a lower bound on the value V(F , T ) for prediction of binary sequences with
indicator loss. Together with Lemma 10.1, it implies that the value is characterized by the expected
supremum of the tree process for the worst-case tree, up to a constant 2.

Theorem 10.11. Let Y = {0,1}, F = YX , and `(f, (x, y)) = I{f(x) ≠ y}. Then the value of sequential
prediction defined in Eq. 3.18 is

Rseq(F) ≤ V(F , T ) ≤ 2Rseq(F)
In particular,

V(F , T )→ 0 if and only if ldim (F) <∞

Proof. The upper follows from Corollary 5.15 and Lemma 10.1. We now prove the lower bound. Fix any
X -valued tree x of depth T . Consider the following strategy for Nature, already employed in Section 6.4.
At round one, x1 is presented to the learner, who predicts ŷ1 while Nature flips a coin y′1 ∈ {−1,1} and
presents y1 = (y′1 +1)/2 ∈ {0,1} to the learner. At round t, Nature presents xt(y′1, . . . , y′t−1), learner chooses
ŷt, and Nature flips a coin y′t and its {0,1} version to the player. It is easy to see that the expected loss of
the player is

E{ 1

T

T

∑
t=1

I{ŷt ≠ yt}} = 1

2
.

Thus, expected regret is

E{ 1

T

T

∑
t=1

I{ŷt ≠ yt} − inf
f∈F

1

T

T

∑
t=1

I{f(xt(y′1∶t−1)) ≠ y′t}} = 1

2
E sup
f∈F

{ 1

T

T

∑
t=1

(1 − 2I{f(xt(y′1∶t−1)) ≠ yt})}

= 1

2
E sup
f∈F

{ 1

T

T

∑
t=1

y′t(2f(xt(y′1∶t−1)) − 1)}

The proof of the lower bound is completed by observing that −1 disappears under the expectation, and
the fact that x was chosen arbitrarily.

The fact that the lower bound is not converging to zero if the Littlestone’s dimension is infinite follows
analogously to Theorem 6.2 by the definition of shattering.

90



11
Sequential Prediction: Real-Valued Functions

11.1 Covering Numbers

The development for sequential prediction with real-valued classes of functions parallels that for statistical
learning. Recall that the notion of a projection F ∣x1,...,xT coincided with the notion of a zero cover for
tuples x1, . . . , xT of data. In the previous lecture we also argued that for trees, the size of the projection
F ∣x is not the same as the appropriately defined zero cover and that the latter is a better notion for
controlling the supremum of the tree process. It is then natural to extend the definition of the zero cover
(Definition 10.2) to the case of real-valued functions on trees. This can be done as follows.

Definition 11.1. A set V of R-valued trees is a α-cover (with respect to `p) of F ⊆ [−1,1]X on an X -valued
tree x if

∀f ∈ F , ∀ε ∈ {±1}T , ∃v ∈ V s.t. ( 1

T

T

∑
t=1

∣f(xt(ε)) − vt(ε)∣p)
1/p

≤ α . (11.1)

A α-covering number is defined as

Np(F ,x, α) = min{card (V ) ∶ V is an α-cover}.

A set V of R-valued trees is a α-cover (with respect to `∞) of F ⊆ [−1,1]X on an X -valued tree x if

∀f ∈ F , ∀ε ∈ {±1}T , ∃v ∈ V s.t. ∣f(xt(ε)) − vt(ε)∣ ≤ α ∀t ∈ {1, . . . , T}, (11.2)

and N∞(F , α,x) is the minimal size of such a α-cover.

Once again, the order of quantifiers is crucial. For any function, the tree v providing the cover can
depend on the particular path ε on which we seek to approximate the values of the function.

As in the i.i.d. case, we can now squint our eyes and view the class F at the fixed granularity α,
similarly to Proposition 9.3:

Proposition 11.2. For any x, sequential Rademacher averages of a function class F ⊆ [−1,1]X satisfy

Rseq(F ,x) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
α +

√
2 logN1(F , α,x)

T

⎫⎪⎪⎬⎪⎪⎭

Proof. Let V be a minimal α-cover of F on x with respect to `1-norm. For f ∈ F and ε ∈ {±1}T , denote by
v[f, ε] ∈ V any element that “α-covers” f in the sense given by the definition. Observe that, in contrast
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to the proof of Proposition 9.3, the element v depends not only on f but also on the path ε, and this is
crucial. Since v is a tree, v[f, ε]t is a function {±1}t−1 ↦ R. So, the value v[f, ε]t(ε), while intimidating
to parse, is the value at the t-th level on the path ε of that tree in V which “provides the cover” to the
function f on the path ε.

We have

Rseq(F ,x) = E{sup
f∈F

1

T

T

∑
t=1

εtf(xt(ε))}

= E{sup
f∈F

1

T

T

∑
t=1

εt (f(xt(ε)) − v[f, ε]t(ε)) + εtv[f, ε]t(ε)}

≤ E{sup
f∈F

1

T

T

∑
t=1

εt (f(xt(ε)) − v[f, ε]t(ε))} +E{sup
f∈F

1

T

T

∑
t=1

εtv[f, ε]t(ε)}

≤ sup
f∈F

1

T

T

∑
t=1

∣f(xt(ε)) − v[f, ε]t(ε)∣ +E{max
v∈V

1

T

T

∑
t=1

εtvt(ε)}

By definition of α-cover, the first term is upper bounded by α. The second term is precisely controlled by
the maximal inequality of Lemma 7.5, which gives an upper bound of

√
2 log ∣V ∣

T
,

due to the fact that ∑Tt=1 vt(ε)2 ≤ T for any v ∈ V and ε ∈ {±1}T . Note that if any value of the tree v is
outside the interval [−1,1], it can be truncated.

Since α > 0 is arbitrary, the statement follows.

11.2 Chaining with Trees

As in the i.i.d. case, Proposition 11.2 does not always give the correct rates because it only considers
covering numbers at one resolution. Thankfully, an analogue of Theorem 9.4 holds. The proof is more
messy than for the i.i.d. case, as we need to deal with trees and paths rather than a single T -tuple of
data. We provide the proof for completeness, but suggest skipping the proof unless one cannot overcome
the curiosity.

Theorem 11.3. For any X -valued tree x of depth T , the sequential Rademacher averages of a function
class F ⊆ [−1,1]X over x satisfy

Rseq(F ,x) ≤ Dseq(F ,x)

where

Dseq(F ,x) ≜ inf
α

{4α + 12√
T
∫

1

α

√
log N2(F ,x, δ) dδ}

Proof. Define α0 = 1 and αj = 2−j . For a fixed tree x of depth T , let Vj be an `2-cover at scale αj . For any
path ε ∈ {±1}T and any f ∈ F , let v[f, ε]j ∈ Vj the element of the cover such that

( 1

T

T

∑
t=1

∣f(xt(ε)) − v[f, ε]jt(ε)∣2)
1/2

≤ αj

As before, v[f, ε]jt denotes the t-th mapping of the tree v[f, ε]j . For brevity, let us define the T -dimensional
vectors

f(ε) = (f(x1(ε)), . . . , f(xT (ε))) and v[f, ε]j = (v[f, ε]j1(ε), . . . ,v[f, ε]jT (ε))
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With this notation,

f(ε) = f(ε) − v[f, ε]N +
N

∑
j=1

(v[f, ε]j − v[f, ε]j−1)

where v[f, ε]0 = 0. Further,

Eε sup
f∈F

T

∑
t=1

εtf(xt(ε)) = E sup
f∈F

⟨ε, f(ε)⟩ (11.3)

which can be decomposed as in the proof of Theorem 9.4:

E sup
f∈F

⎧⎪⎪⎨⎪⎪⎩
⟨ε, f(ε) − v[f, ε]N ⟩ +

N

∑
j=1

⟨ε, v[f, ε]j − v[f, ε]j−1⟩
⎫⎪⎪⎬⎪⎪⎭

≤ E sup
f∈F

⟨ε, f(ε) − v[f, ε]N ⟩ +
N

∑
j=1

E sup
f∈F

⟨ε, v[f, ε]j − v[f, ε]j−1⟩ (11.4)

Unlike Theorem 9.4, the vectors v[f, ε] and f(ε) depend on ε. The first term above can be bounded via
the Cauchy-Schwarz inequality exactly as in Eq. (9.4):

E sup
f∈F

⟨ε, f(ε) − v[f, ε]N ⟩ ≤ TαN .

The second term in (11.4) is bounded by considering successive refinements of the cover. The argument,
however, is more delicate than in Theorem 9.4, as the trees v[f, ε]j , v[f, ε]j−1 depend on the particular
path. Consider all possible pairs of vs ∈ Vj and vr ∈ Vj−1, for 1 ≤ s ≤ card (Vj), 1 ≤ r ≤ card (Vj−1), where
we assumed an arbitrary enumeration of elements. For each pair (vs,vr), define a real-valued tree w(s,r)

by

w
(s,r)
t (ε) =

⎧⎪⎪⎨⎪⎪⎩

vst (ε) − vrt (ε) if there exists f ∈ F s.t. vs = v[f, ε]j ,vr = v[f, ε]j−1

0 otherwise.

for all t ∈ [T ] and ε ∈ {±1}T . It is crucial that w(s,r) can be non-zero only on those paths ε for which vs

and vr are indeed the members of the covers (at successive resolutions) close to f(x(ε)) (in the `2 sense)
for some f ∈ F . It is easy to see that w(s,r) is well-defined. Let the set of trees Wj be defined as

Wj = {w(s,r) ∶ 1 ≤ s ≤ card (Vj) ,1 ≤ r ≤ card (Vj−1)}

Now, the second term in (11.4) is upper bounded as

N

∑
j=1

E sup
f∈F

T

∑
t=1

εt(v[f, ε]jt(ε) − v[f, ε]j−1
t (ε)) ≤

N

∑
j=1

E max
w∈Wj

T

∑
t=1

εtwt(ε)

The last inequality holds because for any j ∈ [N], ε ∈ {±1}T and f ∈ F there is some w(s,r) ∈ Wj with
v[f, ε]j = vs, v[f, ε]j−1 = vr and

vst (ε) − vrt (ε) = w
(s,r)
t (ε) ∀t ≤ T.

Clearly, card (Wj) ≤ card (Vj) ⋅ card (Vj−1). To invoke Lemma 7.5, it remains to bound the magnitude
of all w(s,r) ∈Wj along all paths. For this purpose, fix w(s,r) and a path ε. If there exists f ∈ F for which

vs = v[f, ε]j and vr = v[f, ε]j−1, then w
(s,r)
t (ε) = v[f, ε]jt −v[f, ε]j−1

t for any t ∈ [T ]. By triangle inequality

(
T

∑
t=1

w
(s,r)
t (ε)2)

1/2

≤ (
T

∑
t=1

(v[f, ε]jt(ε) − f(xt(ε)))2)
1/2

+(
T

∑
t=1

(v[f, ε]j−1
t (ε) − f(xt(ε)))2)

1/2

≤
√
T (αj +αj−1),
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and the latter quantity is equal to 3
√
Tαj . If there exists no such f ∈ F for the given ε and (s, r), then

w
(s,r)
t (ε) is zero for all t ≥ to, for some 1 ≤ to < T , and thus

T

∑
t=1

w
(s,r)
t (ε)2 ≤

T

∑
t=1

w
(s,r)
t (ε′)2

for any other path ε′ which agrees with ε up to to. Hence, the bound of 3
√
Tαj holds for all ε ∈ {±1}T and

all w(s,r) ∈Wj .
Now, back to (11.4), we put everything together and apply Lemma 7.5:

1

T
E sup
f∈F

T

∑
t=1

εtf(xt(ε)) ≤ αN + 1√
T

N

∑
j=1

3αj
√

2 log(card (Vj) ⋅ card (Vj−1))

and passing to the integral expression is exactly as in the proof of Theorem 9.4.

11.3 Combinatorial Parameters

We continue to mirror the development for statistical learning, and define scale-sensitive dimensions relevant
to sequential prediction. The following definition is the analogue of Definition 9.6.

Definition 11.4. An X -valued tree x of depth T is α-shattered by a function class F ⊆ RX , if there exists
an R-valued tree s of depth T such that

∀ε ∈ {±1}T , ∃f ∈ F s.t. , εt(f(xt(ε)) − st(ε)) > α/2 ∀t ∈ {1, . . . , T}

The tree s is called the witness to shattering. The (sequential) fat-shattering dimension fat(F , α) at scale
α is the largest T such that F α-shatters an X -valued tree of depth T . We write fat(F , α,x) for the
fat-shattering dimension over Img(x)-valued trees.

We will also denote the fat-shattering dimension as fatα(F). The definition can be seen as a natural
scale-sensitive extension of Definition 10.4 to real-valued functions. We now show that the covering numbers
are bounded in terms of the fat-shattering dimension. The following result is an analogue of the `∞ bound
of Theorem 9.7. Somewhat surprisingly, the extra logarithmic term of that bound, which is so difficult to
remove, is not present here from the outset.

Theorem 11.5. Suppose F is a class of [−1,1]-valued functions on X . Then for any α > 0, any T > 0,
and any X -valued tree x of depth T ,

N∞(α,F ,x) ≤ (2eT

α
)

fat(F,α)
(11.5)

The proof of this theorem relies on the following extension of Theorem 10.7 to multi-class prediction.
Once again, this bound comes about quite naturally when dealing with trees, while the analogous bound
for the i.i.d. case is not known. One can compare the bound below to the multi-class bound obtained in
[2, Theorem 3.3] and references therein.

Theorem 11.6. Let F ⊆ {0, . . . , k}X be a class of functions with fat2(F) = d. Then

N∞(1/2,F , T ) ≤
d

∑
i=0

(T
i
)ki .

Proof. For any d ≥ 0 and T ≥ 0, define the function gk(d, T ) = ∑di=0 (T
i
)ki, and observe that the function

used for binary classification (k = 1) in Theorem 10.7 is exactly g1(d, T ). The function gk satisfies the
recurrence

gk(d, T ) = gk(d, T − 1) + kgk(d − 1, T − 1)
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11.3 Combinatorial Parameters 95

for all d, T ≥ 1. To visualize this recursion, consider a k × T matrix and ask for ways to choose at most
d columns followed by a choice among the k rows for each chosen column. The task can be decomposed
into (a) making the d column choices out of the first T − 1 columns, followed by picking rows (there are
gk(d, T − 1) ways to do it) or (b) choosing d − 1 columns (followed by row choices) out of the first T − 1
columns and choosing a row for the T th column (there are kgk(d − 1, T − 1) ways to do it). This gives the
recursive formula.

In what follows, we shall refer to an L∞ cover at scale 1/2 simply as a 1/2-cover. The theorem claims
that the size of a minimal 1/2-cover is at most gk(d, T ). The proof proceeds by induction on T + d.

Base: For d = 1 and T = 1, there is only one node in the tree, i.e. the tree is defined by the constant
x1 ∈ X . Functions in F can take up to k + 1 values on x1, i.e. N (0,F ,1) ≤ k + 1 (and, thus, also for the
1/2-cover). Using the convention (T

0
) = 1, we indeed verify that gk(1,1) = 1+k = k+1. The same calculation

gives the base case for T = 1 and any d ∈ N. Furthermore, for any T ∈ N if d = 0, then there is no point
which is 2-shattered by F . This means that functions in F differ by at most 1 on any point of X . Thus,
there is a 1/2 cover of size 1 = gk(0, T ), verifying this base case.

Induction step: Suppose by the way of induction that the statement holds for (d, T−1) and (d−1, T−1).
Consider any tree x of depth T with fat2(F ,x) = d. Define the partition F = F0 ∪ . . . ∪Fk with Fi = {f ∈
F ∶ f(x1) = i} for i ∈ {0, . . . , k}, where x1 is the root of x. Let n = ∣{i ∶ fat2(Fi,x) = d}∣.

Suppose first, for the sake of contradiction, that fat2(Fi,x) = fat2(Fj ,x) = d for ∣i − j∣ ≥ 2. Then
there exist two trees z and w of depth d which are 2-shattered by Fi and Fj , respectively, and with
Img(z), Img(w) ⊆ Img(x). Since functions within each subset Fi take on the same values on x1, we
conclude that x1 ∉ Img(z),x1 ∉ Img(w). This follows immediately from the definition of shattering. We
now join the two shattered z and w trees with x1 at the root and observe that Fi ∪ Fj 2-shatters this
resulting tree of depth d + 1, which is a contradiction. Indeed, the witness R-valued tree s is constructed
by joining the two witnesses for the 2-shattered trees z and w and by defining the root as s1 = (i + j)/2.
It is easy to see that s is a witness to the shattering. We conclude that the number of subsets of F with
fat-shattering dimension equal to d cannot be more than two (for otherwise at least two indices will be
separated by 2 or more). We have three cases: n = 0, n = 1, or n = 2, and in the last case it must be that
the indices of the two subsets differ by 1.

First, consider any Fi with fat2(Fi,x) ≤ d− 1, i ∈ {0, . . . , k}. By induction, there are 1/2-covers V ` and
V r of Fi on the subtrees x` and xr, respectively, both of size at most gk(d− 1, T − 1). Just as in the proof
of Theorem 10.7, out of these 1/2-covers we can create a 1/2-cover V for Fi on x by pairing the 1/2-covers
in V ` and V r with i at the root. The resulting cover of Fi is of size at most gk(d − 1, T − 1). Such a
construction holds for any i ∈ {0, . . . , k} with fat2(Fi,x) ≤ d− 1. Therefore, the total size of a 1/2-cover for
the union ∪i∶fat2(Fi,x)≤d−1Fi is at most (k + 1 − n)gk(d − 1, T − 1).

If n = 0, the induction step is proven because gk(d − 1, T − 1) ≤ gk(d, T − 1) and so the total size of the
constructed cover is at most

(k + 1)gk(d − 1, T − 1) ≤ gk(d, T − 1) + kgk(d − 1, T − 1) = gk(d, T ).

Now, consider the case n = 1 and let fat2(Fi,x) = d. An argument exactly as above yields a 1/2-cover
for Fi, and this cover is of size at most gk(d, T − 1) by induction. The total 1/2-cover is therefore of size
at most

gk(d, T − 1) + kgk(d − 1, T − 1) = gk(d, T ).

Lastly, for n = 2, suppose fat2(Fi,x) = fat2(Fj ,x) = d for ∣i − j∣ = 1. Let F ′ = Fi ∪ Fj . Note that
fat2(F ′,x) = d. Just as before, the 1/2-covering for x can be constructed by considering the 1/2-covers for
the two subtrees. However, when joining any (v`,vr), we take (i + j)/2 as the root. It is straightforward
to check that the resulting cover is indeed an 1/2-cover, thanks to the relation ∣i − j∣ = 1. The size of
the constructed cover is, by induction, gk(d, T − 1), and the induction step follows. This concludes the
induction proof, yielding the main statement of the theorem.
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96 Sequential Prediction: Real-Valued Functions

To see that the growth of gk(d, T ) is polynomial for T ≥ d, observe that

d

∑
i=1

(T
i
)ki ≤ (kT

d
)
d d

∑
i=1

(T
i
)( d

T
)
i

≤ (kT
d

)
d

(1 + d

T
)
T

≤ (ekT
d

)
d

and it always holds that this sum is at most (ekT )d. With the help of Theorem 11.6 we can prove
Theorem 11.5. The idea is that when we discretize the values of the functions in F to the level α, we may
view the resulting function as taking on values {0, . . . , k}. Theorem 11.6 then tells that the size of the cover
is upper bounded by (ekT )d, and this bound translates immediately into the bound for the real-valued
class F .

↵/2

f↵

f

Figure 11.1: A [−1,1]-valued function f is discretized to the level α. The resulting discretized function fα
takes on at most ⌊2/α⌋ + 1 values. Any cover of the discretized class ⌊F⌋α at scale α/2 is also a cover of F
at scale α.

Proof of Theorem 11.5. For any α > 0 define an α-discretization of the [−1,1] interval as Bα = {−1 +
α/2,−1 + 3α/2, . . . ,−1 + (2k + 1)α/2, . . .} for 0 ≤ k and (2k + 1)α ≤ 4. Also for any a ∈ [−1,1] define
⌊a⌋α = arg minr∈Bα ∣r−a∣ with ties being broken by choosing the smaller discretization point. For a function
f ∶ X ↦ [−1,1] let the function ⌊f⌋α be defined pointwise as ⌊f(x)⌋α, and let ⌊F⌋α = {⌊f⌋α ∶ f ∈ F}. First,
we prove that N∞(α,F ,x) ≤ N∞(α/2, ⌊F⌋α,x). Indeed, suppose the set of trees V is a minimal α/2-cover
of ⌊F⌋α on x. That is,

∀fα ∈ ⌊F⌋α, ∀ε ∈ {±1}T ∃v ∈ V s.t. ∣vt(ε) − fα(xt(ε))∣ ≤ α/2

Pick any f ∈ F and let fα = ⌊f⌋α. Then ∥f − fα∥∞ ≤ α/2. Then for all ε ∈ {±1}T and any t ∈ [T ]

∣f(xt(ε)) − vt(ε)∣ ≤ ∣f(xt(ε)) − fα(xt(ε))∣ + ∣fα(xt(ε)) − vt(ε)∣ ≤ α,

and so V also provides an L∞ cover at scale α.
We conclude that N∞(α,F ,x) ≤ N∞(α/2, ⌊F⌋α,x) = N∞(1/2,G,x) where G = 1

α
⌊F⌋α. The functions of

G take on a discrete set of at most ⌊2/α⌋+1 values. Obviously, by adding a constant to all the functions in
G, we can make the set of values to be {0, . . . , ⌊2/α⌋}. We now apply Theorem 11.6 with an upper bound

∑di=0 (T
i
)ki ≤ (ekT )d which holds for any T > 0. This yields N∞(1/2,G,x) ≤ (2eT /α)fat2(G).

It remains to prove fat2(G) ≤ fatα(F), or, equivalently (by scaling) fat2α(⌊F⌋α) ≤ fatα(F). To this end,
suppose there exists an R-valued tree x of depth d = fat2α(⌊F⌋α) such that there is an witness tree s with

∀ε ∈ {±1}d, ∃fα ∈ ⌊F⌋α s.t. ∀t ∈ [d], εt(fα(xt(ε)) − st(ε)) ≥ α

Using the fact that for any f ∈ F and fα = ⌊f⌋α we have ∥f − fα∥∞ ≤ α/2, it follows that

∀ε ∈ {±1}d, ∃f ∈ F s.t. ∀t ∈ [d], εt(f(xt(ε)) − st(ε)) ≥ α/2

That is, s is a witness to α-shattering by F . Thus for any x,

N∞(α,F ,x) ≤ N∞(α/2, ⌊F⌋α,x) ≤ (2eT

α
)

fat2α(⌊F⌋α)
≤ (2eT

α
)

fatα(F)
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Plugging the estimates on the `∞ covering numbers into the integral of Theorem 11.3, the following
analogue of Corollary 9.8.

Corollary 11.7. For F ⊆ [−1,1]X and any X -valued tree x of depth T ,

Dseq(F ,x) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
4α + 12√

T
∫

1

α

√
fat(F , δ) log (2eT

δ
)dδ

⎫⎪⎪⎬⎪⎪⎭

where fat(F , δ) is the sequential fat-shattering dimension.

Observe the unfortunate logT factor, which is unavoidable for `∞ covering numbers. Ideally, we would
like to use `2 covering numbers in conjunction with Theorem 11.3, but for that we need to prove an analogue
of (9.10), which appears to be a rather difficult problem.

k Prove the analogue of (9.10) for the `2 tree covering numbers, and get an A+ in the course.

11.4 Properties of Sequential Rademacher Averages

Theorem 11.8. The following properties of sequential Rademacher averages hold. For any X -valued tree
x of depth T ,

1. If F ⊆ G, then Rseq(F ,x) ≤Rseq(G,x)

2. Rseq(F ,x) =Rseq(conv (F) ,x)

3. For any c ∈ R, Rseq(cF ,x) = ∣c∣Rseq(F ,x)

4. If φ ∶ R↦ R is L-Lipschitz (that is, φ(a) − φ(b) ≤ L∣a − b∣ for all a, b ∈ R), then

Rseq(φ ○F) ≤ LRseq(F) ×O(log3/2 T )

Note that the last property falls short of the analogous result in Theorem 9.9 for two reasons: it is
only for supxRseq(F ,x) rather than Rseq(F ,x), and there is an extra poly-logarithmic factor. The first
shortcoming is not a big issue, but we believe that the extra factor should not be there.

k Prove (4) without the extra poly-logarithmic factor, and get an A+ in the course.

As the next proposition shows, we can avoid the poly-logarithmic factor for the problem of supervised
learning with a convex loss function (in place of φ) by passing directly from the value of the prediction
problem to the sequential Rademacher complexity of the base class F . This means that we can indeed
“erase” the loss function for the majority of the problems of interest (recall that this works for the indicator
loss too, as shown in Lemma 10.1). However, it would be nice to prove a general result without the extra
factor.

Proposition 11.9. Let Y ⊂ R, F ⊆ YX , and assume `(f, (x, y)) = `(f(x), y) is convex in y for any f(x)
and L-Lipschitz. Consider the (improper) supervised sequential prediction problem. Then

V(F , T ) ≤ 2LRseq(F)
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98 Sequential Prediction: Real-Valued Functions

11.5 Lower Bounds

Matching (up to a constant) lower bounds on the value of the game can be shown in several cases of
interest: supervised learning and linear loss. These two cover a wide range of problems, including online
convex optimization without additional curvature assumptions on the functions.

For the supervised learning case, the lower bound of sequential Rademacher complexity is already shown
in Theorem 10.11 for the binary prediction case, but exactly the same argument works for the real-valued
prediction with absolute loss.

We now prove a matching lower bound for the linear loss case. Suppose F is a convex subset of some
Banach space, and Z is a convex subset of the dual space. Let z be any Z-valued tree of depth T . We now
exhibit a lower bound on the value of the game, achieved by the adversary playing according to this tree.
The proof is in the same spirit as the proof of Theorem 10.11 as well as the lower bounds in Section 6.4.

Lemma 11.10. Suppose F is a convex subset of some Banach space, and Z is a convex subset of the dual
space, symmetric about the origin. For the linear game defined with `(f, z) = ⟨f, z⟩, we have

Rseq(F) ≤ V(F , T ) ≤ 2Rseq(F)

Proof. Given z, the strategy for the adversary will be the following: at round 1, draw ε1, observe the
learner’s move ft and present ε1z. On round t, the adversarial move is defined by εtzt(ε1∶t−1). This gives
the following lower bound on the value of the game:

T ⋅ V(F , T ) = ⟪inf
qt

sup
zt

Eft∼qt⟫
T

t=1

{
T

∑
t=1

⟨ft, zt⟩ − inf
f∈F

T

∑
t=1

⟨f, zt⟩}

≥ ⟪inf
qt

Eft∼qtEεt⟫
T

t=1

{
T

∑
t=1

⟨ft, εtzt(ε)⟩ − inf
f∈F

T

∑
t=1

⟨f, εtzt(ε)⟩}

≥ Eε {− inf
f∈F

T

∑
t=1

⟨f, εtzt(ε)⟩}

=Rseq(F ,z)

where the player’s loss disappears because the conditional distribution of εtzt(ε) is zero mean. Since the
lower bound holds for an arbitrary tree z, the statement follows.
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12
Examples: Complexity of Linear and Kernel Classes,
Neural Networks

In the past five chapters, we have developed powerful theoretical tools, and it is now time to reap the
benefits. Before proceeding, let us first recall the high-level picture. In Chapter 5, we had motivated
the study of the suprema of several stochastic processes. We argued that a handle on the empirical or
Rademacher process gives a finite sample guarantee on the performance of Empirical Risk Minimization,
while the martingale and tree processes provide an upper bound on the minimax value of the sequential
prediction problem. After this realization, we turned to the study of the suprema of stochastic processes.
In Chapter 7 we showed some rather straightforward upper bounds on the suprema over finite index sets.
The two chapters following that were devoted to extending the finite-class results to Rademacher processes
indexed by infinite classes of functions in binary and in real-valued cases. In the following two chapters,
we studied the suprema of the tree process indexed by infinite classes of, respectively, binary or real-valued
functions. We defined various notions of complexity of the function class that capture the behavior of the
suprema of these stochastic processes.

We now proceed to calculate the upper bounds on the expected suprema of the Rademacher and tree
processes. While we do not prove lower bounds, it can be shown that, for the examples presented here, the
behavior of the suprema of the Rademacher and tree processes is almost identical. Hence, the guarantees
for the statistical learning framework with i.i.d. data are the same as those for regret minimization in the
setting of individual sequences.

12.1 Complexity of Linear Classes

We say that F is a linear function class if each element f ∈ F is a vector and f(x) = ⟨f, x⟩. For p ≥ 0, define

Bp ≜ {a ∈ Rd ∶ ∥a∥p ≤ 1},
the unit ball in Rd with respect to the p-norm. It is well-known that for the conjugate pair 1 ≤ p, q ≤ ∞
with p−1 + q−1 = 1,

∥a∥p = sup
b∈Bq

⟨a, b⟩ .

That is, `p and `q norms (for the conjugate p, q) are dual to each other. Hölder’s inequality then says that

⟨a, b⟩ ≤ ∥a∥p ⋅ ∥b∥q .
Example 13 (`2/`2 case). Let F = X = B2 ⊂ Rd. For any X -valued tree x of depth T ,

Rseq(F ,x) = E sup
f∈F

{ 1

T

T

∑
t=1

εt ⟨f,xt(ε)⟩} = E sup
f∈F

⟨f, 1

T

T

∑
t=1

εtxt(ε)⟩ = E∥ 1

T

T

∑
t=1

εtxt(ε)∥
2

(12.1)
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One can view the sequential Rademacher complexity as the expected length of a random walk of the
martingale with increments {εtxt(ε1∶t−1)}, normalized by T . Recall that x is X -valued, so the increments
are in the Euclidean unit ball. So, how far can such a random walk be expected to walk away for any tree
x? An easy calculation shows that

E∥
T

∑
t=1

εtxt(ε)∥
2

≤
⎛
⎝
E∥

T

∑
t=1

εtxt(ε)∥
2

2

⎞
⎠

1/2

=
⎛
⎝
E∑
t,s

⟨εtxt(ε), εsxs(ε)⟩ =
⎞
⎠

1/2

= (
T

∑
t=1

E ∥xt(ε)∥2
2)

1/2

≤
√
T

In view of (5.18) we conclude that

Riid(F) ≤Rseq(F) ≤ 1√
T

(12.2)

Khinchine-Kahane inequality shows that Riid(F) ≥ 1√
2T

for any symmetric distribution P on the surface

of X , so supP Riid(F) is at most within a small factor from Rseq(F).

Example 14 (`1/`∞ case). Suppose now that X = B∞ = [−1,1]d, while F = B1 = {f ∈ Rd ∶ ∑di=1 ∣fi∣ ≤ 1}.
Observe that

F = conv ({±e1, . . . ,±ed}) .
That is, the `1 ball is a convex hull of 2d vertices. Thus,

Riid(F) ≤Rseq(F) =Rseq({±e1, . . . ,±ed}) ≤
√

2 log(2d)
T

(12.3)

by Lemma 7.4.

Example 15 (∆d/`∞ case). Suppose now that X = B∞ = [−1,1]d and

F = ∆d = {f ∈ Rd ∶
d

∑
i=1

fi = 1, fi ≥ 0 ∀i}

is the d-simplex. Similarly to the previous example, F = conv ({e1, . . . ,ed}) , and

Riid(F) ≤Rseq(F) =Rseq({e1, . . . ,ed}) ≤
√

2 log(d)
T

(12.4)

by Lemma 7.4.

Example 16 (General strongly convex case). Let ∥ ⋅∥ be some norm and let X be a unit ball in this norm.
Let ∥ ⋅ ∥∗ be the dual norm, defined by

∥f∥∗ = sup
x∈X

⟨f, x⟩ .

Let Ψ be a σ-strongly convex function with respect to ∥ ⋅ ∥∗ on F . That is, for any f, g ∈ F ,

Ψ(f) ≥ Ψ(g) + ⟨f − g,∇Ψ(g)⟩ + σ
2
∥f − g∥2

∗ (12.5)

Defining the convex conjugate Ψ∗ of Ψ as

Ψ∗(x) = sup
f∈F

⟨f, x⟩ −Ψ(f)

it is possible to verify the opposite property for the dual function:

Ψ∗(x) ≤ Ψ∗(y) + ⟨∇Ψ∗(y), x − y⟩ + 1

2σ
∥x − y∥2 (12.6)
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12.2 Prediction with Linear Classes 101

for all x, y ∈ X . Finally, let F = {f ∶ Ψ(f) ≤M2}.
Using the definition of Fenchel duality, for any λ > 0,

Rseq(F ,x) = 1

λ
E sup
f∈F

⟨f, λ
T

T

∑
t=1

εtxt(ε)⟩ ≤
1

λ
(sup
f∈F

Ψ(f) +EΨ∗ ( λ
T

T

∑
t=1

εtxt(ε))) (12.7)

The first term is upper bounded by our assumption that Ψ(f) ≤M2 over F . As for the second term, we
use (12.6):

EΨ∗ (ZT ) ≤ E(Ψ∗ (ZT−1) + ⟨∇Ψ∗(ZT−1),
λ

T
εTxT (ε)⟩ +

1

2σ
∥ λ
T

xT (ε)∥
2

) (12.8)

with ZT = λ
T ∑

T
t=1 εtxt(ε) and ZT−1 = λ

T ∑
T−1
t=1 εtxt(ε). The first-order term disappears under the expecta-

tion, and the second-order term is bounded by λ2/(2σT 2) since the x tree is X -valued. Peeling off all the
terms in the sum in the similar manner, we arrive at

Rseq(F ,x) ≤ M
2

λ
+ λ

2σT
=M

√
2

σT
(12.9)

for λ =M
√

2σT . Of course, the radius of the ball X is 1 and does not appear in the bound; otherwise, the
bound would scale linearly with it.

12.2 Prediction with Linear Classes

In the supervised setting, we have pairs (x, y) of predictor-response variables. Consider the square, absolute
and logistic loss functions `(f(x), y) paired with linear functions f(x) = ⟨f, x⟩:

(⟨f, x⟩ − y)2
, ∣ ⟨f, x⟩ − y∣, log(1 + exp{−y ⟨f, x⟩})

For X and F being unit balls in dual norms, it is natural to assume that Y = [−1,1] since that is the range
of functions f(x). Then, the square loss is evaluated on the interval [−2,2], and on this interval it is a
2-Lipschitz function of f(x) for any y. Clearly, the absolute loss is a 1-Lipschitz function, and so is the
logistic loss.

For any such L-Lipschitz loss, Proposition 11.9 tells us that the value of the sequential prediction
problem

V(F) ≤ 2LRseq(F) .
The same result holds for the setting of statistical learning in view of Theorem 9.9:

Viid(F) ≤ 2LRiid(F) .

We can now use upper bounds on Rseq(F) and Riid(F) for the examples of linear function classes consid-
ered above.

Observe that for square loss, the rate 4/
√
T guaranteed through the argument above seems to mismatch

the rate O(d/T ) obtained in Section 2.1. In fact, each of these bounds works in its own regime: for d >
√
T

the former kicks in, while for small d the O(d/T ) rate might be better. A more careful analysis, which
goes beyond the scope of this course, allows one to interpolate between these two rates.

12.3 Kernel Methods

Linear predictors discussed above are attractive from both algorithmic and from the analysis perspectives.
At first glance, however, linear predictors might appear to be limited in terms of their representativeness.
The kernel methods are aimed to alleviate this very problem. The basic idea is to first map data points into
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102 Examples: Complexity of Linear and Kernel Classes, Neural Networks

a feature space (usually of higher, or even infinite dimension) and to use linear predictors in that feature
space. To illustrate the point, let us consider the two dimensional example shown in Figure 12.1. The two
classes are arranged in circles, and are not linearly separable. In fact, any linear predictor will misclassify
a constant proportion of the data points. However, if we used a circle as the decision boundary, the data
would be perfectly separable. Such a decision rule is of the form f(x) = sign(x[1]2+x[2]2−r2), and can be
written as a linear form once we define the features appropriately. In particular, consider the feature space
given by the map x↦ φ(x) where φ(x) = (x[1]2, x[2]2, x[1] ⋅x[2], x[1], x[2],1). The classifier based on the
circle x[1]2 +x[2]2 − r2 can now be written as a half-space defined by the vector f = (1,1,0,0,0,−r2) ∈ R6.
This half-space in the feature space is specified by ⟨f, x⟩ = x[1]2 + x[2]2 − r2 and it perfectly classifies
the data. We see that by employing a mapping to a higher dimensional feature space one can use linear
classifiers in the feature space and increase the expressive power of linear predictors.
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Figure 12.1: The problem becomes linearly separable once an appropriate feature mapping φ is chosen.

Specifically for kernel methods we consider some input space X and an associated feature space mapping
φ that maps input in X to a possibly infinite dimensional Hilbert space. We further assume that for every
x ∈ X , ∥φ(x)∥ ≤ R for some finite R (the norm is the norm on the Hilbert space). The function class F we
consider consists of all the elements of the Hilbert space such that ∥f∥ ≤ B, and the predictors we consider
are of form ⟨f, φ(x)⟩, as motivated in the above example.

As mentioned earlier, the feature space is often taken to be infinite dimensional. In this case, one
may wonder how to even use such linear predictors on computers with finite memory. After all, we
cannot store or process infinite sequences. Fortunately, there is no need to store the functions! The
trick that make this possible is called the kernel trick. In Reproducing Kernel Hilbert Spaces (RKHS),
given two points x1, x2 ∈ X , there exists a function called the kernel function k ∶ X × X ↦ R such that
k(x1, x2) = ⟨φ(x1), φ(x2)⟩. Given such a kernel function, the Representer Theorem acts as a cornerstone
behind kernel methods. Roughly speaking, the Representer Theorem implies that any algorithm that
only operates on the predictors f through the inner products can do all the computations with the kernel
function. This means the optimization objective for the algorithm can depend on terms like ⟨x,φ(xt)⟩ or
the norm ⟨f, f⟩, and the minimizer ft at time t chosen by the learning algorithm can be represented as a
linear combination of feature vectors of the data points. That is ft can be written as ft = ∑t−1

i=1 αiφ(xi).
This further means that linear predictor on xt takes the form :

⟨ft, xt⟩ =
t−1

∑
i=1

αi ⟨φ(xi), φ(xt)⟩ =
t−1

∑
i=1

αik(xi, xt) .

Thanks to the Representer Theorem, the main take home message is that one never needs to explicitly deal
with feature space but only with kernel functions over data seen so far. As for this chapter, the main thing
to note is that one can treat the Rademacher complexity of the kernel class as the Rademacher complexity
of the linear class in the feature space with the Hilbert norm of f bounded by B and Hilbert norm of data
bounded by R. This is basically the same as the `2/`2 example, and so one gets the bound

Riid(F) ≤Rseq(F) ≤
√

R2B2

T
.
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12.4 Neural Networks 103

The above upper bound shows that one may go well beyond the linear classes in terms of expressiveness.
The kernel methods are arguably the most useful practical methods.

12.4 Neural Networks

Neural networks can be viewed as a class of functions which are built in a hierarchical manner. Let
F ⊂ [−1,1]X be a base function class (that is, a set of possible functions at the input layer of the neural
network). In every node of every subsequent layer, we take a linear combination of outputs of the nodes from
the previous layer, and this linear combination is subsequently passed through a Lipschitz transformation
function σ ∶ R ↦ R, producing the output of the node. Typically the transformation function is a sigmoid
and performs a form of a soft thresholding. The motivation for such a construction is to mimic neural
activity. Each neuron is excited by the input connections from other neurons, and its own output is a
(modulated) function of the aggregate excitation.

We now formally describe a multilayer neural network with some arbitrary base class F . Consider
any base function class F ⊂ [−1,1]X , and assume (in order to simplify the proof) that 0 ∈ F . We now
recursively define Fi as: F1 = F and for each 2 ≤ i ≤ k

Fi =
⎧⎪⎪⎨⎪⎪⎩
x↦∑

j

wijσi (fj(x)) ∣ ∀j fj ∈ Fi−1, ∥wi∥1 ≤ Bi
⎫⎪⎪⎬⎪⎪⎭

where each σi is an Li-Lipschitz transformation function such that σi(0) = 0. The following lemma upper
bounds the Rademacher complexity of the neural network class in terms of the Rademacher complexity of
the base class.

Lemma 12.1. For any base function class F ⊂ [−1,1]X that contains the zero function,

Riid(Fk) ≤Rseq(Fk) ≤ (
k

∏
i=2

BiLi) O (log
3
2 (k−1)(T )) Rseq(F)

Proof. We shall prove that for any i ∈ {2, . . . , k},

RseqT (Fi) ≤ LiBiO(log3/2(T ))RseqT (Fi−1)

To see this note that

RseqT (Fi) = sup
x

Eε

⎡⎢⎢⎢⎢⎢⎢⎣

sup
wi∶∥wi∥1≤Bi
∀jfj∈Fi−1

T

∑
t=1

εt
⎛
⎝∑j

wijσi (fj(xt(ε)))
⎞
⎠

⎤⎥⎥⎥⎥⎥⎥⎦
Interchanging the sum over t and the sum over j, and then using Hölder’s inequality, we get an upper
bound of

sup
x

Eε

⎡⎢⎢⎢⎢⎢⎢⎣

sup
wi∶∥wi∥1≤Bi
∀jfj∈Fi−1

∥wi∥1 max
j

∣
T

∑
t=1

εtσi (fj(xt(ε)))∣

⎤⎥⎥⎥⎥⎥⎥⎦

≤ sup
x

Eε [Bi sup
f∈Fi−1

∣
T

∑
t=1

εtσi (f(xt(ε)))∣]

We now claim that we can remove the absolute value at the expense of an extra factor of 2. Since σi(0) = 0
and 0 ∈ F , we also conclude that 0 ∈ Fi for any layer i. Then the above expression is equal to

sup
x

Eε [Bi sup
f∈Fi−1

max{
T

∑
t=1

εtσi (f(xt(ε))) ,−
T

∑
t=1

εtσi (f(xt(ε)))}]

≤ sup
x

Eε [Bimax{ sup
f∈Fi−1

T

∑
t=1

εtσi (f(xt(ε))) , sup
f∈Fi−1

T

∑
t=1

−εtσi (f(xt(ε)))}]
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104 Examples: Complexity of Linear and Kernel Classes, Neural Networks

Replacing the maximum by the sum of the two terms and then splitting the supremum over x into two
suprema, the last expression is at most

sup
x

Eε [Bi sup
f∈Fi−1

T

∑
t=1

εtσi (f(xt(ε)))] + sup
x

Eε [Bi sup
f∈Fi−1

T

∑
t=1

−εtσi (f(xt(ε)))]

= 2Bi sup
x

Eε [ sup
f∈Fi−1

T

∑
t=1

εtσi (f(xt(ε)))]

By Theorem 11.8(4), we pass to the upper bound of

2BiLiO(log3/2 T ) sup
x

Eε [ sup
f∈Fi−1

T

∑
t=1

εtf(xt(ε))] = 2BiLiO(log3/2 T )RseqT (Fi−1)

The statement of the lemma follows by applying the above argument repeatedly for all layers.

A key property to note about the above bound is that while the number of layers of the neural network
enters the bound, the number of nodes in each layer does not, and so in each layer we could have any
number of nodes without compromising the bound.

12.5 Discussion

Both excess risk (in statistical learning) and regret (in sequential prediction) are based on the comparison
of learner’s performance to the performance within a class F . That is, the goal is to minimize the difference

(our loss) – (loss of the best element in F)

Of course, competing with very simple F is not interesting, as the performance of the comparator is unlikely
to be good. Conversely, being able to have vanishing excess risk or vanishing regret with respect to a large
class F implies good performance in a wide variety of situations, as we are more likely to capture the
underlying phenomenon that generates the data.

The course so far has focused on understanding a key question: what are the relevant complexities of
F that make it possible to have vanishing excess loss or vanishing regret? The key point of this discussion
is that these complexities are not exactly what we might think of when we look at a particular F and
its expressiveness. For instance, take a finite F and take its convex hull. Theorems 9.9 and 11.8 imply
that the Rademacher complexities of the convex hull is equal to that of the finite collection. However,
the convex hull of F is more expressive. Consider the example of neural networks which correspond to
complicated nested compositions and convex combinations. Despite the apparent complexity, as we showed
in Lemma 12.1, the inherent complexity is simply that of the base class. In the case of kernel methods, a
bound on Rademacher complexity is possible in infinite dimensional spaces, which shows once again that
the notion of “inherent complexity” relevant to the problem of excess loss or regret minimization is not
exactly what we might think of. In some sense, this is great news, as we can take expressive (“large”)
classes F while still guaranteeing that the inherent complexity is manageable.
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14
Algorithms for Sequential Prediction: Finite Classes

Within the setting of Statistical Learning Theory, the upper bounds on the supremum of the Rademacher
process give us a mandate to use the Empirical Risk Minimization algorithm, thanks to the inequality
(5.2). But what can be said about the setting of Sequential Prediction? The upper bounds on the minimax
value guarantee existence of a strategy that will successfully minimize regret, but how do we go about
finding this strategy? Recall that to upper bound the minimax value, we jumped over quite a few hurdles:
we appealed to the minimax theorem and then performed sequential symmetrization, replacing the mixed
strategies of the opponent by a binary tree and coin flips. In this process, we seem to have lost the hope
of finding a method for minimizing regret.

Of course, we can say that the algorithm for sequential prediction is obtained by solving the long
minimax problem (3.15) at each step. But this is not very satisfying, as we would like something more
succinct and useful in practice. George Pólya’s famous quote comes to mind: “If you can’t solve a problem,
then there is an easier problem you can solve: find it.”

Let us consider the simplest case we can think of: the supervised setting of binary prediction with a
finite set F . More precisely, let X be some set, Y = {±1}, F ⊂ YX , and the loss `(f(x), y) = I{f(x) ≠ y}.
Lemma 7.5 (coupled with Lemma 10.1 to erase the indicator loss) yields a bound

V(F) ≤ 2

√
2 log ∣F ∣

T
, (14.1)

and the immediate question is: what is the algorithm that achieves it?
Before answering this question, consider an even simpler problem in order to gain some intuition.

14.1 The Halving Algorithm

Imagine that among the functions in F there is one that exactly gives the true labels yt, an assumption
we termed realizable on page 15. That is, there is f ∈ F such that, no matter what xt is presented by
Nature, the label yt is required to satisfy yt = f(xt). If we know there is a perfect predictor in F , we can
prune away elements of F as soon as they disagree with some observed yt. It is then clear that we have a
strategy that makes at most card (F) − 1 mistakes.

However, we can do better. Suppose that at each round we update the set Ft of possible perfect
predictors at time t given the new information. At the first round, F1 = F . Upon observing xt we predict
ŷt according to the majority of the functions in Ft. If ŷt = yt, we set Ft+1 = Ft. Otherwise, we set
Ft+1 = {f ∈ Ft ∶ f(xt) = yt}. Clearly, any time we made a mistake, card (Ft+1) ≤ card (Ft) /2. Suppose we
made m mistakes after T rounds. Then 1 ≤ card (FT ) ≤ card (F) /2m and thus

m ≤ log2(card (F)),
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108 Algorithms for Sequential Prediction: Finite Classes

making regret (to the zero-loss comparator) no larger than T −1 log2(card (F)). It is not hard to construct
an example with log2(card (F)) as a lower bound on the number of mistakes suffered by the learner.

We mention the Halving Algorithm, as it has various incarnations in a range of disciplines. For instance,
the idea of choosing the point that brings the most information (in our case, the majority vote) can be
seen in Binary Search and the Method of Centers of Gravity in Optimization. If each new point decreases
the “size” of the version space by a multiplicative factor, the rate of localizing the solution is exponential.

14.2 The Exponential Weights Algorithm

What if there is no element of F that predicts the sequence perfectly? We can no longer throw out parts
of F . The idea is to keep an eye on all the functions in F , yet decrease our confidence in those that
make many mistakes. The algorithm we now present is a “soft version” of the Halving Algorithm, and
it is arguably the most famous method in the framework of sequential prediction. It works not only for
binary-valued prediction, but also for the real-valued case and for non-supervised problems.

In later lectures, we will appeal to Lemma 3.1 and argue that our sequential strategy can be determinis-
tic. In the present case of a finite F , however, the assumptions of the lemma are not satisfied, as F is not a
convex set. In fact, a mixed strategy is necessary, and we will call it qt ∈ ∆(F), following Eq. (3.15). Here,
∆(F) is a set of distributions on N = card (F) elements. Without loss of generality, let F = {f1, . . . , fN}.

Exponential Weights Algorithm (EWA), Supervised Learning

Initialize: q1 = (1/N, . . . ,1/N), η =
√

8 lnN
T

At time t:
Observe xt, sample it ∼ qt, and predict ŷt = f it(xt)
Observe yt and update

qt+1(i)∝ qt(i) × exp{−η`(f i(xt), yt)} for all i ∈ {1, . . . ,N}

Lemma 14.1. Let Y ⊆ [−1,1] and F ⊂ YX with card (F) = N . For the supervised learning problem with
any loss function ` with the range in [0,1], the Exponential Weights Algorithm guarantees

E{ 1

T

T

∑
t=1

`(ŷt, yt) − inf
f∈F

1

T

T

∑
t=1

`(f(xt), yt)} ≤
√

lnN

2T
(14.2)

no matter how the sequence (x1, y1), . . . , (xT , yT ) is chosen.

Proof of Lemma 14.1(see e.g. [16]). Denote the cumulative loss of expert i by Lit = ∑ts=1 `(f i(xs), ys).
Let Wt = ∑Ni=1 exp{−ηLit} with W0 = N . We then have

ln
WT

W0
= ln

N

∑
i=1

exp(−ηLiT ) − lnN

≥ ln( max
i=1,...,N

exp(−ηLiT )) − lnN

= −η min
i=1,...,N

LiT − lnN.

On the other hand,

ln
Wt+1

Wt
= ln
∑Ni=1 exp{−ηLit+1}
∑Ni=1 exp{−ηLit}

= ln
∑Ni=1 exp(−η`(f it , yt)) ⋅ exp(−ηLit−1)

∑Ni=1 exp(−ηLit−1)
= lnEit∼qt exp (−η`(f it(xt), yt))
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We now employ a useful fact that for a random variable X ∈ [a, b],

lnEesX ≤ sEX + s
2(b − a)2

8

for any s ∈ R (see [16] for more details). This inequality implies

lnEit exp (−η`(f it(xt), yt)) ≤ −ηEit`(f it(xt), yt) +
η2

8

for the loss 0 ≤ `(⋅, ⋅) ≤ 1. Summing the last inequality over t = 1, . . . , T , and observing that the logarithms
telescope,

ln
WT+1

W1
≤ −η

T

∑
t=1

Eit`(f it(xt), yt) +
η2T

8
.

Combining the upper and lower bounds for lnWT+1/W1,

1

T

T

∑
t=1

Eit`(f it(xt), yt) − min
i∈{1,...,N}

1

T

T

∑
t=1

`(f i(xt), yt) ≤
lnN

Tη
+ η

8
.

Balancing the two terms with η =
√

8 lnN
T

and taking the expectation gives the bound.

Notice a strange feature of the Exponential Weights Algorithm: qt is decided upon before seeing xt.
In other words, the structure of F (agreement and disagreement among the functions) is not exploited.
Consequently, the Exponential Weights Algorithm has the same regret guarantee in a more abstract setting
of unsupervised learning, where at each time step the learner picks ft ∈ F , Nature simultaneously chooses
zt ∈ Z, the learner suffers loss `(ft, zt), and both players observe (ft, zt). Suppose the loss ` is again taking
values in [0,1]. The algorithm then becomes

Exponential Weights Algorithm (EWA), Unsupervised Learning

Initialize: q1 = (1/N, . . . ,1/N), η =
√

8 lnN
T

At time t:
Sample it ∼ qt, and predict f it ∈ F
Observe zt and update

qt+1(i)∝ qt(i) × exp{−η`(f i, zt)} for all i ∈ {1, . . . ,N}

It is easy to see that the same upper bound

E{ 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt)} ≤
√

lnN

2T
(14.3)

holds in this case too.
Another variant of the problem bears the name “Prediction with Expert Advice”, as we may view the

side information xt as a vector of advice of N experts. Then, the choice of elements of F corresponds to the
choice of which expert to follow, and we may take F = {e1, . . . ,eN}, the vertices of the probability simplex
∆N . As ∆(F) = ∆N , the mixed strategy qt is simply a distribution over the coordinates {1, . . . ,N}. Let
us now mention a variant where the expert advice is actually being combined to form a prediction. More
precisely, at time t, each expert i ∈ {1, . . . ,N} offers a prediction xit ∈ [0,1], the learner forms a decision
ŷt ∈ [0,1], observes the outcome yt ∈ [0,1] and incurs loss `(ŷt, yt) for some cost function `, convex in the
first argument. At the end of T days, we would like to have suffered loss not much worse than that of the
best expert, without knowing who is the best until the very end. In this case, the algorithm is
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110 Algorithms for Sequential Prediction: Finite Classes

Exponential Weights Algorithm (EWA), Prediction with Expert Advice

Initialize: q1 = (1/N, . . . ,1/N), η =
√

8 lnN
T

At time t:
Observe xt ∈ [0,1]N
Predict ŷt = q T

t xt
Observe yt and update

qt+1(i)∝ qt(i) × exp{−η`(xit, yt)} for all i ∈ {1, . . . ,N}

We then have a regret bound

E{ 1

T

T

∑
t=1

`(ŷt, yt) − inf
i∈{1,...,N}

1

T

T

∑
t=1

`(xit, yt)} ≤
√

lnN

2T
(14.4)

The fact that EWA treats the experts as unrelated entities that generate predictions has both positive
and negative implications. On the positive side, this fact increases the applicability of the algorithm. On
the negative side, the method does not take into account the correlations between experts. If experts give
very similar predictions, we would expect smaller regret, yet this fact is not reflected in the upper bound.
Exploiting the structure of F is a very interesting topic, and it will be studied later in the course. We can
already guess that covering of F needs to come into the picture, as it indicates the effective number of
distinct functions.

A variant of Exponential Weights is also employed for statistical aggregation of estimators [50, 29, 19],
treating them as fixed entities. Since the structure of F is not exploited by the Exponential Weights
method, the resulting estimator is able to mimic the best one no matter how the estimators are originally
constructed. More generally, it is instructive to think of the Exponential Weights algorithm as a “union
bound” algorithm, a point that will be explained in a few lectures.

P Exercise (⋆⋆): Prove an analogue of Lemma 14.1 for a countable F . More precisely, show that for
any distribution π on F ,

E{ 1

T

T

∑
t=1

`(ŷt, yt)} ≤ inf
f∈F

{ 1

T

T

∑
t=1

`(f(xt), yt) +
1 + ln(1/π(f))√

8T
} (14.5)

P Exercise (⋆⋆): Suppose F = ∪i∈NFi is a countable union (of potentially uncountable sets), and the
sequential prediction problem with each Fi is Uniformly Sequentially Consistent (recall the definitions in
Chapter 4). Prove that the sequential prediction problem with respect to F is Universally Sequentially
Consistent. Hint: Use the previous exercise.
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Algorithms for Sequential Prediction: Binary
Classification with Infinite Classes

The binary prediction problem within the supervised learning setting is as follows: on round t, some side
information xt is revealed, the learner picks ŷt ∈ {±1}, and the outcome yt is revealed. Let us consider
the case of prediction with hyperplanes in Rd. That is, prediction of any f ∈ F is given by sign(⟨f, xt⟩).
However, we immediately recognize that the class

{g(x) = sign(⟨f, x⟩) ∶ f ∈ F ⊂ Rd}

has infinite Littlestone’s dimension, since the example of thresholds on an interval (given in Section 6.4)
can be easily embedded into this problem if d ≥ 2.

Interestingly, the problem of infinite Littlestone’s dimension can be circumvented if we assume a certain
margin condition. Analogously to the previous lecture, where we assumed that there exists an f ∈ F , that
perfectly classifies the data, we now make a margin assumption that some f ∈ F perfectly classifies data
with an extra margin of γ > 0. Let us start with describing the margin assumption.

Assumption 15.1. Given sets F and X , the γ-margin condition is given by

∃f ∈ F s.t. ∀t ∈ [T ], yt ⟨f, xt⟩ > γ

for some γ > 0.

15.1 Halving Algorithm with Margin

Let F be the `2 ball in Rd. Because of the margin condition, we can discretize the uncountable set F of
all experts (i.e. the sphere) and pick a finite number of them for our problem. It is easy to show that if we
discretize to a fine enough level, there will be an expert that perfectly classifies the data and then we can use
the Halving Algorithm over this discretized set. The following lemma does exactly this. Before we begin,
consider the discretization of the interval [−1,1] at scale γ/2d given by B = {−1,−1+γ/2d,−1+γ/d, . . . ,1}.

Lemma 15.2. Let X ⊂ [−1,1]d. Under the γ-margin condition, the total number of mistakes committed
by the Halving Algorithm with the set of half spaces specified by the discretization Fγ = Bd is at most

d log (4d

γ
+ 1)
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112 Algorithms for Sequential Prediction: Binary Classification with Infinite Classes

Proof. By the margin assumption there exists an f∗ ∈ F , such that ∀t ∈ [T ], yt ⟨f∗, xt⟩ > γ. Since Fγ is a
γ/2d discretization on each co-ordinate, we have that there exists f∗γ ∈ Fγ such that

∀i ∈ [d], ∣f∗[i] − f∗γ [i]∣ ≤ γ/2d .

Hence note that for any t ∈ [T ],

∣yt ⟨f∗, xt⟩ − yt ⟨f∗γ , xt⟩∣ = ∣⟨f∗ − f∗γ , xt⟩∣

≤
d

∑
i=1

∣f∗[i] − f∗γ [i]∣

≤ γ/2 .

Combining with the margin assumption this implies that for all t ∈ [T ], yt ⟨f∗γ , xt⟩ > γ/2. Hence we see
that the set of half-spaces specified by Fγ has an element f∗γ that perfectly separates the data. Cardinality

of the set is given by ∣Fγ ∣ = ( 4d
γ
+ 1)

d
. Using the Halving Algorithm, we get that the number of mistakes

is bounded by

log2 ∣Fγ ∣ = d log (4d

γ
+ 1) .

The nice aspect of this reduction to a finite case is its simplicity. It is transparent how the margin
assumption allows us to discretize and only consider a finite number of experts. Another good side is the
log γ−1 dependence on the margin γ. The bad aspects: the majority algorithm over O(γ−d) experts is
computationally infeasible, and the dependence on the dimension is linear.

15.2 The Perceptron Algorithm

Luckily, the bad computational performance of the discretization algorithm can be avoided. The Perceptron
algorithm is a nice efficient algorithm for the problem of classification with a margin assumption, and it
has some remarkable history. Invented by Rosenblatt in 1957, this algorithm can be called the father of
neural networks and the starting point of machine learning. A 1969 book by Minsky and Papert showed
that perceptrons are limited in what they can learn, and this caused a decline in the field for at least a
decade. It was later shown that neural networks with several layers are significantly more powerful and
the field of machine learning started to blossom.

Perceptron Algorithm
Initialize: f1 = 0.
At each time step t = 1, . . . , T
Receive xt ∈ Rd
Predict ŷt = sign(⟨ft, xt⟩)
Observe yt ∈ {−1,1}
Update ft+1 = ft + ytxt if sign(⟨ft, xt⟩) ≠ yt, and set ft+1 = ft otherwise.

Note that no update is performed when the correct label is predicted.

Lemma 15.3. Under the γ margin condition, the number of mistakes committed by the Perceptron Algo-

rithm is at most (R
γ
)

2
where R = maxt ∥xt∥.

Proof. Let f∗ be the normal to the hyperplane that separates all data by the margin γ. Let us look at
how the “correlation” between f∗ and ft is evolving. If a mistake is made on round t,

⟨f∗, ft+1⟩ = ⟨f∗, ft + ytxt⟩ = ⟨f∗, ft⟩ + yt ⟨f∗, xt⟩ ≥ ⟨f∗, ft⟩ + γ.
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15.3 The Winnow Algorithm 113

Thus, every time there is a mistake, the inner product of our hypothesis ft with the unknown f∗ increases
by γ. If m mistakes have been made over T rounds, we have ⟨f∗, fT+1⟩ ≥ γm since we started with a
zero vector. Now, the main question is whether the increase in the inner product due to the smaller angle
between the vectors (i.e. we are indeed getting close to the unknown f∗ in terms of the direction), or is it
because of the increase in the length of ∥ft∥?

While the “correlation” with f∗ increases with every mistake, we can show that the size of the hypothesis
∥ft∥ cannot increase too fast. If there is a mistake on round t,

∥ft+1∥2 = ∥ft + ytxt∥2 = ∥ft∥2 + 2yt ⟨ft, xt⟩ + ∥xt∥2 ≤ ∥ft∥2 + ∥xt∥2

Then after T rounds and m mistakes,
∥fT+1∥2 ≤mR2.

Combining the two arguments,

γm ≤ ⟨f∗, fT+1⟩ ≤ ∥f∗∥ ⋅ ∥fT+1∥ ≤
√
mR2

assuming ∥f∗∥ is a unit vector, and so

m ≤ (R
γ
)

2

.

15.3 The Winnow Algorithm
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16
Algorithms for Online Convex Optimization

16.1 Real-Valued Prediction with Linear Functions

Suppose F and X are both the unit `2 ball in Rd, and `(f, x) = ⟨f, x⟩. At every t, the learner predicts ft,
observes xt, and suffers a cost ⟨ft, xt⟩. The goal is to minimize regret defined as

1

T

T

∑
t=1

⟨ft, xt⟩ − inf
f∈F

⟨f, xt⟩ . (16.1)

Eq. (12.2) tells us that the value of the game is upper bounded by 1/
√
T (the constant 2 is not necessary).

So, what is the strategy that gives this regret guarantee?
The first idea is to reduce the problem to the case of a finite number of experts. What allows us to do

so is the structure of F : two nearby vectors f, g ∈ F have similar loss. Let us sketch a possible reduction.
We can find a cover of the unit ball F with centers in F ′ ⊂ F , at the granularity 1/

√
T in the `2 distance.

It is easy to check that regret against F is within 1/
√
T from regret with respect to the comparator class

F . The regret bound for the Exponential Weights algorithm on the finite set F ′ is O (
√

ln ∣F ′∣ / T), as

given in the last section. But the size of the cover F ′ is at least Ω(T d/2), and so the resulting regret

bound is O (
√
d ln(T ) / T) at best. Unfortunately, this is off our target 1/

√
T in Eq. (12.2). Even more

importantly, the Exponential Weights algorithm on F ′ is not an efficient algorithm. Evidently, this is
because Exponential Weights treats each expert as a separate entity, despite the fact that the nearby
elements of F ′ incur similar loss. While the discretization takes into account the linear structure of the
problem, the Exponential Weights algorithm does not. The proposed reduction is not satisfying, but the
idea is worth mentioning. For many problems in sequential prediction, an Exponential Weights algorithm
over the discretization often yields a near-optimal, yet (possibly) inefficient method.

How can we take algorithmic advantage of the linear structure of the problem? First thing to note is
that the loss function is convex (linear) in ft, and the set F is convex. Hence, by Lemma 3.1, there is
a deterministic method for choosing ft’s. In contrast to the Exponential Weights algorithm which works
in the space of distributions, the present problem should be solvable with a deterministic method. The
regret objective in (16.1) has a flavor of an optimization problem, so it is reasonable to check if the simple
deterministic method

ft+1 = argmin
f∈F

t

∑
s=1

⟨f, xs⟩

works. This method, known as Follow the Leader simply chooses the best decision given the observed data.
Follow the Leader is basically the Empirical Risk Minimization method for each observed history. Unlike
the i.i.d. case of statistical learning where ERM is a sound procedure, the sequential prediction problem
with linear functions is not solved by this simple method, as the next (classical) example shows.
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116 Algorithms for Online Convex Optimization

Example 17. Suppose F = X = [−1,1] and `(f, x) = f ⋅x. Suppose Nature presents x1 = 0.5 and x2k = −1,
x2k+1 = 1 for k = 1, . . . , ⌊T /2⌋. The choice f1 makes little difference, so suppose f1 = 0. Clearly, the FTL
algorithm generates a sequence f2k = −1 and f2k+1 = 1, inadvertently matching the xt sequence, and thus
the average loss of FTL is 1. On the other hand, taking f = 0 in the comparator term makes it 0, and thus
regret is at least a constant.

16.2 Gradient Descent

Let us now check the whether a simple gradient update works. To this end, define

ft+1 = ΠF(ft − ηxt)

where ΠF(g) = inff∈F ∥f − g∥ the Euclidean projection onto the set F . Fix any f∗ ∈ F and write

∥ft+1 − f∗∥2 = ∥ΠF(ft − ηxt) − f∗∥2 ≤ ∥ft − ηxt − f∗∥2 = ∥ft − f∗∥2 + η2∥xt∥2 − 2η ⟨ft − f∗, xt⟩

The inequality in the above chain follows from the simple fact that an element outside the set cannot be
closer than its projection to an element in the set. Rearranging,

2η ⟨ft − f∗, xt⟩ ≤ ∥ft − f∗∥2 − ∥ft+1 − f∗∥2 + η2∥xt∥2

Summing over t = 1, . . . , T and dividing by 2η,

T

∑
t=1

⟨ft − f∗, xt⟩ ≤ (2η)−1 (∥f1 − f∗∥2 − ∥fT+1 − f∗∥2) + η
2

T

∑
t=1

∥xt∥2 ≤ 1

2η
+ Tη

2
=
√
T ,

for η = 1/
√
T . We used f1 = 0 and the fact that ∥xt∥ ≤ 1 for any t. Since this holds for any f∗ ∈ F , we have

proved the following:

Lemma 16.1. Let F and X be unit `2 balls, and `(f, x) = ⟨f, x⟩. Then the deterministic strategy of
gradient descent with projection

ft+1 = ΠF(ft − ηxt)
yields the regret bound of 1/

√
T , where f1 = 0 and η = 1/

√
T .

Notably, the gradient descent method is efficient, and its regret guarantee matches the non-constructive
upper bound on the supremum of the Rademacher process, given in Eq. (12.2).

16.3 Follow the Regularized Leader and Mirror Descent

Follow the Leader (FTL)
On the first round play some f1 ∈ F . For t ≥ 1,

ft+1 = argmin
f∈F

t

∑
s=1

`(f, xs)

Of course, at time t+1, FTL is just the empirical risk minimization algorithm given the data x1, . . . , xt.

Follow the Regularized Leader (FTRL)
Input: Regularization function R, learning rate η > 0.
For t ≥ 0,

ft+1 = argmin
f∈F

t

∑
s=1

`(f, xs) + η−1R(f)
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Definition 16.2. A function R is σ-strongly convex over F with respect to ∥ ⋅ ∥ if

R(a) ≥R(b) + ⟨∇R(b), a − b⟩ + σ
2
∥a − b∥2

for all a, b ∈ F . If R is non-differentiable, ∇R(b) can be replaced with any subgradient ∇ ∈ ∂R(b).

Definition 16.3. The Bregman divergence with respect to a convex function R is defined as

DR (a, b) =R(a) −R(b) − ⟨∇R(b), a − b⟩

Clearly, if R is σ-strongly convex with respect to ∥ ⋅ ∥, then

DR (a, b) ≥ σ
2
∥a − b∥2 (16.2)

The definition of Bregman divergence immediately leads to the following useful equality:

⟨∇R(a) −∇R(b), c − b⟩ = DR (c, b) +DR (b, a) −DR (c, a) (16.3)

The convex conjugate of the function R is defined as

R∗(u) = sup
a

⟨u, a⟩ −R(a), (16.4)

and this transformation is known as the LegendreFenchel transformation.
Recall the definition of the dual norm in (12.5).

Mirror Descent
Input: R σ-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0

ft+1 = argmin
f∈F

⟨f, xt⟩ + η−1DR (f, ft) (16.5)

or, equivalently,

f̃t+1 = ∇R∗(∇R(ft) − ηxt) and ft+1 = argmin
f∈F

DR (f, f̃t+1) (16.6)

Lemma 16.4. Let F be a convex set in a Banach space B and X be a convex set in the dual space B∗.
Let R ∶ B ↦ R be a σ-strongly convex function on F with respect to some norm ∥ ⋅ ∥. For any strategy of
Nature,

1

T

T

∑
t=1

⟨ft, xt⟩ − inf
f∈F

1

T

T

∑
t=1

⟨f, xt⟩ ≤ RmaxXmax

√
2

σT
(16.7)

where R2
max = supf,g∈F R(f) −R(g), and Xmax = supx∈X ∥x∥∗ for the dual norm ∥ ⋅ ∥∗.

Proof. Fix any f∗ ∈ F and η > 0 to be chosen later. Then

η
T

∑
t=1

⟨ft − f∗, xt⟩ = η
T

∑
t=1

⟨ft − f̃t+1, xt⟩ + η
T

∑
t=1

⟨f̃t+1 − f∗, xt⟩ (16.8)

Using the inequality ⟨f, x⟩ ≤ ∥f∥ ⋅ ∥x∥∗, which follows directly from the definition of the dual norm,

η ⟨ft − f̃t+1, xt⟩ ≤ η ∥ft − f̃t+1∥ ∥xt∥∗ = (
√
σ ∥ft − f̃t+1∥)(

η√
σ

∥xt∥∗)
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118 Algorithms for Online Convex Optimization

The inequality ab ≤ a2/2 + b2/2 now yields an upper bound

σ

2
∥ft − f̃t+1∥

2 + η2

2σ
∥xt∥2

∗ ≤ DR (f̃t+1, ft) +
η2

2σ
X2

max

The definition of the Mirror Descent update and the equality (16.3) imply

η ⟨f̃t+1 − f∗, xt⟩ = ⟨f̃t+1 − f∗,∇R(ft) −∇R(f̃t+1)⟩
= DR (f∗, ft) −DR (f∗, f̃t+1) −DR (f̃t+1, ft)
≤ DR (f∗, ft) −DR (f∗, ft+1) −DR (f̃t+1, ft)

where the last inequality is due to the fact that for the projection ft+1 is closer to any point f∗ in the
set in terms of the Bregman divergence than the unprojected point f̃t+1. Adding the last inequality for
t = 1, . . . , T , we obtain

η
T

∑
t=1

⟨f̃t+1 − f∗, xt⟩ ≤ DR (f∗, f1) −DR (f∗, fT+1) −
T

∑
t=1

DR (f̃t+1, ft) (16.9)

Combining all the terms,

η
T

∑
t=1

⟨ft − f∗, xt⟩ ≤ DR (f∗, f1) −DR (f∗, fT+1) +
Tη2

2σ
X2

max

≤ R2
max +

Tη2

2σ
X2

max

Example 18. Consider the regularization function

R(f) = 1

2
∥f∥2

In this case, the mirror space coincides with the original space, as the gradient mapping ∇R(f) = f , and
the Mirror Descent algorithm becomes simply the Gradient Descent method.

Example 19. If we take

R(f) =
N

∑
i=1

(fi log fi − fi)

defined over RN+ , the mirror space is defined by the gradient mapping ∇R(f) = log f where the logarithm
is taken coordinate-wise. The inverse mapping is ∇R∗ = (∇R)−1 is precisely the mapping a ↦ exp(a) for
a ∈ RN . The unprojected point f̃t+1 is then defined by

f̃t+1(i) = exp{log(ft(i)) − ηxt(i)} = ft(i) exp{−ηxt(i)}

and the projection onto the simplex with respect to the KL divergence is equivalent to normalization.
Hence, we recover the Exponential Weights algorithm.

16.4 From Linear to Convex Functions
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17
The Minimax Theorem

At the beginning of the course, we phrased a variety of learning problems through the language of min-
imaxity. Such formulation turned out to be especially fruitful for the problem of Sequential Prediction,
where we were able to upper bound the minimax value by a supremum of a certain stochastic process. The
very first step of the proof involved exchanging the min and the max. We never fully justified this step,
and simply assumed that the necessary conditions are satisfied for us to proceed.

In the simplest (bilinear) form, the minimax theorem is due to von Neumann:

Theorem 17.1. Let M ∈ Rn×m for some n,m ≥ 1, and let ∆n and ∆m denote the set of distributions over
the rows and columns, respectively. Then

min
a∈∆n

max
b∈∆m

aTMb = max
b∈∆m

min
a∈∆n

aTMb (17.1)

Since von Neumann, there have been numerous extensions of this theorem, generalizing the statement
to uncountable sets of rows/columns, and relaxing the assumptions on the payoff function (which is bilinear
in the above statement). To make our discussion more precise, consider the following definition:

Definition 17.2. Consider sets A and B and a function ` ∶ A ×B ↦ R. We say that the minimax theorem
holds for the triple (A,B, `) if

inf
a∈A

sup
b∈B

`(a, b) = sup
b∈B

inf
a∈A

`(a, b) (17.2)

With this definition, von Neumann’s result says that the minimax theorem holds for the triple (∆n,∆m, `)
with `(a, b) = aTMb for a ∈ ∆n, b ∈ ∆m.

In this lecture, we prove a rather general version of the minimax theorem using the Exponential Weights
algorithms (the proof is borrowed from [16]), and discuss the important relationship between the minimax
theorem and regret minimization. As we show, this relationship is quite subtle.

17.1 When the Minimax Theorem Does Not Hold

We now give two examples for which the minimax theorem does not hold. The first is the famous “Pick
the Bigger Integer” game, attributed to Wald [55].

Example 20. The two players in the zero sum game pick positive integers, and the one with the larger
number wins. It is not hard to see that the player making the first move has a disadvantage. As soon
as her mixed strategy is revealed, the opponent can simply choose a number in the 99th percentile of
this distribution in order to win most of the time. The same holds when the order is switched, now

119



120 The Minimax Theorem

to the advantage of the other player, and so the minimax theorem does not hold. More precisely, let
A = B = ∆(N) be the two sets, and `(a, b) = Ew∼a,v∼bI{w ≤ v}. The minimax theorem does not hold for
the triple (∆(N),∆(N), `), as the gap between infa supb `(a, b) and supb infa `(a, b) can be made as close
to 1 as we want.

The above example might lead us to believe that the reason the minimax theorem does not hold is
because we consider distributions over an unbounded set N. However, the above game can be embedded
into the [0,1] interval as follows:

Example 21. The two players in the zero sum game pick real numbers in the interval [0,1]. Any player
that picks 1 loses (it is a tie if both pick 1); otherwise, the person with the largest real number wins. The
setup forces the players into the same situation as in the “Pick the Bigger Integer” example, as the larger
number wins while the limit point 1 should be avoided. Let A = B = ∆([0,1]) and `(a, b) = Ew∼a,v∼b˜̀(w, v)
with

˜̀(w, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if w = 1, v ≠ 1,

0 if w ≠ 1, v = 1,

0.5 if w = v = 1

I{w ≤ v} otherwise

We can use the same reasoning as in Example 20 to show that the minimax theorem does not hold for the
triple (∆([0,1]),∆([0,1]), `).

17.2 The Minimax Theorem and Regret Minimization

From the previous section, we see that there exist some rather simple cases when the minimax theorem fails
to hold. What can we say about regret minimization in these situations? Of course, if the minimax theorem
does not hold, our proof technique of upper bounding the value by exchanging the infima and suprema
fails. However, could it be that a regret minimizing strategy exists, but we must develop it algorithmically
without even considering the value of the prediction problem? Surprisingly, this is not the case. In other
words, any time the minimax theorem fails, we have no hope of minimizing regret.

Proposition 17.3. Let F and Z be the sets of moves of the learner and Nature, respectively. Let ` ∶ F×Z ↦
R be a bounded loss function. If the minimax theorem does not hold for the triple (∆(F),∆(Z),Ef,z`(f, z)),
the regret is lower bounded by a constant for any T , and thus the problem is not learnable. Equivalently, if
there is a regret-minimizing strategy, i.e. the value of the game satisfies

lim
T→∞

V(F , T ) = 0

then it must be that the minimax theorem holds for the triple (∆(F),∆(Z),Ef,z`(f, z)).

Proof of Proposition 17.3. If the one-round game does not have a value, there exists some constant
c > 0 such that

inf
q∈∆(F)

sup
z∈Z

Ef∼q`(f, z) ≥ sup
p∈∆(Z)

inf
f∈F

Ez∼p`(f, z) + c (17.3)

Let π = {πt} denote a randomized strategy of the learner with πt ∶ Zt−1 ↦ ∆(F). Let Eπ denote the
randomization under the strategy π, and let τ = {τt} be the deterministic strategy of Nature. By definition,
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the value is

V(F , T ) = inf
π

sup
τ

Eπ { 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt)}

= inf
π

sup
τ

Eπ { 1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

Ez∼P̂ `(f, z)}

≥ inf
π

sup
τ

Eπ { 1

T

T

∑
t=1

`(ft, zt) − sup
p

inf
f∈F

Ez∼p`(f, z)}

= {inf
π

sup
τ

Eπ
1

T

T

∑
t=1

`(ft, zt)} − {sup
p

inf
f∈F

Ez∼p`(f, z)}

Now,

inf
π

sup
τ

Eπ
1

T

T

∑
t=1

`(ft, zt) =
1

T
⟪ inf
qt∈∆(F)

sup
zt∈Z

Eft∼qt⟫
T

t=1

{
T

∑
t=1

`(ft, zt)}

≥ sup
p∈∆(Z)

inf
f∈F

Ez∼p`(f, z) + c ,

and the statement follows. The converse statement is immediate.

Proposition 17.3 effectively says that the set of problems that are learnable in the sequential prediction
framework is a subset of problems for which the one-shot minimax theorem holds:

minimax theorem holds

regret minimizing 
strategy exists

The inclusion suggests the following intriguing “amplification” strategy for proving regret bounds: first,
find a weak learning method with a possibly suboptimal bound that nevertheless ensures vanishing regret;
this implies the minimax theorem, which in turn implies that the machinery developed so far in the course
can be used to find optimal or near-optimal algorithms (more on this in the next few lectures!)

Of course, Proposition 17.3 only tells us about the “bilinear” form of the minimax theorem, since it
only considers mixed strategies over F and Z. The proof of the Proposition, however, can be extended as
follows:

Proposition 17.4. Let A and B be two sets, and B is convex. Let ` ∶ A × B ↦ R be a bounded function
such that `(a, ⋅) is concave for any a ∈ A. If the minimax theorem does not hold for the triple (A,B, `),
then the regret

1

T

T

∑
t=1

`(at, bt) − inf
a∈A

1

T

T

∑
t=1

`(a, bt) (17.4)

is lower bounded by a constant for any T , for any regret minimization strategy that deterministically chooses
at’s. Equivalently, if there is a regret-minimizing strategy that deterministically chooses at’s, then it must
be that the minimax theorem holds for the triple (A,B, `).

P Exercise (⋆): Prove Proposition 17.4.
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Proposition 17.3 is a consequence of Proposition 17.4, obtained by taking A = ∆(F), B = ∆(Z), and
the loss function as the expectation in the two mixed strategies. In an obvious manner, we are treating
the deterministic choice of mixed strategies as equivalent to randomized choices over F and Z.

Online convex optimization is a class of problems where a deterministic strategy can minimize regret
over A = F because the loss function `(f, z) is convex in f ∈ F . What is interesting, a regret minimization
strategy for online convex optimization can be used to prove more general versions of the minimax theorem
than the bilinear form. We can do so by engineering an auxiliary regret minimization game which, with
some extra work, implies the minimax theorem. This is shown in the next section.

17.3 Proof of a Minimax Theorem Using Exponential Weights

The following theorem and its proof are taken almost verbatim rom [16].

Theorem 17.5 (Theorem 7.1 in [16]). Suppose ` ∶ A × B ↦ R is a bounded function, where A and B are
convex and A is compact. Suppose that `(⋅, b) is convex and continuous for each fixed b ∈ B and `(a, ⋅) is
concave for each a ∈ A. Then the minimax theorem holds for (A,B, `).

Proof. The direction

inf
a∈A

sup
b∈B

`(a, b) ≥ sup
b∈B

inf
a∈A

`(a, b) (17.5)

is immediate, and it holds without any assumptions on the function and its domain.
Without loss of generality, let `(a, b) ∈ [0,1] for all a ∈ A, b ∈ B. Fix an ε > 0 and let a(1), . . . , a(N) be

centers of an ε-cover ofA, which is finite by the assumption on compactness ofA. We now treat the elements
ai as experts and update an exponential weights distribution according to the following construction. The
sequences a1, . . . , aT and b0, . . . , bT are defined recursively, with b0 chosen arbitrarily. Let

at =
∑Ni=1 a

(i) exp{−η∑t−1
s=1 `(a(i), bs)}

∑Ni=1 exp{−η∑t−1
s=1 `(a(i), bs)}

with η =
√

8 lnN
T

and bt chosen so that `(at, bt) ≥ supb∈B `(at, b) − 1/T . We now appeal to the version of

Exponential Weights for Prediction with Expert Advice, and its regret bound given in (14.4):

1

T

T

∑
t=1

`(at, bt) ≤ min
i∈{1,...,N}

1

T

T

∑
t=1

`(a(i), bt) +
√

lnN

2T
(17.6)

Then,

inf
a∈A

sup
b∈B

`(a, b) ≤ sup
b∈B

`( 1

T

T

∑
t=1

at, b) ≤ sup
b∈B

1

T

T

∑
t=1

` (at, b) ≤
1

T

T

∑
t=1

sup
b∈B

` (at, b) (17.7)

by convexity of ` in the first argument. Thanks to the definition of bt and the regret bound,

1

T

T

∑
t=1

sup
b∈B

` (at, b) ≤
1

T

T

∑
t=1

` (at, bt) +
1

T
≤ min
i∈{1,...,N}

1

T

T

∑
t=1

`(a(i), bt) +
√

lnN

2T
+ 1

T
(17.8)

Concavity of ` in the second argument implies

min
i∈{1,...,N}

1

T

T

∑
t=1

`(a(i), bt) ≤ min
i∈{1,...,N}

`(a(i), 1

T

T

∑
t=1

bt) ≤ sup
b∈B

min
i∈{1,...,N}

` (a(i), b) (17.9)

We conclude that

inf
a∈A

sup
b∈B

`(a, b) ≤ sup
y∈Y

min
i∈{1,...,N}

`(a(i), b) +
√

lnN

2T
+ 1

T
,
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which implies
inf
a∈A

sup
b∈B

`(a, b) ≤ sup
y∈Y

min
i∈{1,...,N}

`(a(i), b)

if we let T go to infinity. It remains to let ε→ 0 and use continuity of ` to conclude

inf
a∈A

sup
b∈B

`(a, b) ≤ sup
b∈B

inf
a∈A

`(a, b) . (17.10)

P Exercise (⋆⋆): Suppose A and B are unit balls in an infinite dimensional Hilbert space (hence, A
and B are not compact). Let ` ∶ A × B ↦ R be such that `(⋅, b) is convex and 1-Lipschitz (in the Hilbert
space norm) for each fixed b ∈ B, and `(a, ⋅) is concave for each a ∈ A. Prove that the minimax theorem
holds for (A,B, `).

P Exercise (⋆⋆): As in the previous exercise, suppose A and B are unit balls in an infinite dimensional
Hilbert space. Let ` ∶ A × B ↦ R be such that `(⋅, b) is convex and ∣`(⋅, b)∣ ≤ 1 for each fixed b ∈ B, and
`(a, ⋅) is concave for each a ∈ A. Prove that the minimax theorem holds for (A,B, `).

17.4 More Examples

Example 22. We now present a problem for which the minimax theorem holds, yet the associated regret
minimization problem is impossible. This supports the strict subset in Figure 17.2.

Consider the example of sequential prediction with thresholds on the unit interval. It was shown in
Theorem 6.2 that the problem is not learnable. The question now is whether the minimax theorem holds.
more precisely, we let F = X = [0,1], Y = {0,1}, and

`(f, (x, y)) = I{I{x ≤ f} ≠ y} = I{(x ≤ f ∧ y = 0) ∨ (x > f ∧ y = 1)} .

Here, we are using f to denote the threshold location instead of θ. Consider the sets of mixed strategies
∆(F) and ∆(X ×Y). Let us inspect

inf
q∈∆(F)

sup
(x,y)∈X×Y

Ef∼q`(f, (x, y))

Consider a q that puts half of the mass at f = 1 and half at f = 0. For any (x, y), the expected loss is 1/2.
To prove the minimax theorem, it remains to show that

sup
p∈∆(X×Y)

inf
f∈F

E(x,y)∼p`(f, (x, y)) ≥
1

2

This can be achieved, for instance, by taking px as δ1/2 and py∣x as a fair coin flip.
In fact, using the sufficient conditions in terms of quasi-convexity, presented later in this section, it is

possible to directly conclude that the minimax theorem holds.
We conclude that the problem of prediction with thresholds is not learnable, yet the minimax theorem

holds.

Example 23. Now consider the example given in Section 10.1:

F = {fa ∶ a ∈ [0,1], fa(x) = 0 ∀x ≠ a, fa(a) = 1} (17.11)

over the domain X = [0,1]. Let Y = {0,1} and define the loss function ` as the indicator of a mistake.
It was shown that the problem is learnable, and (as Example 12 shows) the Littlestone’s dimension is 1.
Given Proposition 17.3, it must be the case that the minimax theorem holds.

P Exercise (⋆): Give a direct proof that the minimax theorem holds for the triple (∆([0,1]),∆([0,1]×
{0,1}), `).
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Discussion: The two examples presented above together with Example 21 presented earlier paint a fairly
interesting picture. In Example 21, the minimax theorem does not hold, and it is not possible to minimize
regret. In Example 22, the minimax theorem holds, yet the prediction problem is impossible. Finally, in
Example 23, both the minimax theorem holds, and regret can be (trivially) minimized. What is rather
curious is that the sets of moves and the loss functions look quite similar across these examples, as a mixture
of some point discontinuity and a threshold. While finiteness of the Littlestone’s dimension characterizes
learnability within the supervised learning class of problems for which the minimax theorem holds, it is
not clear under which conditions the minimax theorem itself holds true. The next section presents some
sufficient conditions.

17.5 Sufficient Conditions for Weak Compactness

Suppose that F is a subset of a complete separable metric space and BF is the σ-field of Borel subsets
of F . Let ∆(F) denote the set of all probability measures on F . Similarly, let ∆(X ) be the set of all
probability measures on X . Under consideration is the question of conditions on F and X that guarantee
that the minimax theorem holds for the triplet (∆(F),∆(X ),Ef,x`) for a bounded measurable function
` ∶ F ×X ↦ R. In addressing this question, we appeal to the following result (in a slightly modified form
from the original):

Theorem 17.6 (Theorem 3 in [48]). Let A be a nonempty convex weakly compact subset of a Banach space
E. Let B be a nonempty convex subset of the dual space, E′, of E. Then

inf
a∈A

sup
b∈B

⟨a, b⟩ = sup
b∈B

inf
a∈A

⟨a, b⟩

Under a condition we outline below, we can use the above theorem for our purposes. To this end, write

⟨gp, q⟩ = Ef∼q,x∼p`(f, x) and G = {gp ∶ p ∈ ∆(X )}
The desired minimax identity can now be written as

inf
q∈∆(F)

sup
g∈G

⟨g, q⟩ = sup
g∈G

inf
q∈∆(F)

⟨g, q⟩ .

We can view gp as a linear functional on ∆(F), the set of all Borel probability measures on F .

Condition 17.7 (Continuity). Assume that ∆(F) is a subset of a Banach space E (that is, all the linear
functionals defined by q ∈ ∆(F) are continuous).

Under the above assumption, it can be verified that the dual E′ contains the set of all bounded Borel
measurable functions on F . In this case, G ⊆ E′. To appeal to the above theorem it is therefore enough to
delineate conditions under which ∆(F) is weakly compact (clearly, ∆(F) is convex).

Condition 17.8 (Weak Compactness). ∆(F) is weakly compact.

By a fundamental result of Prohorov, weak compactness of the set of probability measures on a complete
separable metric space is equivalent to uniform tightness (see e.g. [11, Theorem 8.6.2.], [53]). Depending
on the application, various assumptions on F can be imposed to guarantee uniform tightness of ∆(F).
First, if F itself is compact, then ∆(F) is tight, and hence (under the continuity condition) the minimax
theorem holds. In infinite dimensions, however, compactness of F is a very restrictive property. Thankfully,
tightness can be established under more general assumptions on F , as we show next.

By Example 8.6.5 (ii) in [11], a family ∆(F) of Borel probability measures on a separable reflexive
Banach space E is uniformly tight (under the weak topology) precisely when there exists a function V ∶
E ↦ [0,∞) continuous in the norm topology such that

lim
∥f∥→∞

V (f) =∞ and sup
q∈∆(F)

Ef∼qV (f) <∞.

For instance, if F is a subset of a ball in E, it is enough to take V (f) = ∥f∥. We conclude that the minimax
theorem holds whenever F is a subset of a ball in a separable reflexive Banach space, and the continuity
condition holds.
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18
Algorithmic Framework for Sequential Prediction

So far in the course, we have seen very general non-constructive upper bounds on the value of the prediction
problem, as well as specialized algorithms that seem to magically match some of these bounds in terms of
their regret. The algorithms have been developed over the course of several decades, yet for each new setting
the researcher is tasked with a rather difficult problem of coming up with a new procedure almost from
scratch. The online convex optimization framework successfully guides in the development of algorithms
for many convex problems, but what is really behind all the methods? It turns out that, based on the
non-constructive upper bounds, we can develop an algorithmic framework that seems to capture a very
wide range of known methods. The framework also gives a general prescription for the development of new
algorithms. We refer to [42] for more details.

Let F be the set of learner’s moves and X the set of moves of Nature. The online protocol dictates that
on every round t = 1, . . . , T the learner and Nature simultaneously choose ft ∈ F , xt ∈ X , and observe each
other’s actions. For the sake of brevity, let us consider the unnormalized minimax value of the prediction
problem:

VT (F) = inf
q1∈∆(F)

sup
x1∈X

E
f1∼q1

. . . inf
qT ∈∆(F)

sup
xT ∈X

E
fT ∼qT

[
T

∑
t=1

`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt)] (18.1)

The minimax formulation immediately gives rise to the optimal algorithm that solves the minimax expres-
sion at every round t. That is, after witnessing x1, . . . , xt−1 and f1, . . . , ft−1, the algorithm returns

argmin
q∈∆(F)

{sup
xt

E
ft∼q

inf
qt+1

sup
xt+1

E
ft+1

. . . inf
qT

sup
xT

E
fT

[
T

∑
i=t

`(fi, xi) − inf
f∈F

T

∑
i=1

`(f, xi)]} (18.2)

= argmin
q∈∆(F)

{sup
xt

E
ft∼q

[`(ft, xt) + inf
qt+1

sup
xt+1

E
ft+1

. . . inf
qT

sup
xT

E
fT

[
T

∑
i=t+1

`(fi, xi) − inf
f∈F

T

∑
i=1

`(f, xi)]]}

Henceforth, if the quantification in inf and sup is omitted, it will be understood that xt, ft, pt, qt range
over X , F , ∆(X ), ∆(F), respectively. Moreover, Ext is with respect to pt while Eft is with respect to qt.
The first sum in (18.2) starts at i = t since the partial loss ∑t−1

i=1 `(fi, xi) has been fixed. We now notice a
recursive form for defining the value of the game. For any t ∈ [T − 1] and any given prefix x1, . . . , xt ∈ X
define the conditional value

VT (F ∣x1, . . . , xt) ≜ inf
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] + VT (F ∣x1, . . . , xt, x)}

where

VT (F ∣x1, . . . , xT ) ≜ − inf
f∈F

T

∑
t=1

`(f, xt) and VT (F) = VT (F ∣{}).
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126 Algorithmic Framework for Sequential Prediction

The minimax optimal algorithm specifying the mixed strategy of the player can be written succinctly

qt = argmin
q∈∆(F)

sup
x∈X

{Ef∼q[`(f, x)] + VT (F ∣x1, . . . , xt−1, x)} . (18.3)

This dynamic programming formulation has appeared in the literature, but now we have tools to study
the conditional value of the game. We will show that various upper bounds on VT (F ∣x1, . . . , xt−1, x) yield
an array of algorithms, some with better computational properties than others. In this way, the non-
constructive approach we developed earlier in the course to upper bound the value of the game directly
translates into algorithms.

The minimax algorithm in (18.3) can be interpreted as choosing the best decision that takes into account
the present loss and the worst-case future. We then realize that the conditional value of the game serves
as a “regularizer”, and thus well-known online learning algorithms such as Exponential Weights, Mirror
Descent and Follow-the-Regularized-Leader arise as relaxations rather than a “method that just works”.

The first step is to appeal to the minimax theorem, but only on the value from t + 1 onwards:

VT (F ∣x1, . . . , xt) = sup
pt+1

E
xt+1

. . . sup
pT

E
xT

[
T

∑
i=t+1

inf
fi∈F

E
xi∼pi

`(fi, xi) − inf
f∈F

T

∑
i=1

`(f, xi)]

This expression is still unwieldy, and the idea is now to come up with more manageable, yet tight, upper
bounds of the conditional value.

18.1 Relaxations

A relaxation Rel is a sequence of functions RelT (F ∣x1, . . . , xt) for each t ∈ [T ]. We shall use the notation
RelT (F) for RelT (F ∣{}). A relaxation will be called admissible if for any x1, . . . , xT ∈ X ,

RelT (F ∣x1, . . . , xt) ≥ inf
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] +RelT (F ∣x1, . . . , xt, x)} (18.4)

for all t ∈ [T − 1], and

RelT (F ∣x1, . . . , xT ) ≥ − inf
f∈F

T

∑
t=1

`(f, xt).

A simple inductive argument shows that VT (F ∣x1, . . . , xt) ≤ RelT (F ∣x1, . . . , xt) for any t and any x1, . . . , xT .
Thus, VT is the smallest admissible relaxation. This can indeed be another definition for the value of the
game.

A strategy q that minimizes the expression in (18.4) defines a minimax optimal algorithm for the
relaxation Rel. However, minimization need not be exact: any q that satisfies the admissibility condition
(18.4) is a valid method, and we will say that such an algorithm is admissible with respect to the relaxation
Rel.

Meta-Algorithm
Parameters: Admissible relaxation Rel
At each t = 1 to T , compute

qt = argmin
q∈∆(F)

sup
x∈X

{Ef∼q[`(f, x)] +RelT (F ∣x1, . . . , xt−1, x)} (18.5)

and play ft ∼ qt. Receive xt from Nature.

In this lecture, let RegT be the unnormalized regret

RegT ≜
T

∑
t=1

`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) .
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18.1 Relaxations 127

Proposition 18.1. Let Rel () be an admissible relaxation. For any admissible algorithm with respect to
Rel (), including the Meta-Algorithm, irrespective of the strategy of the adversary,

T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤ RelT (F) , (18.6)

and therefore,

E[RegT ] ≤ RelT (F) .

We also have that

VT (F) ≤ RelT (F) .

If a ≤ `(f, x) ≤ b for all f ∈ F , x ∈ X , the Hoeffding-Azuma inequality yields, with probability at least 1 − δ,

RegT ≤ RelT (F) + (b − a)
√
T /2 ⋅ log(2/δ) .

Further, if for all t ∈ [T ], the admissible strategies qt are deterministic,

RegT ≤ RelT (F) .

Proof of Proposition 18.1. By definition,

T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤
T

∑
t=1

Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT ) .

Peeling off the T -th expected loss, we have

T

∑
t=1

Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT ) ≤
T−1

∑
t=1

Eft∼qt`(ft, xt) + {Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT )}

≤
T−1

∑
t=1

Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT−1)

where we used the fact that qT is an admissible algorithm for this relaxation, and thus the last inequality
holds for any choice xT of the opponent. Repeating the process, we obtain

T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤ RelT (F) .

We remark that the left-hand side of this inequality is random, while the right-hand side is not. Since the
inequality holds for any realization of the process, it also holds in expectation. The inequality

VT (F) ≤ RelT (F)

holds by unwinding the value recursively and using admissibility of the relaxation. The high-probability
bound is an immediate consequences of (18.6) and the Hoeffding-Azuma inequality for bounded martin-
gales. The last statement is immediate.

For many problems a tight relaxation (sometimes within a factor of 2) is achieved through symmetriza-
tion. Define the conditional Sequential Rademacher complexity

RT (F ∣x1, . . . , xt) = sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −
t

∑
s=1

`(f, xs)] . (18.7)
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Here the supremum is over all X -valued binary trees of depth T − t. One may view this complexity as a
partially symmetrized version of the sequential Rademacher complexity Rseq(F). We shall refer to the
term involving the tree x as the “future” and the term being subtracted off – as the “past”. This indeed
corresponds to the fact that the quantity is conditioned on the already observed x1, . . . , xt, while for the
future we have the worst possible binary tree.1

Proposition 18.2. The conditional Sequential Rademacher complexity is admissible.

Proof. Denote Lt(f) = ∑ts=1 `(f, xs). The first step of the proof is an application of the minimax theorem
(we assume the necessary conditions hold):

inf
qt∈∆(F)

sup
xt∈X

{ E
ft∼qt

[`(ft, xt)] + sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt(f)]}

= sup
pt∈∆(X)

inf
ft∈F

{ E
xt∼pt

[`(ft, xt)] + E
xt∼pt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt(f)]}

For the sake of brevity, let us use the notation A(f) = 2∑Ts=t+1 εs`(f,xs−t(εt+1∶s−1)). Then, for any pt ∈
∆(X ), the infimum over ft of the above expression is equal to

E
xt∼pt

sup
x

Eεt+1∶T sup
f∈F

[A(f) −Lt−1(f) + inf
ft∈F

E
xt∼pt

[`(ft, xt)] − `(f, xt)]

≤ E
xt∼pt

sup
x

Eεt+1∶T sup
f∈F

[A(f) −Lt−1(f) + E
xt∼pt

[`(f, xt)] − `(f, xt)]

≤ E
xt,x′t∼pt

sup
x

Eεt+1∶T sup
f∈F

[A(f) −Lt−1(f) + `(f, x′t) − `(f, xt)]

We now argue that the independent xt and x′t have the same distribution pt, and thus we can introduce a
random sign εt. The above expression then equals to

E
xt,x′t∼pt

E
εt

sup
x

Eεt+1∶T sup
f∈F

[A(f) −Lt−1(f) + εt(`(f, x′t) − `(f, xt))]

≤ sup
xt,x′t∈X

E
εt

sup
x

Eεt+1∶T sup
f∈F

[A(f) −Lt−1(f) + εt(`(f, x′t) − `(f, xt))]

where we upper bounded the expectation by the supremum. Splitting the resulting expression into two
parts, we arrive at the upper bound of

2 sup
xt∈X

E
εt

sup
x

Eεt+1∶T sup
f∈F

[1

2
(A(f) −Lt−1(f)) + εt`(f, xt)] =RT (F ∣x1, . . . , xt−1) .

The last equality is easy to verify, as we are effectively adding a root xt to the two subtrees, for εt = +1
and εt = −1, respectively.

We now show that several well-known methods arise as further relaxations on the conditional sequential
Rademacher complexity RT .

18.2 Mirror Descent

In the setting of online linear optimization, the loss is `(f, x) = ⟨f, x⟩. Suppose F is a unit ball in some
Banach space and X is the dual. Let ∥ ⋅ ∥ be some norm on X . The conditional sequential Rademacher

1It is somewhat cumbersome to write out the indices on xs−t(εt+1∶s−1) in (18.7), so we will instead use xs(ε) for s =
1, . . . , T − t, whenever this does not cause confusion.
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complexity can be written as

RT (F ∣x1, . . . , xt) = sup
x

Eεt+1∶T sup
f∈F

⟨f,2
T

∑
s=t+1

εsxs−t(εt+1∶s−1) −
t

∑
s=1

xs⟩ (18.8)

Of course, this relaxation is not computationally attractive, so we need to pass to an upper bound that has
nicer properties. Now recall how we upper bounded Rseq(F ,x) in (12.7). We assumed we have access to
a σ-strongly convex function Ψ with respect to the dual norm ∥ ⋅ ∥∗ on F . With the notation x̃t = ∑ts=1 xs,
using exactly the same argument with the convex conjugate Ψ∗, for any λ > 0

RT (F ∣x1, . . . , xt) ≤ sup
x

1

λ
(sup
f∈F

Ψ(f) +EΨ∗ (2λ
T

∑
s=t+1

εsxs−t(εt+1∶s−1) − λx̃t)) (18.9)

Using the expansion of (12.8) (without the normalization by T ),

EΨ∗ (2λ
T

∑
s=t+1

εsxs−t(εt+1∶s−1) − λx̃t) ≤ Ψ∗(−λx̃t) +
2λ2(T − t)

σ
(18.10)

Importantly, we removed the dependence on x. Plugging the above expression into (18.9) we arrive at the
following relaxation:

RelT (F ∣x1, . . . , xt) = inf
λ

{M
2

λ
+ 1

λ
Ψ∗(−λx̃t) +

2λ(T − t)
σ

} (18.11)

where M2 = supf∈F Ψ(f). The relaxation with a λ that is fixed throughout the game will also work, but
the above version with the infimum makes the algorithm parameter-less, an attractive feature. To show
admissibility of (18.11), let λ∗ be the optimal value of λ in the definition of RelT (F ∣x1, . . . , xt−1). We now
show that Mirror Descent is an admissible algorithm for this relaxation. We have

inf
ft∈F

sup
xt∈X

{⟨ft, xt⟩ +RelT (F ∣x1, . . . , xt)}

≤ inf
ft∈F

sup
xt∈X

{⟨ft, xt⟩ +
M2

λ∗
+ 1

λ∗
Ψ∗(−λ∗x̃t) +

2λ∗(T − t)
σ

}

≤ inf
ft∈F

sup
xt∈X

{⟨ft, xt⟩ +
M2

λ∗
+ 1

λ∗
Ψ∗(−λ∗x̃t−1) − ⟨∇Ψ∗(−λ∗x̃t−1), xt⟩ +

2λ∗(T − t + 1)
σ

}

≤ M
2

λ∗
+ 1

λ∗
Ψ∗(−λx̃t−1) +

2λ∗(T − t + 1)
σ

= RelT (F ∣x1, . . . , xt−1)
where the last inequality is due to the particular choice ft = ∇Ψ∗(−λ∗x̃t−1). If λ∗ is fixed throughout the
game, this is precisely Mirror Descent.

18.3 Exponential Weights

As another example of a relaxation that is easily derived as an upper bound on the sequential Rademacher
complexity, consider the case when F is a finite set and ∣`(f, x)∣ ≤ 1. Let Lt(f) = ∑ts=1 `(f, xt) and
A(f) = 2∑T−ti=1 εi`(f,xi(ε)). For any λ > 0 and any tree x, the sequential Rademacher complexity

Eε sup
f∈F

{2
T−t
∑
i=1

εi`(f,xi(ε)) −
t

∑
s=1

`(f, xt)} ≤ 1

λ
log(Eε sup

f∈F
exp (A(f) − λLt(f)))

≤ 1

λ
log

⎛
⎝
Eε ∑

f∈F
exp (A(f) − λLt(f))

⎞
⎠

= 1

λ
log

⎛
⎝∑f∈F

exp (−λLt(f))Eε {
T−t
∏
i=1

exp (2λεi`(f,xi(ε)))}
⎞
⎠
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We now upper bound the expectation over the “future” tree by the worst-case path, resulting in the upper
bound

1

λ
log

⎛
⎝∑f∈F

exp (−λLt(f)) × exp(2λ2 max
ε1,...εT−t∈{±1}

T−t
∑
i=1

`(f,xi(ε))2)
⎞
⎠
≤ 1

λ
log

⎛
⎝∑f∈F

exp (−λLt(f))
⎞
⎠
+ 2λ(T − t)

by Lemma 7.2. Notice that the last step removes the x tree. Since the above calculation holds for any
λ > 0, we define the relaxation

RelT (F ∣x1, . . . , xt) = inf
λ>0

⎧⎪⎪⎨⎪⎪⎩

1

λ
log

⎛
⎝∑f∈F

exp(−λ
t

∑
i=1

`(f, xi))
⎞
⎠
+ 2λ(T − t)

⎫⎪⎪⎬⎪⎪⎭
(18.12)

that gives to a computationally tractable algorithm. Let us first prove that the relaxation is admissible
with the Exponential Weights algorithm as an admissible algorithm. Let λ∗ be the optimal value in the
definition of RelT (F ∣x1, . . . , xt−1). Then, by suboptimality of λ∗ for RelT (F ∣x1, . . . , xt)

inf
qt∈∆(F)

sup
xt∈X

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)}

≤ inf
qt∈∆(F)

sup
xt∈X

⎧⎪⎪⎨⎪⎪⎩
E
f∼qt

[`(f, xt)] +
1

λ∗
log

⎛
⎝∑f∈F

exp (−λ∗Lt(f))
⎞
⎠
+ 2λ∗(T − t)

⎫⎪⎪⎬⎪⎪⎭
Let us upper bound the infimum by a particular choice of q which is the exponential weights distribution

qt(f) = exp(−λ∗Lt−1(f))/Zt−1

where Zt−1 = ∑f∈F exp (−λ∗Lt−1(f)). By [16, Lemma A.1],

1

λ∗
log

⎛
⎝∑f∈F

exp (−λ∗Lt(f))
⎞
⎠
= 1

λ∗
log (Ef∼qt exp (−λ∗`(f, xt))) +

1

λ∗
logZt−1

≤ −Ef∼qt`(f, xt) +
λ∗

2
+ 1

λ∗
logZt−1

Hence,

inf
qt∈∆(F)

sup
xt∈X

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)} ≤ 1

λ∗
log

⎛
⎝∑f∈F

exp (−λ∗Lt−1(f))
⎞
⎠
+ 2λ∗(T − t + 1)

= RelT (F ∣x1, . . . , xt−1)

by the optimality of λ∗. The bound can be improved by a factor of 2 for some loss functions, since it will
disappear from the definition of sequential Rademacher complexity.

The Chernoff-Cramèr inequality tells us that (18.12) is the tightest possible relaxation. The proof
reveals that the only inequality is the softmax which is also present in the proof of the maximal inequality
for a finite collection of random variables. In this way, exponential weights is an algorithmic realization of
a maximal inequality for a finite collection of random variables. The connection between probabilistic (or
concentration) inequalities and algorithms runs much deeper.

We point out that the exponential-weights algorithm arising from the relaxation (18.12) is a parameter-
free algorithm. The learning rate λ∗ can be optimized (via one-dimensional line search) at each iteration
with almost no cost. This can lead to improved performance as compared to the classical methods that
set a particular schedule for the learning rate.

Our aim at this point was to show that the associated relaxations arise naturally (typically with a few
steps of algebra) from the sequential Rademacher complexity. It should now be clear that upper bounds,
such as the Dudley Entropy integral, can be turned into a relaxation, provided that admissibility is proved.
Our ideas have semblance of those in Statistics, where an information-theoretic complexity can be used for
defining penalization methods.
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19
Algorithms Based on Random Playout, and Follow the
Perturbed Leader

In this lecture, we develop a class of admissible randomized methods that arise through sampling. Consider
the objective

inf
q∈∆(F)

sup
x∈X

{Ef∼q`(f, x) +RT (F ∣x1, . . . , xt−1, x)}

with the conditional sequential Rademacher complexity

RT (F ∣x1, . . . , xt) = sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −
t

∑
s=1

`(f, xs)] (19.1)

as the relaxation. This relaxation involves an expectation over sequences of coin flips, and the computation
(coupled with optimization for each sequence) can be prohibitively expensive. More generally, a relaxation
RelT might involve an expectation over possible ways in which the future might be realized. In such
cases, we may consider a rather simple “random playout” strategy: draw the random sequence and solve
only one optimization problem for that random sequence. In game theory, such a strategy is employed for
estimating the value of a board position. It is not clear, however, why this could be a good strategy for
us. After all, the actual value involves also the supremum over the worst xt and an infimum over qt.

As we will see shortly, the random playout strategy has a solid basis: for the examples we consider, it
satisfies admissibility. Furthermore, we show that a well-known Follow the Perturbed Leader algorithm is
an example of such a randomized strategy.

19.1 Random Walks with A Tree Oracle

Suppose we have a black-box access to a procedure that on round t returns the “worst-case” tree xt of
depth T − t, a solution in (19.1). We can prove the following result.

Lemma 19.1. Given any x1, . . . , xt−1 let

xt ≜ argmax
x

Eε sup
f∈F

[2
T

∑
i=t+1

εi`(f,xi(ε)) −
t

∑
i=1

`(f, xi)] . (19.2)

Consider the randomized strategy where at round t we first draw εt+1, . . . , εT uniformly at random and then
further draw our move ft according to the distribution

qt(ε) = argmin
q∈∆(F)

sup
xt

{Eft∼q[`(ft, xt)] + sup
f∈F

[2
T

∑
i=t+1

εi`(f,xti(ε)) −
t

∑
i=1

`(f, xi)]} (19.3)
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132 Algorithms Based on Random Playout, and Follow the Perturbed Leader

This randomized strategy is an admissible algorithm with respect to sequential Rademacher complexity, and
thus

ERegT ≤RT (F) .

Thus, if for any given history x1, . . . , xt−1 we can compute xt in (19.2), or even just draw directly a
random path xt1(ε), . . . ,xtT−t(ε) on each round, then we obtain a randomized strategy that in expectation
can guarantee a regret bound equal to sequential Rademacher complexity. Importantly, given the oracle
access to the optimal tree, computation of (19.3) does not involve the average over the exponentially many
paths.

Also notice that whenever the optimal strategy in (19.3) is deterministic (e.g. in the online convex
optimization scenario), one does not need the double randomization. Instead, in such situations one can
directly draw ε1, . . . , εT−t and use

ft(ε) = argmin
ft∈F

sup
xt

{`(ft, xt) + sup
f∈F

{2
T

∑
i=t+1

εi`(f,xti(ε)) −
t

∑
i=1

`(f, xi)}} (19.4)

For the linear losses `(f, x) = ⟨f, x⟩, with F and X dual unit balls,

ft(ε) = argmin
ft∈F

sup
xt

{⟨ft, xt⟩ + ∥2
T

∑
i=t+1

εix
t
i(ε) −

t

∑
i=1

xi∥} (19.5)

While (19.4) is not quite the Empirical Risk Minimization algorithm, we will see that (19.5) for linear
losses indeed yields ERM in many cases.

Our randomized method can be viewed as querying for the worst-case tree and then following a random
path. In the case of linear losses, the increments of xt along the random path are added up, and this length
of the “worst-case” random walk provides some sort of regularization to the problem we are solving. This
is made precise in the following sections.

Proof of Lemma 19.1. Now let qt be the randomized strategy where we draw εt+1, . . . , εT uniformly at
random and pick

qt(ε) = argmin
q∈∆(F)

sup
xt

{Eft∈q [`(ft, xt)] + sup
f∈F

[2
T

∑
i=t+1

εi`(f,xti(ε)) −
t

∑
i=1

`(f, xi)]} (19.6)

With the definition of xt in (19.2), and with the notation Lt(f) = ∑ti=1 `(f, xi) andA(f) = 2∑Ti=t+1 εi`(f,xti(ε))

sup
xt

{Eft∼qt [`(ft, xt)] + sup
x

Eε sup
f∈F

[2
T

∑
i=t+1

εi`(f,xi(ε)) −Lt(f)]}

= sup
xt

{Eε [Eft∼qt(ε) [`(ft, xt)]] +Eε sup
f∈F

[A(f) −Lt(f)]}

≤ Eε [sup
xt

{Eft∼qt(ε) [`(ft, xt)] + sup
f∈F

[A(f) −Lt(f)]}]

= Eε [ inf
qt∈∆(F)

sup
xt

{Eft∼qt [`(ft, xt)] + sup
f∈F

[A(f) −Lt(f)]}]

where the last step is due to the way we pick our predictor ft(ε) given random draw of ε’s in Equation
(19.6). We now apply the minimax theorem, yielding the following upper bound on the term above:

Eε
⎡⎢⎢⎢⎣

sup
pt∈∆(X)

inf
ft∈F

{Ext∼pt [`(ft, xt)] +Ext∼pt sup
f∈F

[A(f) −Lt(f)]}
⎤⎥⎥⎥⎦
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This expression can be re-written as

Eε
⎡⎢⎢⎢⎣

sup
pt∈∆(X)

{Ext∼pt sup
f∈F

[A(f) −Lt−1(f) +Ext∼pt [`(f, xt)] − `(f, xt)]}
⎤⎥⎥⎥⎦

≤ Eε
⎡⎢⎢⎢⎣

sup
pt∈∆(X)

{Ext,x′t∼ptEεt sup
f∈F

[A(f) −Lt−1(f) + εt (`(f, xt) − `(f, xt))]}
⎤⎥⎥⎥⎦

By passing to the supremum over xt, x
′
t, we get an upper bound

Eε
⎡⎢⎢⎢⎣

sup
xt,x′t∈X

{Eεt sup
f∈F

[A(f) −Lt−1(f) + εt (`(f, xt) − `(f, xt))]}
⎤⎥⎥⎥⎦

≤ Eε [ sup
xt∈X

{Eεt sup
f∈F

[A(f) −Lt−1(f) + 2εt`(f, xt)]}]

≤ sup
x̃

Eε [ sup
xt∈X

{Eεt sup
f∈F

[2
T

∑
i=t+1

εi`(f, x̃i(ε)) −Lt−1(f) + 2εt`(f, xt)]}]

≤ sup
x

Eε sup
f∈F

[2
T

∑
i=t
εi`(f,xi(ε)) −Lt−1(f)]

This concludes the proof of admissibility.

19.2 Linear Loss

Of course, the assumption that some oracle gives us the worst-case tree might not be very appealing. What
if there is a “canonical” almost-worst-case random walk? Access to such an object would eliminate the
need for an oracle.

We now show an even more surprising result: it is often the case in finite-dimensional problems with
linear loss that the worst-case random walk can be replaced by an i.i.d. distribution that is “almost as
bad”. We first phrase this fact as an assumption, and then verify it for several cases.

Once again, suppose X is a unit ball in some norm ∥ ⋅ ∥ in a vector space B, and F is a unit ball in the
dual norm ∥ ⋅ ∥∗.

Assumption 19.2. There exists a distribution D ∈ ∆(X ) and constant C ≥ 2 such that for any w ∈ B

sup
x∈X

E
ε
∥w + 2εx∥ ≤ E

x∼D
E
ε
∥w +Cεx∥ . (19.7)

The assumption says that there exists a universal (that is, independent of w) distribution D for the
problem, such that the expected length of a one-step random walk from any point w under this distribution
is almost as large as the expected length that would be achieved with the worst two-point symmetric
distribution that can depend on w.

Under this assumption, the sequential Rademacher complexity is within a constant factor from the
classical i.i.d. Rademacher complexity. This is indeed the case, for instance, in finite dimensional spaces.
Not surprisingly, the algorithm based on the above assumption has a regret guarantee upper bounded by
the i.i.d. Rademacher complexity under the distribution promised by Assumption 19.2.

We have the following claim:

Lemma 19.3. Under the Assumption 19.2, the relaxation

RelT (F ∣x1, . . . , xt) = E
xt+1,...xT ∼D

Eε sup
f∈F

[C
T

∑
i=t+1

εi ⟨f, xi⟩ −
t

∑
i=1

⟨f, xi⟩] (19.8)
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is admissible and a randomized strategy that ensures admissibility is given by: at time t, draw xt+1, . . . , xT ∼
D and Rademacher random variables ε = (εt+1, . . . , εT ), and then define

ft = argmin
g∈F

sup
x∈X

{⟨g, x⟩ + ∥C
T

∑
i=t+1

εixi −
t−1

∑
i=1

xi − x∥} (19.9)

The expected regret for the method is bounded by the classical Rademacher complexity:

ERegT ≤ C Ex1∶T ∼DEε [sup
f∈F

T

∑
t=1

εt ⟨f, xt⟩] ,

It will be shown in the examples below that the update (19.9) is of the nicer form

ft = argmin
f∈F

⟨f,
t−1

∑
i=1

xi −C
T

∑
i=t+1

εixi⟩ (19.10)

This is the famous Follow the Perturbed Leader algorithm [30, 16]:

Follow the Perturbed Leader

ft = argmin
f∈F

t−1

∑
i=1

⟨f, xi⟩ + η−1 ⟨f, r⟩

where r is a random vector and η is some learning rate parameter. It is now clear that the random vector
r arises as a sum of random draws from the distribution that is “almost as bad” as the worst-case tree in
the conditional sequential Rademacher complexity.

We now look at specific examples of `2/`2 and `1/`∞ cases and provide closed form solution of the
randomized algorithms.

19.2.1 Example: Follow the Perturbed Leader on the Simplex

Here, we consider the setting similar to that in [30]. Let F ⊂ RN be the `1 unit ball and X the (dual) `∞
unit ball in RN . In [30], the set F is the probability simplex and X = [0,1]N but these are subsumed by
the `1/`∞ case. We claim that:

Lemma 19.4. Assumption 19.2 is satisfied with a distribution D that is uniform on the vertices of the
cube {±1}N and C = 6.

Proof of Lemma 19.4. Let w ∈ RN be arbitrary. Throughout this proof, let ε ∈ {±1} be a single
Rademacher random variable. The norm in (19.7) is the `∞ norm, and so we need to show

max
x∈{±1}N

Eε max
i∈[N]

∣wi + 2εxi∣ ≤ E
x∼D

E
ε

max
i∈[N]

∣wi + 6εxi∣ (19.11)

Let i∗ = argmax
i

∣wi∣ and j∗ = argmax
i≠i∗

∣wi∣ be the coordinates with largest and second-largest magnitude.

If ∣wi∗ ∣ − ∣wj∗ ∣ ≥ 4, the statement follows since, for any x ∈ {±1}N and ε ∈ {±1},

max
i≠i∗

∣wi + 2εxi∣ ≤ max
i≠i∗

∣wi∣ + 2 ≤ ∣wi∗ ∣ − 2 ≤ ∣wi∗ + 2εxi∗ ∣,

and thus

max
x∈{±1}N

Eε max
i∈[N]

∣wi + 2εxi∣ = max
x∈{±1}N

Eε ∣wi∗ + 2εxi∗ ∣ = ∣wi∗ ∣ ≤ Ex,ε∣wi∗ + 6εxi∗ ∣ ≤ Ex,εmax
i

∣wi + 6εxi∣.
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It remains to consider the case when ∣wi∗ ∣ − ∣wj∗ ∣ < 4. We have that

Ex,ε max
i∈[N]

∣wi + 6εxi∣ ≥ Ex,ε max
i∈{i∗,j∗}

∣wi + 6εxi∣ ≥
1

2
(∣wi∗ ∣ + 6) + 1

4
(∣wi∗ ∣ − 6) + 1

4
(∣wj∗ ∣ + 6) ≥ ∣wi∗ ∣ + 2 (19.12)

≥ max
x∈{±1}N

Eε max
i∈[N]

∣wi + 2εxi∣ , (19.13)

where 1/2 is the probability that εxi∗ = sign(wi∗), the second event of probability 1/4 is the event that
εxi∗ ≠ sign(wi∗) and εxj∗ ≠ sign(wj∗), while the third event of probability 1/4 is that εxi∗ ≠ sign(wi∗) and
εxj∗ = sign(wj∗).

In fact, one can pick any symmetric distribution D on the real line and use DN for the perturbation.
Assumption 19.2 is then satisfied, as we show in the following lemma.

Lemma 19.5. If D is any symmetric distribution over the real line, then Assumption 19.2 is satisfied by
using the product distribution DN . The constant C required is any C ≥ 6/Ex∼D ∣x∣.

The above lemma is especially attractive when used with standard normal distribution because in that
case as sum of normal random variables is again normal. Hence, instead of drawing xt+1, . . . , xT ∼ N(0,1)
on round t, one can simply draw just one vector Xt ∼ N(0,

√
T − t) and use it for perturbation. In this

case constant C is bounded by 8.

While we have provided simple distributions to use for perturbation, the form of update in Equation
(19.9) is not in a convenient form. The following lemma shows a simple Follow the Perturbed Leader type
algorithm with the associated regret bound.

Lemma 19.6. Suppose F is the `N1 unit ball and X is the dual `N∞ unit ball, and let D be any symmetric
distribution. Consider the randomized algorithm that at each round t freshly draws Rademacher random
variables εt+1, . . . , εT and freshly draws xt+1, . . . , xT ∼ DN (each co-ordinate drawn independently from D)
and picks

ft = argmin
f∈F

⟨f,
t−1

∑
i=1

xi −C
T

∑
i=t+1

εixi⟩ (19.14)

where C = 6/Ex∼D [∣x∣]. The randomized algorithm enjoys a bound on the expected regret given by

ERegT ≤ C E
x1∶T ∼DN

Eε ∥
T

∑
t=1

εtxt∥
∞
+ 4

T

∑
t=1

Pyt+1∶T ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

Notice that for D being the {±1} coin flips or standard normal distribution, the probability

Pyt+1,...,yT ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

is exponentially small in T − t and so ∑Tt=1 Pyt+1,...,yT ∼D (C ∣∑Ti=t+1 yi∣ ≤ 4) is bounded by a constant. For
these cases, we have

ERegT ≤ O ( E
x1∶T ∼DN

Eε ∥
T

∑
t=1

εtxt∥
∞
) = O (

√
T logN)

This yields the logarithmic dependence on the dimension, matching that of the Exponential Weights
algorithm.
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19.2.2 Example: Follow the Perturbed Leader on Euclidean Balls

We now consider the case when F and X are both the unit `2 ball. We can use as perturbation the uniform
distribution on the surface of unit sphere, as the following lemma shows.

Lemma 19.7. Let X and F be unit balls in Euclidean norm. Then Assumption 19.2 is satisfied with a
uniform distribution D on the surface of the unit sphere with constant C = 4

√
2.

Again as in the previous example the form of update in Equation (19.9) is not in a convenient form
and this is addressed in the following lemma.

Lemma 19.8. Let X and F be unit balls in Euclidean norm, and D be the uniform distribution on the
surface of the unit sphere. Consider the randomized algorithm that at each round (say round t) freshly
draws xt+1, . . . , xT ∼D and picks

ft =
−∑t−1

i=1 xi +C∑Ti=t+1 xi√
∥−∑t−1

i=1 xi +C∑Ti=t+1 εixi∥
2

2
+ 1

where C = 4
√

2. The randomized algorithm enjoys a bound on the expected regret given by

ERegT ≤ C Ex1,...,xT ∼D ∥
T

∑
t=1

xt∥
2

≤ 4
√

2T

Importantly, the bound does not depend on the dimensionality of the space.

19.2.3 Proof of Lemma 19.3

To show admissibility using the particular randomized strategy qt described in Lemma 19.6, we need to
show that

sup
xt

{Ef∼qt [⟨f, xt⟩] +RelT (F ∣x1, . . . , xt)} ≤ RelT (F ∣x1, . . . , xt−1)

The strategy qt proposed by the lemma is such that we first draw xt+1, . . . , xT ∼ D and εt+1, . . . εT
Rademacher random variables, and then based on this sample pick ft = ft(xt+1∶T , εt+1∶T ) as in (19.9).
We have

sup
xt

{Ef∼qt [⟨f, xt⟩] +RelT (F ∣x1, . . . , xt)} = sup
xt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

εt+1∶T
xt+1∶T

⟨ft, xt⟩ + E
εt+1∶T
xt+1∶T

∥C
T

∑
i=t+1

εixi −
t

∑
i=1

xi∥
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ E
εt+1∶T
xt+1∶T

sup
xt

{⟨ft, xt⟩ + ∥C
T

∑
i=t+1

εixi −
t

∑
i=1

xi∥} (19.15)

Observe that our strategy “matched the randomness” arising from the relaxation. Now, with ft defined in
(19.9), for any given xt+1∶T , εt+1∶T , we have

sup
xt

{⟨ft, xt⟩ + ∥C
T

∑
i=t+1

εixi −
t

∑
i=1

xi∥} = inf
g∈F

sup
xt

{⟨g, xt⟩ + ∥C
T

∑
i=t+1

εixi −
t

∑
i=1

xi∥}

Let w = C∑Ti=t+1 εixi −∑t−1
i=1 xi. We now appeal to the minimax theorem:

inf
g∈F

sup
xt

{⟨g, xt⟩ + ∥w − xt∥} = inf
g∈F

sup
pt∈∆(X)

Ext∼pt {⟨g, xt⟩ + ∥w − xt∥}

= sup
p∈∆(X)

inf
g∈F

{Ext∼p ⟨g, xt⟩ +Ext∼p ∥w − xt∥}
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The minimax theorem holds because loss is convex in g and F is a compact convex set and the term in the
expectation is linear in pt, as it is an expectation. The last expression is equal to

sup
p∈∆(X)

Ext∼p sup
f∈F

[⟨f,w⟩ + inf
g∈F

Ext∼p [⟨g, xt⟩] − ⟨f, xt⟩] ≤ sup
p∈∆(X)

Ext∼p sup
f∈F

[⟨f,w⟩ +Ext∼p [⟨f, xt⟩] − ⟨f, xt⟩]

≤ sup
xt∈X

Eεt sup
f∈F

[⟨f,w⟩ + 2ε ⟨f, xt⟩]

≤ sup
xt∈X

Eεt ∥w + 2εxt∥

using the familiar symmetrization technique. In view of Assumption 19.2,

sup
xt∈X

Eεt ∥w + 2εxt∥ ≤ E
xt∼D

E
εt
∥w +Cεtxt∥ = E

xt∼D
E
εt
∥C

T

∑
i=t
εixi −

t−1

∑
i=1

xi∥

Plugging this into Eq. (19.15) completes the proof of admissibility.
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20
Example: Binary Sequence Prediction and the Mind
Reading Machine

This example is based on the paper of Blackwell [9], as well as the detailed development of Lerche and
Sarkar [36].

Consider the problem of predicting a {0,1} sequence x1, x2, . . .. At each stage t, the learner chooses
ft ∈ F = {0,1}, Nature simultaneously chooses xt ∈ X = {0,1}, and the bit xt is revealed. It is reasonable
to define the cost `(ft, xt) to be the indicator of a mistake I{ft ≠ xt}. For any t, let the average number
correct predictions after t rounds be denoted by

c̄t =
1

t

t

∑
s=1

I{fs = xs} .

Further, let x̄t = 1
t ∑

t
s=1 xs be the frequency of 1’s in the sequence so far.

Suppose that the sequence x1, x2, . . . chosen by Nature is actually generated i.i.d. from some Bernoulli
distribution with bias p ∈ [0,1]. In this case, the Follow the Leader strategy (see Section 16.3), defined as

ft+1 = argmin
f∈F

t

∑
s=1

I{f ≠ xs} =
⎧⎪⎪⎨⎪⎪⎩

1 if x̄t ≥ 1/2
0 if x̄t < 1/2 ,

works well. It is not hard to show that the FTL (equivalently, Empirical Risk Minimization) strategy will
guarantee that by the Law of Large Numbers, as t→∞,

c̄t →max{p,1 − p} (20.1)

even if p is unknown to us. Note that this is the best we can hope for, even if p were given. In some sense,
the i.i.d. processes are easy as compared to the possibly erratic behavior of individual sequences. The i.i.d.
result, however, is quite limited. For instance, for the alternating sequence 0,1,0,1, . . . the FPL method
yields close to zero proportion of correct predictions, while there is a clear pattern that can be learned
quite quickly.

The failure of FTL on the alternating sequence 0,1,0,1, . . . is akin to Example 17 which shows that
FTL does not work for linear optimization. Of course, we should not even be looking at deterministic
strategies for bit prediction, as the set F is not convex. A randomized prediction strategy is necessary.

First of all, the goal of (20.1) makes no sense in the absence of probabilistic assumptions on the sequence.
We therefore re-define the goal as

lim inf
t→∞

(c̄t −max{x̄t,1 − x̄t}) ≥ 0 almost surely, (20.2)
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140 Example: Binary Sequence Prediction and the Mind Reading Machine

a measure defined exclusively on the observed outcomes rather than the hypothesized Bernoulli distribution
in (20.1). For the i.i.d. case, by the Law of Large Numbers, the goal (20.2) is basically the same as (20.1).
The advantage is, of course, that the above notion makes sense for arbitrary sequences.

Ponder for a minute on the meaning of (20.1). It says, for instance, that whenever the proportion of
1’s (or 0’s) in the sequence is, say, 70%, we should be able to correctly predict at least roughly 70% of the
bits. It is not obvious that such a strategy even exists without any assumptions on the generative process
of the data! Luckily, we already have all the tools we need to prove (20.2) for individual sequences. While
we only prove the in-expectation convergence to simplify the presentation, the almost-sure analogues are
not much more difficult.

20.1 Prediction with Expert Advice

Fix two (somewhat simple-minded) experts: one always advises 1 and the other 0. Let qt be the mixed
strategy over F which we may equivalently represent as the probability qt ∈ [0,1] of predicting 1 (or,
choosing the first expert). For the Exponential Weights Algorithm with N = 2 experts, Lemma 14.1 then
guarantees

E{ 1

T

T

∑
t=1

I{ft ≠ xt}} − inf
f∈F

1

T

T

∑
t=1

I{f ≠ xt} ≤
√

ln 2

2T
(20.3)

or, equivalently,

max{x̄t,1 − x̄t} −E{c̄T } = sup
f∈F

1

T

T

∑
t=1

I{f = xt} −E{c̄T } ≤
√

ln 2

2T
(20.4)

which is the desired result in expectation. For the almost-sure result, we may use the high-probability
bound of Proposition 18.1 and the so-called doubling trick [16]. And that’s all!

20.2 Blackwell’s method

We now present a different approach to achieving (20.2) for individual sequences of bits. This method
is somewhat longer to develop than the Exponential Weights hammer that we used, yet it provides some
very interesting insights. Moreover, the proof will be a stepping stone to the next lecture on Blackwell’s
Approachability Theorem, a powerful generalization of von Neumann’s minimax theorem.

The goal (20.2) of the learner can be rephrased very elegantly in the language of geometry. Define
Lt = (x̄t, c̄t) ∈ [0,1]2 and

S = {(x, c) ∈ [0,1]2 ∶ u > max{c,1 − c}},

as depicted in Figure 20.1. As we make predictions ft and Nature reveals the bits xt, the point Lt moves
within the unit square. We would like to have a strategy that will steer the point towards S no matter
what the sequence is. The goal (20.2) can be written in terms of the distance to the set S:

lim
t→∞

d(Lt, S) = 0 almost surely .

The opponent producing the bit sequence, on the other hand, is trying to make sure Lt stays away from S.
Our “steering” strategy can be broken down to three cases according to the position of Lt within the

square. For each of the cases, we show that the distance to the set decreases. First, it is easy to check that
x̄t+1 − x̄t = 1

t+1
(xt+1 − x̄t) and hence we may write

Lt+1 = Lt +
1

t + 1
(xt+1 − x̄t, ct+1 − c̄t) .
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20.2 Blackwell’s method 141

S

Lt

x̄

c̄

(0, 0)

(1, 1)

D1 D2

D3

Figure 20.1: Partition of the unit square into four regions. The desired set is S.

Let δt+1 ≜ 1
t+1

(xt+1 − x̄t, ct+1 − c̄t). The goal is now to show that, in expectation (or almost surely) the
update δt+1 moves the point closer to S.

Case 1: If Lt ∈ S, there is nothing to do. We may predict ft+1 = 0 if x̄t < 0, and predict ft+1 = 1
otherwise.

Case 2: If Lt ∈ D1, we predict ft+1 = 0 deterministically. In this case, if xt+1 = 0 then δt+1 =
1
t+1

(−x̄t,1 − c̄t). If, on the other hand, xt+1 = 1, we have δt+1 = 1
t+1

(1 − x̄t,−c̄t). These two vectors δt+1 are
shown in Figure 20.2. It is easy to check that the distance to the set drops by a multiplicative factor of

S

Lt

x̄

c̄

(0, 0)

(1, 1)

Figure 20.2: When Lt is in the region D1, the prediction is ft+1 = 0.

1/(t + 1) irrespective of xt+1. To see this, drop a perpendicular from Lt and from Lt+1 onto the boundary
of S and use properties of similar triangles.

The case Lt ∈D2 is identical to this case, except here we deterministically predict ft+1 = 1.
Case 3: The most interesting situation is Lt ∈ D3. Observe that our strategy so far has been deter-

ministic, so it better be the case that we use a randomized strategy in D3. This is indeed true, and the
mixed strategy qt+1 is defined in a very peculiar fashion. Draw a line from Lt to the vertex v ∶= (1/2,1/2)
of S, and let qt+1 be its intersection with the horizontal axis, as shown in Figure 20.3. In the next lecture
we will see why this construction is natural. At this point, let us see why it brings us closer to the set.
Clearly, the distance from Lt to the set S is the same as the distance to (1/2,1/2), while the distance from
Lt+1 to the set is at least the distance to this vertex. Hence, for `t+1 = (xt+1, ct+1), we can write

(t + 1)2d(Lt+1, S)2 ≤ (t + 1)2∥Lt+1 − v∥2 = ∥t(Lt − v) + (`t+1 − v)∥2 (20.5)

= t2d(Lt, S)2 + ∥`t+1 − v∥2 + 2t ⟨Lt − v, `t+1 − v⟩ (20.6)

And now, for the magic. We claim that ⟨Lt − v, `t+1 − v⟩ = 0 in expectation (conditioned on the value xt+1
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142 Example: Binary Sequence Prediction and the Mind Reading Machine

S

Lt

x̄

c̄

(0, 0)

(1, 1)

qt+1

v

Figure 20.3: Construction of the mixed strategy qt when Lt ∈D3.

and the past). Indeed,

Eft+1∼qt+1`t+1 =
⎧⎪⎪⎨⎪⎪⎩

(0,1 − qt+1) if xt+1 = 0

(1, qt+1) if xt+1 = 1
(20.7)

which correspond to the two intersections of the line A (see Figure 20.3) with the sides of the unit square.
In both cases, Eft+1 ⟨Lt − v, `t+1 − v⟩ = 0 since the line A is perpendicular to Lt − v.

Finally, ∥`t+1 − v∥2 ≤ 1/2, and summing Eq. (20.5) for t = 1, . . . , T − 1 and canceling the terms we get

T 2d(LT , S)2 ≤ d(L1, S)2 + T /2 +
T

∑
t=1

t ⋅Mt (20.8)

with Mt a bounded martingale difference sequence. An application of Hoeffding-Azuma gives a high-
probability bound and an application of Borel-Cantelli yields the almost sure statement.

20.3 Follow the Regularized Leader

Since the Exponential Weights Algorithm will never produce deterministic strategies, it is clear that the
Blackwell’s method is genuinely different. The reason for non-deterministic strategies of the Exponential
Weights method is simple: the update rule never pushes the mixed strategy to the corner of the probability
simplex, always keeping a nonzero weight even on hopelessly bad experts.

What if instead of the Follow the Regularized Leader with entropic regularization, which yields the
Exponential Weights Algorithm as shown in Example 19, we use Euclidean regularization, which yields a
gradient-descent type update as shown in Example 18?

To phrase the Follow the Regularized Leader (FTRL) method, we need to define the loss as a linear or
convex function. Of course, the indicator loss I{ft ≠ xt} is neither of these, but the trick is to consider the
linearized problem where the choice of the learner is qt ∈ [0,1], interpreted as the probability of predicting
ft = 1. Since I{ft ≠ xt} = ft + xt − 2ftxt for ft, xt ∈ {0,1}, the expected loss can be written as

Eft∼qtI{ft ≠ xt} = qt ⋅ (1 − 2xt) + xt =∶ `(qt, xt)

for qt ∈ [0,1]. We can now define the FTRL method

qt+1 = argmin
q∈[0,1]

{
t

∑
s=1

q ⋅ (1 − 2xs) + η−1 1

2
∥q − 1/2∥2} (20.9)

with the Euclidean regularizer centered at q = 1/2. The unconstrained problem over the real line has
solution at q̃t+1 = 1

2
− η∑ts=1(1 − 2xs) which is subsequently clipped (or projected to) the interval [0,1].
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20.3 Follow the Regularized Leader 143

If this clipping happens, the strategy becomes deterministic, either qt = 1 or qt = 0. Clipping is needed
precisely when ∣∑ts=1(1 − 2xs)∣ < 1

2η
, or, equivalently,

∣x̄t − 1/2∣ ≥ 1

4tη
.

As shown in Figure 20.4, the FTRL strategy gives deterministic prediction when the empirical frequency
x̄t is outside the band of width 1

2tη
, centered at 1/2. The typical guarantee of O(1/

√
T ) for the regret of

FTRL sets η = c/
√
T for some constant c (or, in a time-changing manner, ηt = c/

√
t) and thus the width of

the region where the prediction is randomized is of the order 1/
√
T .

x̄

c̄

(0, 0)

(1, 1)1/2

1/(2t⌘)

Figure 20.4: FTRL with a fixed learning rate η gives a mixed strategy only in the small band around 1/2.

Since FTRL enjoys small regret, we have derived yet another strategy that attains the goal in (20.2).
Observe, however, that the FTRL strategy with the Euclidean regularizer is different from both the Ex-
ponential Weights Algorithm, and from Blackwell’s method. If we are to replicate the behavior of the
latter, the information about the frequency of our correct predictions c̄t needs to be taken into account.
This information (or, statistic about the past) cannot be deduced from x̄t alone, and so FTRL or Mirror
Descent methods seem to be genuinely distinct from Blackwell’s algorithm based on (x̄t, c̄t).

It turns out that the extra information about the frequency c̄t of correct predictions can be used to set
the learning rate η in Follow the Regularized Leader. With the time-changing learning rate

ηt =
1

4t∣c̄t − 1/2∣

the FTRL method

qt+1 = argmin
q∈[0,1]

{
t

∑
s=1

q ⋅ (1 − 2xs) + η−1
t

1

2
∥q − 1/2∥2} (20.10)

becomes exactly the Blackwell’s algorithm. Let’s see why this is so. First, let us check the case when the
optimum at (20.10) is achieved at the pure strategy qt = 1 or qt = 0. As argued earlier, this occurs when

∣x̄t − 1/2∣ ≥ 1

4tηt
= ∣c̄t − 1/2∣ .

This exactly corresponds to the regions D1 and D2 in Figure 20.1, thus matching the behavior of Blackwell’s
method. It remains to check the behavior in D3. Setting the derivative in (20.10) to zero,

qt =
1

2
+ (2tηt)(x̄t − 1/2) = 1

2
+ x̄t − 1/2

2∣c̄t − 1/2∣ .

We need to check that this is the same value as that obtained geometrically in Figure 20.3. It is indeed
the case, as can be seen from similar triangles: the ratio of qt − 1/2 to 1/2 is equal to the ratio of x̄t − 1/2
to ∣c̄t − 1/2∣.
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144 Example: Binary Sequence Prediction and the Mind Reading Machine

20.4 Discussion

We have described three different methods for the problem of {0,1}-sequence prediction. The Exponential
Weights Algorithm puts exponentially more weight on the bit that occurs more often, but never lets go
of the other bit, and the strategy is always randomized. The Follow the Regularized Leader method
with a Euclidean regularizer produces a randomized strategy only in the narrow band around 1/2. A
variant of FTRL which adapts the learning rate with respect to the proportion of correct predictions yields
a randomized strategy in a triangular region D3 (Figure 20.1), and deterministic prediction otherwise.
Further, this behavior matches the Blackwell’s method, based on a geometric construction.

In the worst case, the performance (or, regret) of the three methods described above is the same, up
to a multiplicative constant. However, the methods that use the extra information about the proportion
c̄t of correct predictions may have better convergence properties for “benign” sequences. Such adaptive
procedures have been analyzed in the literature.

The beauty of Blackwell’s proof is its geometric simplicity and the rather surprising construction of the
mixed strategy qt. As we will see in the next lecture, the construction appears out of a generalization of
the minimax theorem.

Of course, our application of the Exponential Weights Algorithm or Follow the Regularized Leader
is a shorter proof, but remember that we spent some time building these hammers. Is there a similar
hammer based on the ideas of approaching a desired set? The answer is yes, and it is called the Blackwell’s
Approachability Theorem. Using this theorem, one can actually prove a wide range of results in repeated
games that go beyond the “regret” formulation. What is interesting, Blackwell’s Approachability itself can
be proved using online convex optimization algorithms whose performance is defined in terms of regret.
This result points to an equivalence of these big “hammers”. Finally, the sequential symmetrization tools we
had developed earlier in the course can be used to prove Blackwell approachability in even more generality,
without exhibiting an algorithm.

20.5 The Mind Reading Machine

The fact that the entropy of the source is related being able to predict the sequences has long been
recognized. It is, therefore, no surprise that Shannon was interested in the problem of prediction of binary
sequences. Quoting from (Feder, Merhav, and Gutman, 2005)1:

In the early 50’s, at Bell Laboratories, David Hagelbarger built a simple “mind reading” ma-
chine, whose purpose was to play the “penny matching” game. In this game, a player chooses
head or tail, while a “mind reading” machine tries to predict and match his choice. Surprisingly,
as Robert Lucky tells in his book “Silicon Dreams”, Hagelbarger’s simple, 8-state machine, was
able to match the “pennies” of its human opponent 5,218 times over the course of 9,795 plays.
Random guessing would lead to such a high success rate with a probability less than one out
of 10 billion! Shannon, who was interested in prediction, information, and thinking machines,
closely followed Hagelbarger’s machine, and eventually built his own stripped-down version of
the machine, having the same states, but one that used a simpler strategy at each state. As the
legend goes, in a duel between the two machines, Shannon’s machine won by a slight margin!
No one knows if this was due to a superior algorithm or just a chance happening associated with
the specific sequence at that game. In any event, the success of both these machines against
“untrained” human opponents was explained by the fact that the human opponents cannot
draw completely random bits. Certainly, as Shannon himself noted, his machine was beatable
by the best possible player by a ratio of three-to-one. This raises the question, can one design
a better “mind reading” machine? What is the best one can do in predicting the next outcome
of the opponent? How is it related to the “randomness” of the opponent sequence?

1 http://backup.itsoc.org/review/meir/node1.html
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20.5 The Mind Reading Machine 145

The techniques we developed in this course can be directly applied for building such a machine. Of
course, it needs to take advantage of the fact that the sequence input by an (untrained) person is likely
to be non-random. From our earlier proof, we already see that we should be able to predict the sequence
better than chance if there are more 0’1 or 1’s.
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21
Two Proofs of Blackwell’s Approachability Theorem

The purpose of this lecture is two-fold. The first goal is to introduce a generalization of the minimax
theorem to vector-valued payoffs, due to David Blackwell [8]. The theorem has been an invaluable tool for
the analysis of repeated games. Its proof is simple and geometric, while the result is quite non-trivial. The
second goal of the lecture is to show that the symmetrization ideas we employed for analyzing minimax
regret can be extended to notions beyond regret. We exhibit another (and very different) proof, which is
non-constructive but also more general than the constructive approach.

Let ` ∶ F × X ↦ R be the loss (payoff) function, which need not be convex. For the purposes of this
lecture let us introduce the notation

`(q, p) ≜ Ef∼q,x∼p`(f, x)

for q ∈ ∆(F) and p ∈ ∆(X ). Since `(q, p) is a bi-linear function in the mixed strategies, the minimax
theorem

inf
q∈∆(F)

sup
p∈∆(X)

`(q, p) = sup
p∈∆(X)

inf
q∈∆(F)

`(q, p) (21.1)

holds under quite general assumptions on the (not necessarily finite) F and X , as we have seen in Chap-
ter 17. We assume that the necessary conditions for the minimax theorem hold.

Suppose we take the point of view of the row player (that is, we are choosing from F). Then the
right-hand-side of Eq. (21.1) can be interpreted as “what is the smallest loss we can incur if we know what
p the column player chooses”. Such a response can be a pure action. For the left-hand-side, however, we
are required to furnish an “oblivious” randomized strategy that will “work” no matter what the opponent
chooses. Let the value of the expression in (21.1) be denoted by V . The minimax statement, from our
point of view, can be written as

∃q ∈ ∆(F) s.t. ∀p ∈ ∆(X ) `(q, p) ≤ V ⇐⇒ ∀p ∈ ∆(X ) ∃q ∈ ∆(F) s.t. `(q, p) ≤ V (21.2)

It is remarkable that being able to respond to the opponent is equivalent to putting down a randomized
strategy ahead of time and not worrying about opponent’s choice.

21.1 Blackwell’s vector-valued generalization and the original proof

It is often the case that our utility cannot be measured by a single number, as our goals are incomparable.
We would like to make decisions that gives us desired payoffs along multiple dimensions. David Blackwell
came up with a wonderful generalization of the real-valued minimax theorem.
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148 Two Proofs of Blackwell’s Approachability Theorem

Consider a vector-valued payoff ` ∶ F ×X ↦ B where B is some Banach space (in the original Blackwell’s
formulation and in his original proof, B = Rd; his results have been subsequently extended to Hilbert
spaces). It is natural to define the goal as a set S ⊂ B of payoffs with which we would be content. Von
Neumann’s Minimax Theorem can then be seen as a statement about a set S = (−∞, c]: we can ensure
that our loss is in S for any c ≤ V but not for any c > V .

Now that the generalization to vector-valued payoffs is established, is it still true that an equivalent of
(21.2) holds? That is

∃q ∈ ∆(F) s.t. ∀p ∈ ∆(X ) `(q, p) ∈ S ?⇐⇒ ∀p ∈ ∆(X ) ∃q ∈ ∆(F) s.t. `(q, p) ∈ S

This turns out to be not necessarily the case even for convex sets S. A simple example (borrowed from
[1]) is a game where F = X = {0,1}, the payoff `(f, x) = (f, x) and S = {(z, z) ∶ z ∈ [0,1]}. Clearly, for any
p ∈ ∆(X ), we can choose q = p so that `(q, p) ∈ S; however, no silver-bullet strategy q ∈ ∆(F) exists that
will work for all p.

We see that being able to respond to the mixed strategy of the opponent no longer guarantees that we
can put down an oblivious mixed strategy that will work no matter what she does. In this respect, the
one-dimensional von Neumann’s minimax theorem is a very special case.

It is, however, the case that being able to respond is equivalent to being able to put down an oblivious
strategy for any half-space H = {u ∶ ⟨u, a⟩ ≤ c} containing S:

Theorem 21.1 (Blackwell, 1956 [8]).

∀p ∃q s.t. `(q, p) ∈ S ⇐⇒ ∀H ⊃ S, ∃q s.t. ∀p `(q, p) ∈H

Proof. Suppose there exists a p such that `(q, p) ∉ S for all q. Then there exists a hyperplane separating S
from the set {`(q, p) ∶ q ∈ ∆(F)}. Clearly, for this set hyperplane there exists no q ensuring that `(q, p) ∈H
for all p.

The other direction is proved by taking any half-space H = {u ∶ ⟨u, a⟩ ≤ c} and defining a scalar auxiliary
game `′(q, p) ∶= ⟨a, `(q, p)⟩. Being able to respond to any p with a q that satisfies `(q, p) ∈ S means that we
are able to respond in the scalar game such that the loss is at most c. But for scalar games, von Neumann’s
minimax theorem says that being able to respond is equivalent to existence of an oblivious strategy. This
concludes the proof.

At this point, the utility of the above theorem is not clear. The multi-dimensional nature of the payoff
unfortunately means that there is no silver-bullet mixed strategy that will get us what we want. The key
insight of Blackwell is that we can get what we want in the long run by having an adaptive strategy which
tunes to the behavior of the opponent. That is, we can learn opponent’s behavior and play in a way that
will make the average payoff approach the set S.

Definition 21.2. A set S is approachable by the row player if the row player has a strategy such that no
matter how the column player plays,

lim
T→∞

d( 1

T

T

∑
t=1

`(ft, xt), S) = 0 a.s.

In the above definitions, T is the number of stages in the repeated game, ft is a random draw from our
strategy qt at time t, and xt is the opponent’s move; d is a distance (e.g. the norm in the Banach space).

Approachability is trivial for the scalar game: we can approach the set S = (−∞, c] if and only if c ≤ V .
The same is true for half-space approachability: a half-space H = {u ∶ ⟨u, a⟩ ≤ c} is approachable if and
only if there exists q such that for all p, ⟨a, `(q, p)⟩ ≤ c.

It is remarkable that Blackwell completely characterized situations in which S is approachable. In fact,
the situation is quite simple: a set is approachable if and only if we can respond to the mixed strategy of
the opponent. That is if and only if ∀p ∃q, s.t. `(q, p) ∈ S. By the previous Theorem, it is also equivalent
to approachability of every half-space containing S:
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Theorem 21.3 (Blackwell, 1956 [8]). A closed convex set S is approachable iff every half-space containing
S is approachable.

Proof. Let Lt = 1
t ∑

t
s=1 `(fs, xs). We would like to make this average approach S. The idea is that we

can make progress towards the set by attempting to approach a hyperplane perpendicular to the current
projection direction from Lt to the set. This will work because points sufficiently close to Lt−1 along the
segment connecting Lt−1 and the new payoff (on average on the other side of the hyperplane) are closer to
the set S than Lt−1. Here is the explicit adaptive strategy we are going to use. At stage t, play that qt
which satisfies

sup
p

⟨at−1, `(qt, p)⟩ ≤ ct−1

where

at−1 =
Lt−1 − πS(Lt−1)

∥Lt−1 − πS(Lt−1)∥
, ct−1 = ⟨at−1, πS(Lt−1)⟩ .

Here πS is the Euclidean projection onto S. Note that qt exists by our assumption that we can put down
an oblivious mixed strategy for any hyperplane. The rest is a bit of algebra:

d(Lt, S)2 = ∥Lt − πS(Lt)∥2

≤ ∥Lt − πS(Lt−1)∥2

= ∥ t − 1

t
(Lt−1 − πS(Lt−1)) +

1

t
(`(ft, xt) − πS(Lt−1))∥

2

= ( t − 1

t
)

2

d(Lt−1, S)2 + 1

t2
∥`(ft, xt) − πS(Lt−1)∥2

+ 2
t − 1

t2
⟨Lt−1 − πS(Lt−1), `(ft, xt) − πS(Lt−1)⟩

We can rewrite this as

t2d(Lt, S)2 − (t − 1)2d(Lt−1, S)2 ≤ const + 2(t − 1) ⟨Lt−1 − πS(Lt−1), `(ft, xt) − πS(Lt−1)⟩ ,

where we assumed that the payoffs are bounded in ∥ ⋅ ∥.
Summing the inequalities over all stages, and using the fact that

⟨Lt−1 − πS(Lt−1), `(qt, pt) − πS(Lt−1)⟩ ≤ 0

we are left with an average of martingale differences

⟨Lt−1 − πS(Lt−1), `(ft, xt) − `(qt, pt)⟩ ≤ 0

which tends to zero almost surely.

21.2 A non-constructive proof

We now give a very different proof of Blackwell’s Approachability (Theorem 21.3). While it is non-
constructive (that is, we do not exhibit a strategy for playing the game), the resulting statement is quite
a bit more general and sharp (see [44] for more details).

The idea is to bite the bullet and write down the minimax value of the repeated game:

VT = inf
q1

sup
p1

E
x1∼p1
f1∼q1

. . . inf
qT

sup
pT

E
xT ∼pT
fT ∼qT

d( 1

T

T

∑
t=1

`(ft, xt), S)
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150 Two Proofs of Blackwell’s Approachability Theorem

An upper bound on this value means that there exists a sequential strategy (way of picking qt’s based on
the past history) such that the expected distance to the set is at most this bound. On the other hand, a
lower bound gives a guarantee to the opponent.

In view of Theorem 21.1, to prove Theorem 21.3 (in expectation) it is enough to show that the value
VT decays to zero under the assumption that for any strategy p of the opponent, there exists a q∗(p) such
that `(q∗(p), p) ∈ S.

Note that in each pair in VT , infimum and supremum can be exchanged because what is inside of the
pair is a bilinear function (expectation with respect to qt and pt). Importantly, pt and qt only appear in the
respective tth expectation, but nowhere else in the expression (for, in that case, it might not be a bilinear
form). We arrive at

VT = sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pT

inf
qT

E
xT ∼pT
fT ∼qT

d( 1

T

T

∑
t=1

`(ft, xt), S)

We can now add and subtract a term involving the expected payoffs:

VT = sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pT

inf
qT

E
xT ∼pT
fT ∼qT

{d( 1

T

T

∑
t=1

`(ft, xt), S) − d(
1

T

T

∑
t=1

`(qt, pt), S)

+d( 1

T

T

∑
t=1

`(qt, pt), S)}

It is easy to check that

d( 1

T

T

∑
t=1

`(ft, xt), S) − d(
1

T

T

∑
t=1

`(qt, pt), S) ≤ ∥ 1

T

T

∑
t=1

(`(ft, xt) − `(qt, pt))∥

We now use the following properties: for functions C1(a) and C2(a),

E(C1(a) +C2(a)) = E(C1(a)) +E(C2(a)), sup
a

(C1(a) +C2(a)) ≤ sup
a
C1(a) + sup

a
C2(a)

while for the infimum
inf
a
(C1(a) +C2(a)) ≤ sup

a
C1(a) + inf

a
C2(a) .

The sequence minimax expression then splits (from inside out) as

VT ≤ sup
p1

sup
q1

E
x1∼p1
f1∼q1

. . . sup
pT

sup
qT

E
xT ∼pT
fT ∼qT

∥ 1

T

T

∑
t=1

(`(ft, xt) − `(qt, pt))∥

+ sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pT

inf
qT

E
xT ∼pT
fT ∼qT

d( 1

T

T

∑
t=1

`(qt, pt), S)

For the second term, we use the assumption that we can respond to any strategy pt by choosing a q∗t (pt)
such that `(q∗t (pt), pt) ∈ S. This means that the second term

sup
p1

inf
q1

E
x1∼p1
f1∼q1

. . . sup
pT

inf
qT

E
xT ∼pT
fT ∼qT

d( 1

T

T

∑
t=1

`(qt, pt), S) ≤ sup
p1

. . . sup
pT

{d( 1

T

T

∑
t=1

`(q∗t (pt), pt), S)} = 0

where we used convexity of S in the first step.
The first term is upper bounded by the variation of the worst-case martingale difference sequence with

values in Im(`) ⊂ B. We conclude that

VT ≤ 2 sup
M

E∥ 1

T

T

∑
t=1

dt∥

where the supremum is over all martingale difference sequences with dt ∈ Im(`).
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21.3 Discussion

The second proof is non-constructive, yet yields the statement in Banach spaces where martingale conver-
gence holds. In fact, it is easy to show that this bound is tight: there is a lower bound differing in only a
constant. To the best of our knowledge, all previous proofs relied on the inner product structure.

As we mentioned, the Blackwell’s approachability theorem has been used as a tool for repeated games.
Typically, one take the problem at hand (e.g. minimization of internal regret), finds a potentially high-
dimensional space and a set S, so that, if we can approach the set, we can solve the original problem. It is
shown in [44] that one can analyze problems without appealing to Blackwell’s approachability and without
artificially embedding the problem at hand into a different space. The fact that Blackwell’s approachability
itself follows from the tools we have developed is a testament to the power of symmetrization. We refer to
[44] for more details.

21.4 Algorithm Based on Relaxations: Potential-Based Approach-
ability
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22
From Sequential to Statistical Learning: Relationship
Between Values and Online-to-Batch

22.1 Relating the Values

Now that we have a good understanding of complexities for both statistical learning and sequential predic-
tion, it is time to draw some explicit connections between these two settings. First of all, the connection can
be done at the level of the minimax values. We can think of a minimax value as a measure of complexity
of a set F , and it is natural to ask whether the minimax complexity of F is greater for sequential or for
statistical learning. We have already seen that the sequential Rademacher complexity is an upper bound
on the i.i.d. Rademacher complexity, so the following results should come at no surprise.

For concreteness, consider the setting of supervised learning with absolute loss. Recall the definition of
the value Vab(F , T ) for the sequential problem (see Eq. (3.17)) and Viid,ab(F , T ) for the statistical learning
problem (defined in Eq. (3.9)).

By Corollary 5.14 and the fact that the absolute loss is 1-Lipschitz,

Viid,ab(F , T ) ≤ 2 sup
P
Riid(F) (22.1)

and by (5.18),

Riid(F) ≤ sup
x1,...,xT

R̂iid(F , x1, . . . , xT ) ≤Rseq(F , T ), (22.2)

where the middle term is R̄iid(F , T ) by definition. On the other hand, by an argument very similar to
that of Theorem 10.11,

Rseq(F , T ) ≤ Vab(F , T ) .

We conclude that

Viid,ab(F , T ) ≤ 2Vab(F , T ). (22.3)

As we suspected, the sequential prediction problem is harder (up to a constant factor) than the i.i.d.
learning problem. What is interesting, by Lemma 9.13, for proper learning,

Viid,ab(F , T ) ≥ R̄iid(F ,2T ) − 1

2
R̄iid(F , T ) (22.4)

This has the following implication: if R̄iid(F ,2T ) − 1
2
R̄iid(F , T ) is of the same order as Rseq(F , T ), then

the difficulties of i.i.d. learning and sequential prediction (with adversarially chosen data) are the same.
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154 From Sequential to Statistical Learning: Relationship Between Values and Online-to-Batch

In view of (22.2) this happens when Rseq(F , T ) is not much larger than R̄iid(F ,2T ). For linear problems
this happens when the expected length of a random walk with independent increments is of the same
order as the worst possible random walk with martingale differences as increments. Such martingale and
i.i.d. convergence is governed, respectively, by the M-type and type of the space. While there exist spaces
where the two are different, such spaces are quite exotic and difficult to construct. Thus, for all practical
purposes, for linear function classes the classical and sequential Rademacher complexities coincide up to
a constant. Good news for linear function classes! Further, we already saw that kernel methods can be
viewed as working with a linear class of functions in a certain Reproducing Kernel Hilbert Space. One of
the methods of choice in practice, kernel methods are certainly powerful.

Finally, recall that we formalized the above statement (that sequential and i.i.d. Rademacher averages
are close) for finite-dimensional linear classes in Assumption 19.2, and indeed the resulting randomized
method yielded an upper bound of an i.i.d. (rather than sequential) Rademacher complexity.

More generally, for non-linear classes, we get a precise handle on the relative difficulty of statistical
vs adversarial learning by studying the gap between the sequential Rademacher averages and the classical
Rademacher averages.

22.2 Online to Batch Conversion

Given the close relationship between the values of the i.i.d. and sequential learning problems, we can ask
whether algorithms developed in the sequential setting can be used for statistical learning. Since a regret
bound holds for all sequences, it also holds for an i.i.d. sequence. What remains to be done is to construct a
single estimator out of the sequence produced by the sequential method, and to convert the regret guarantee
into a guarantee about excess loss. Such a process has been dubbed an “Online-to-Batch Conversion” [14].
We already performed such a conversion in Section 2.4 where a regret bound for regression with individual
sequences was converted to a near-optimal bound on excess loss. The argument holds in more generality,
and let us state it for convex loss functions.

Lemma 22.1. Let ` ∶ F ×Z ↦ R be convex in the first argument and suppose F is a convex set1. Suppose
there exists a strategy for choosing f1, . . . , fT in the sequential prediction problem against an oblivious
adversary (who picks a sequence z1, . . . , zT ) that guarantees a regret bound

1

T

T

∑
t=1

`(ft, zt) − inf
f∈F

1

T

T

∑
t=1

`(f, zt) ≤ RT

where RT may be a function of z1, . . . , zT . Then the estimator f̄ = 1
T ∑

T
t=1 ft enjoys the excess loss bound

of ERT :

EL(f̄) − inf
f∈F

L(f) ≤ ERT

In particular, this implies that the value of the statistical learning problem is upper bounded by the value
of the corresponding sequential prediction problem (see Eq. (3.14)) against an oblivious (and, hence, non-
oblivious) adversary:

Viid(F , T ) ≤ Vobliv(F , T )

Proof. Just as in the proof of Lemma 2.1, suppose the sequence of Nature’s moves is i.i.d. and take an
expectation on both sides of the regret expression:

E{ 1

T

T

∑
t=1

`(ft, Zt)} ≤ E{ inf
f∈F

1

T

T

∑
t=1

`(f,Zt)} +ERT (22.5)

1This assumption can be relaxed by considering mixed strategies.
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Observe that by Jensen’s inequality,

EL(f̄) = E{E{`(f̄ , Z) ∣ Z1∶T }} ≤ E{E{ 1

T

T

∑
t=1

`(ft, Z) ∣ Z1∶T}}

= E{ 1

T

T

∑
t=1

E{`(ft, Zt) ∣ Z1∶t−1}} = E{ 1

T

T

∑
t=1

`(ft, Zt)}

and

E{ inf
f∈F

1

T

T

∑
t=1

`(f,Zt)} ≤ inf
f∈F

{ 1

T

T

∑
t=1

E`(f,Zt)} = inf
f∈F

E`(f,Z) = inf
f∈F

L(f)

Rearranging the terms, the proof is completed.

Since in practice we often aim to minimize a convex loss, the above lemma allows us to harness the power
of sequential algorithms developed earlier in the course: the average of the outputs of any such method can
be used as a predictor under the i.i.d. assumption. Much of the attractiveness of using sequential regret
minimization methods for i.i.d. learning is in the computational properties of such algorithms. Processing
one example at a time in a stream-like fashion, the methods are often preferable for large scale problems.

We mention that the idea of computing the average f̄ (called the average of the trajectory) is well-known
in stochastic optimization.
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23
Sequential Prediction: Better Bounds for Predictable
Sequences

Within the framework of sequential prediction, we developed methods that guarantee a certain level of
performance irrespective of the sequence being presented. While such “protection” against the worst case
is often attractive, the bounds are naturally pessimistic. It is, therefore, desirable to develop algorithms
that yield tighter bounds for “more regular” sequences, while still providing protection against worst-case
sequences.

There are a number of ways to model “more regular” sequences. Let us start with the following
definition. Fix a sequence of functions Mt ∶ X t−1 ↦ X , for each t ∈ {1, . . . , T} ≜ [T ]. These functions define
a predictable process

M1, M2(x1), . . . , MT (x1, . . . , xT−1) .
If, in fact, xt = Mt(x1, . . . , xt−1) for all t, one may view the sequence {xt} as a (noiseless) time series,
or as an oblivious strategy of Nature. If we knew that the sequence given by Nature follows exactly this
evolution, we should suffer no regret.

Suppose that we have a hunch that the actual sequence xt ≈Mt(x1, . . . , xt−1) will be “roughly” given
by this predictable process. In other words, we suspect that

sequence = predictable process + adversarial noise

Can we use this fact to incur smaller regret if our suspicion is correct? Ideally, we would like to “pay” only
for the unpredictable part of the sequence.

Once we know how to use the predictable process Mt to incur small regret, we would like to choose
the best one from a family of predictable processes. We will address this issue of learning Mt later in the
lecture. However, we’d like to make it clear that the two problems are separate: (a) using a particular Mt

as a prior knowledge about the sequence in order to incur small regret, and (b) learning the best Mt from
a family of models.

Let us focus on the setting of online linear optimization, with `(f, x) = ⟨f, x⟩. For notational conve-
nience, assume for a moment that F and X are dual unit balls.

In some sense, we would like to use {Mt} as a “center” around which the actual sequence will be adver-
sarially chosen. The key is the following observation, made in [45]. Let us go back to the symmetrization
step in Equation (5.12), which we now state for the linear loss case:

sup
x1,x′1

Eε1 . . . sup
xT ,x′T

EεT ∥
T

∑
t=1

εt(x′t − xt)∥
∗
≤ 2 sup

x1

Eε1 . . . sup
xT

EεT ∥
T

∑
t=1

εtxt∥
∗

If we instead only consider sequences such that at any time t ∈ [T ], xt and x′t have to be σt-close to the
predictable process Mt(x1, . . . , xt−1), we can add and subtract the “center” Mt on the left-hand side of the
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158 Sequential Prediction: Better Bounds for Predictable Sequences

above equation and obtain tighter bounds for free, irrespective of the form of Mt(x1, . . . , xt−1). To
make this observation more precise, let

Ct = Ct(x1, . . . , xt−1) = {x ∶ ∥x −Mt(x1, . . . , xt−1)∥∗ ≤ σt}

be the set of allowed deviations from the predictable “trend”. We then have a bound

sup
x1,x′1∈C1

Eε1 . . . sup
xT ,x′T ∈CT

EεT ∥
T

∑
t=1

εt(x′t −Mt(x1, . . . , xt−1) +Mt(x1, . . . , xt−1) − xt)∥
∗
≤ c

¿
ÁÁÀ T

∑
t=1

σ2
t

on the value of the game against such “constrained” sequences, where the constant c depends on the
smoothness of the norm.

The development so far is a good example of how a purely theoretical observation can point to existence
of better prediction methods. What is even more surprising, for most of the methods presented below, the
individual σt’s need not be known ahead of time except for their total sum ∑Tt=1 σ

2
t . The latter sum need

not be known in advance either, thanks to the standard doubling trick, and one can obtain upper bounds
of

T

∑
t=1

⟨ft, xt⟩ − inf
f∈F

T

∑
t=1

⟨f, xt⟩ ≤ c

¿
ÁÁÀ T

∑
t=1

∥xt −Mt(x1, . . . , xt−1)∥2
∗

on regret, for some problem-dependent constant c.
Let us now discuss several types of statistics Mt that could be of interest.

Example 24. Regret bounds in terms of

Mt(x1, . . . , xt−1) = xt−1

are known as path length bounds [45, 18]. Such bounds can be tighter than the pessimistic O(
√
T ) bounds

when the previous move of Nature is a good proxy for the next move.
Regret bounds in terms of

Mt(x1, . . . , xt−1) =
1

t − 1

t−1

∑
s=1

xs

are known as variance bounds [17, 26, 27, 45]. One may also consider fading memory statistics

Mt(x1, . . . , xt−1) =
t−1

∑
s=1

αsxs,
t−1

∑
s=1

αs = 1, αs ≥ 0

or even plug in an auto-regressive model.
If “phases” are expected in the data (e.g., stocks tend to go up in January), one may consider

Mt(x1, . . . , xt−1) = xt−k

for some phase length k. Alternatively, one may consider averaging of the past occurrences Tj(t) ⊂ {1, . . . , t}
of the current phase j:

Mt(x1, . . . , xt−1) = ∑
s∈Tt

αsxs .

23.1 Full Information Methods

We now exhibit a Mirror Descent type method which can be seen as a generalization of the recent algorithm
of [18]. Let R be a 1-strongly convex function with respect to a norm ∥ ⋅ ∥, and let DR(⋅, ⋅) denote the
Bregman divergence with respect to R. Let ∇R∗ be the inverse of the gradient mapping ∇R. Let ∥ ⋅ ∥∗ be
the norm dual to ∥ ⋅ ∥. We do not require F and X to be unit dual balls.
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Optimistic Mirror Descent Algorithm
Input: R 1-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0
Initialize f1 = arg minf R(f)
At t = 1, . . . , T , predict ft and update

f ′t+1 = ∇R∗ (−η
t

∑
s=1

xs − ηMt+1)

and project onto F
ft+1 = arg min

f∈F
DR(f, f ′t+1)

If Mt+1 = 0, one recovers the Mirror Descent algorithm. To see this, recursively define

gt+1 = ∇R∗(∇R(gt) − ηxt)

for all t > 1 and g1 = arg mingR(g). The projection of gt+1 onto F with respect to DR is precisely
the standard Mirror Descent algorithm. Now, since ∇R(g1) = 0, unwinding the recursion we get gt+1 =
∇R∗ (−η∑ts=1 xs). Hence, ft+1 coincides with the Mirror Descent solution when Mt+1 = 0.

Given the definition of gt+1, the update for ft+1 can then be written as

f ′t+1 = ∇R∗(∇R(gt+1) − ηMt+1)

followed by a projection with respect to the Bregman divergence DR. It is not difficult to verify that this
gives the following equivalent form of the algorithm:

Optimistic Mirror Descent Algorithm (equivalent form)
Input: R 1-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0
Initialize f1 = g1 = arg mingR(g)
At t = 1, . . . , T , predict ft and update

gt+1 = ∇R∗ (∇R(gt) − ηxt)

ft+1 = argmin
f∈F

η ⟨f,Mt+1⟩ +DR(f, gt+1)

We remark that the update for gt+1 does not require the projection onto the set F . If for some reason
projection is desirable, it takes the form

gt+1 = arg min
g∈F

η ⟨g, xt⟩ +DR(g, gt) . (23.1)

Such a two-projection algorithm for the case Mt = xt−1 has been exhibited recently in [18]. However, the
projection is unnecessary and appears to complicate the simple form and interpretation of the Optimistic
Mirror Descent.

Lemma 23.1. Let F be a convex set in a Banach space B and X be a convex set in the dual space B∗. Let
R ∶ B ↦ R be a 1-strongly convex function on F with respect to some norm ∥ ⋅∥. For any strategy of Nature,
the Optimistic Mirror Descent Algorithm (with or without projection for gt+1) yields, for any f∗ ∈ F ,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max +

η

2

T

∑
t=1

∥xt −Mt∥2
∗

where R2
max = maxf∈F R(f) −minf∈F R(f).
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Proof of Lemma 23.1. For any f∗ ∈ F ,

⟨ft − f∗, xt⟩ = ⟨ft − gt+1, xt −Mt⟩ + ⟨ft − gt+1,Mt⟩ + ⟨gt+1 − f∗, xt⟩ (23.2)

First observe that

⟨ft − gt+1, xt −Mt⟩ ≤ ∥ft − gt+1∥ ∥xt −Mt∥∗ ≤
η

2
∥xt −Mt∥2

∗ +
1

2η
∥ft − gt+1∥2

. (23.3)

On the other hand, any update of the form a∗ = arg mina∈A ⟨a, x⟩ +DR(a, c) satisfies (see e.g. [6, 41])

⟨a∗ − d, x⟩ ≤ ⟨d − a∗,∇R(a∗) −∇R(c)⟩ =DR(d, c) −DR(d, a∗) −DR(a∗, c) . (23.4)

This yields

⟨ft − gt+1,Mt⟩ ≤
1

η
(DR(gt+1, gt) −DR(gt+1, ft) −DR(ft, gt)) . (23.5)

Next, note that by the form of update for gt+1,

⟨gt+1 − f∗, xt⟩ =
1

η
⟨gt+1 − f∗,∇R(gt) −∇R(gt+1)⟩

= 1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, gt)) , (23.6)

and the same inequality holds by (23.4) if gt+1 is defined as in (23.1) with a projection. Using Equations
(23.3), (23.6) and (23.5) in Equation (23.2) we conclude that

⟨ft − f∗, xt⟩ ≤
η

2
∥xt −Mt∥2

∗ +
1

2η
∥ft − gt+1∥2

+ 1

η
(DR(gt+1, gt) −DR(gt+1, ft) −DR(ft, gt))

+ 1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, gt)))

≤ η
2
∥xt −Mt∥2

∗ +
1

2η
∥ft − gt+1∥2 + 1

η
(DR(f∗, gt) −DR(f∗, gt+1) −DR(gt+1, ft))

By strong convexity of R, DR(gt+1, ft) ≥ 1
2
∥gt+1 − ft∥2

and thus

⟨ft − f∗, xt⟩ ≤
η

2
∥xt −Mt∥2

∗ +
1

η
(DR(f∗, gt) −DR(f∗, gt+1))

Summing over t = 1, . . . , T yields, for any f∗ ∈ F ,

T

∑
t=1

⟨ft − f∗, xt⟩ ≤
η

2

T

∑
t=1

∥xt −Mt∥2
∗ +

R2
max

η

where R2
max = maxf∈F R(f) −minf∈F R(f). Choosing η =

√
2Rmax√

∑Tt=1 ∥xt−Mt∥2∗
balances the two terms.

We remark that the sum ∑Tt=1 ∥xt −Mt∥2
∗ need not be known in advance in order to set η, as the usual

doubling trick can be employed. Moreover, the results carry over to online convex optimization, where xt’s
are now gradients at the points chosen by the learner. Last but not least, notice that if the sequence is not
following the trend Mt as we hoped it would, we still obtain the same bounds as for the Mirror Descent
algorithm. In some sense, we got something for nothing!
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23.2 Learning The Predictable Processes

So far we have seen that the learner can pick any arbitrary predictable process (Mt)t≥1 and suffer a regret

of at most O (
√
∑Tt=1 ∥xt −Mt∥2

∗ ) . Now if the predictable process we chose was good then our regret will

be low. This raises the question as to how the learner can choose a good predictable process (Mt)t≥1? Is
it possible to learn it online as we go, and if so, what does it mean to learn?

To formalize the concept of learning the predictable process, let us consider the case where we have a set
Π indexing a set of predictable processes (strategies) we are interested in. That is each π ∈ Π corresponds
to predictable process given by (Mπ

t )t≥1. Now if we had an oracle which in the start of the game told
us which π∗ ∈ Π predicts the sequence optimally (in hindsight) then we could use the predictable process

given by (Mπ∗
t )t≥1 and enjoy a regret bound of

√
infπ∈Π∑Tt=1 ∥xt −Mπ

t ∥2
∗. However we cannot expect to

know which π ∈ Π is the optimal one at the start of the game. In this scenario one would like to learn
a predictable process that in turn can be used with algorithms proposed thus far to get a regret bound
comparable regret bound one could have obtained knowing the optimal π∗ ∈ Π.

To motivate this setting better let us consider an example. Say there are n stock options we can choose
to invest in. On each day t, associated with each stock option one has a loss/payoff that occurs upon
investing in a single share of that stock. Our goal in the long run is to have a low regret with respect to
the single best stock in hindsight. Up to this point, the problem just corresponds to the simple experts
setting where each of the n stocks is one expert and on each day we split our investment according to a
probability distribution over the n options. However now additionally we allow the learner/investor access
to prediction models from the set Π. These could be human strategists making forecasts, or outcomes of
some hedge-fund model. At each time step the learner can query prediction made by each π ∈ Π as to
what the loss on the n stocks would be on that day. Now we would like to have a regret comparable to the
regret we can achieve knowing the best model π∗ ∈ Π that in hind-sight predicted the losses of each stock
optimally. We shall now see how to achieve this.

Optimistic Mirror Descent Algorithm with Learning the Predictable Process
Input: R 1-strongly convex w.r.t. ∥ ⋅ ∥, learning rate η > 0
Initialize f1 = g1 = arg mingR(g) and initialize q1 ∈ ∆(Π) as, ∀π ∈ Π, q1(π) = 1

∣Π∣
Set M1 = ∑π∈Π q1(π)Mπ

1

At t = 1, . . . , T , predict ft and update

∀π ∈ Π, qt+1(π)∝ qt(π) e−∥M
π
t −xt∥

2
∗ and Mt+1 = ∑

π∈Π
qt+1(π)Mπ

t+1

gt+1 = ∇R∗ (∇R(gt) − ηxt)
ft+1 = argmin

f∈F
η ⟨f,Mt+1⟩ +DR(f, gt+1)

Lemma 23.2. Let F be a convex subset of a unit ball in a Banach space B and X be a convex subset of
the dual unit ball. Let R ∶ B ↦ R be a 1-strongly convex function on F with respect to some norm ∥ ⋅ ∥. For
any strategy of Nature, the Optimistic Mirror Descent Algorithm yields, for any f∗ ∈ F ,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max + 3.2η ( inf

π∈Π

T

∑
t=1

∥xt −Mπ
t ∥2

∗ + log ∣Π∣)

where R2
max = maxf∈F R(f) −minf∈F R(f).

Once again, let us discuss what makes this setting different from the usual setting of experts: the
forecast given by the prediction models is in the form of a vector, one for each stock. If we treat each
prediction model as an expert with the loss ∥xt −Mπ

t ∥2
∗, the experts algorithm would guarantee that we

achieve the best cumulative loss of this kind. However, this is not the object of interest to us, as we are
after the best allocation of our money among the stocks, as measured by inff∈F ∑Tt=1 ⟨f, xt⟩.
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162 Sequential Prediction: Better Bounds for Predictable Sequences

Proof. First note that by Lemma 23.1 we have that for the Mt chosen in the algorithm,

T

∑
t=1

⟨ft, xt⟩ −
T

∑
t=1

⟨f∗, xt⟩ ≤ η−1R2
max +

η

2

T

∑
t=1

∥xt −Mt∥2
∗

≤ η−1R2
max +

η

2

T

∑
t=1
∑
π∈Π

qt(π)∥xt −Mπ
t ∥2

∗ (Jensen’s Inequality)

≤ η−1R2
max +

η

2
( 4e

e − 1
)( inf

π∈Π

T

∑
t=1

∥xt −Mπ
t ∥2

∗ + log ∣Π∣)

where the last step is due to Corollary 2.3 of [16]. Indeed, the updates for qt’s are exactly the experts

algorithm with point-wise loss at each round t for expert π ∈ Π given by ∥Mπ
t − xt∥

2
∗. Also as each Mπ

t ∈ X
the unit ball of dual norm, we can conclude that ∥Mπ

t − xt∥
2
∗ ≤ 4 which is why we have a scaling by factor

4. Simplifying leads to the bound in the lemma.

Notice that the general idea used above is to get Mt’s for the algorithm by running another (secondary)

regret minimizing strategy where loss per round is simply ∥Mt − xt∥2
∗ and regret is considered with respect

to the best π ∈ Π. That is, regret of the secondary regret minimizing game is given by

T

∑
t=1

∥xt −Mt∥2
∗ − inf

π∈Π

T

∑
t=1

∥xt −Mπ
t ∥

2
∗

In general, the experts algorithm for minimizing secondary regret can be replaced by any other online
learning algorithm.

23.3 Follow the Perturbed Leader Method

23.4 A General Framework of Stochastic, Smoothed, and Con-
strained Adversaries
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24
Sequential Prediction: Competing With Strategies

One of the most frequent criticisms of the regret definition is the fact that the comparator term is a static
decision is hindsight, not able to change its predictions as the sequence evolves. What good is showing
small regret if we only perform as well as the best single action for the whole sequence?

We now show that one can obtain regret bounds with respect to a possibly infinite set of strategies
which look at the actual sequence and produce a prediction. In fact, this is not an increase in generality
of our results so far, but rather the opposite. Observe that in the setting of supervised learning, the side
information xt is presented at the beginning of the round. This information is treated as a worst-case move
in our framework, but can instead be restricted to contain the history so far. In this case, an element f ∈ F
can be viewed as a strategy which produces a prediction f(xt) based on the history. At the end of the day,
we will be competing with the best strategy f ∈ F for the given sequence of (x1, y1), . . . , (xT , yT ).

So, if the setting of supervised learning subsumes competing with strategies, can we detail the bounds
for the latter case? The key is that the covering numbers, the combinatorial parameters, and the other
relevant complexities are now defined not for the worst-case tree x but for the worst tree with some
“history” structure. This makes the problem easier. In fact, we will easily derive bounds for regret defined
in terms of a set of bounded-lookback strategies, or strategies limited in some other way (of course, we
cannot compete with absolutely all possible strategies). Further, we will show that we can achieve the
correct rate for regret against the set of all monotonic strategies, a problem that was considered in [15].
We do not know whether such a result is possible without the tools developed in this course.

Let us fix some notation. At each round, we choose an action ft ∈ F , Nature responds with zt, and the
cost associated with the two decisions is `(ft, zt). Let

Π = {π = (πt)Tt=1 ∶ πt ∶ Zt−1 → F}

be a set of strategies π, each consisting of a sequence of mappings πt from history to the next action. We
may then formulate the value of the game with regret defined in terms of these strategies.

V(Π) = inf
q1

sup
z1

E
f1∼q1

. . . inf
qT

sup
zT

E
fT ∼qT

[ 1

T

T

∑
t=1

`(ft, zt) − inf
π∈Π

1

T

T

∑
t=1

`(πt(z1∶t−1), zt)]

24.1 Bounding the Value with History Trees

To proceed, we need a definition of a history tree.

Definition 24.1. Let H = ∪t≥0Zt be the space of histories. We say a tree h is a history tree if it is H-valued
and has the following consistency properties for any t:

• hi ∶ {±1}i−1 ↦ Zi−1
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164 Sequential Prediction: Competing With Strategies

• for any ε, if ht(ε1, . . . , εt−2,+1) = (z1, . . . , zt−1) and ht(ε1, . . . , εt−2,−1) = (z′1, . . . , z′t−1), then zs = z′s
for all 1 ≤ s ≤ t − 2.

As an example, a valid history tree would have

h1 = ∅,h2(1) = z1,h3(1,−1) = (z1, z2),ht(1,1) = (z1, z3),h2(−1) = z4,h3(−1,−1) = (z4, z5),ht(−1,1) = (z4, z6).

Theorem 24.2. The value of the prediction problem with a set Π of strategies is upper bounded as

V(Π) ≤ 2 sup
w,z

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εt`(πt(w1(ε), . . . ,wt−1(ε)),zt(ε))]

where the supremum is over two Z-valued trees z and w of depth T . Equivalently, we may rewrite the
upper bound as

V(Π) ≤ 2 sup
g

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εt`
′(π,gt(ε))] ≜ 2Rseq(Π)

for the new loss function `′(π, (ht,zt)(ε)) = `(πt(ht(ε)),zt(ε)) where g ranges over all history-outcome
trees (h,z), with z being an arbitrary Z-valued tree, and h being an arbitrary history tree (not necessarily
consistent with z).

Proof. The proof of Section 5.1.2 goes through and we obtain

T ⋅ V(Π) = ⟪sup
pt

E
zt∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

inf
ft∈F

Ez′t`(ft, z
′
t) − `(πt(z1∶t−1), zt)]

≤ ⟪sup
pt

E
zt∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

Ez′t`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

≤ ⟪sup
pt

E
zt,z′t

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

Define the “selector function” χ ∶ Z ×Z × {±1}↦ Z by

χ(z, z′, ε) = { z′ if ε = −1
z if ε = 1

When zt and z′t are understood from the context, we will use the shorthand χt(ε) ∶= χ(zt, z′t, ε). In other
words, χt selects between zt and z′t depending on the sign of ε.

With the notation of the selector function, we may write

⟪sup
pt

E
zt,z′t

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

= ⟪sup
pt

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt(`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), z′t)

−`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), zt))]

To be convinced of this equality, we should think of εt = −1 as “zt and z′t getting renamed”. The process
of renaming these random variables has two effects: the sign on the t-th term gets flipped, and all the
conditioning that was previously done on zt now has z′t instead. This is exactly accomplished by multiplying
the t-th term by εt and introducing the selector throughout the history.
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24.1 Bounding the Value with History Trees 165

We now split the above terms into two, yielding an upper bound of

⟪sup
pt

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), z′t)]

+⟪sup
pt

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

−εt`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), zt))]

Now the claim is that the second term is equal to the first. Let us replace εt with −εt for all t:

⟪sup
pt

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

−εt`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), zt))]

= ⟪sup
pt

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1(z′1, z1, ε1), . . . , χt−1(z′t−1, zt−1, εt−1)), zt))]

Renaming z′t and zt concludes the claim. Therefore,

T ⋅ V(Π) ≤ 2⟪sup
pt

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), z′t)]

≤ 2⟪sup
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1(z1, z
′
1, ε1), . . . , χt−1(zt−1, z

′
t−1, εt−1)), z′t)]

= 2 sup
z,z′

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1(z1,z
′
1, ε1), . . . , χt−1(zt−1(ε),z′t−1(ε), εt−1)),z′t(ε))]

We now replace the dependence of πt on two trees and a selector between them by a dependence on
only one tree, resulting in an upper bound of

2 sup
w,z′

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(w1, . . . ,wt−1(ε)),z′t(ε))]

While this might be a loose upper bound, we do not expect this step to be too bad: for sequences ε with
the majority of +1’s, the arguments to πt anyway come from the tree z, unrelated to z′.

We may now re-write the upper bound as

2 sup
h,z

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(ht(ε)),zt(ε))]

where h ranges over history trees and z ranges over Z-valued trees. For the new loss function `′(π, (ht,zt)(ε)) =
`(πt(ht(ε)),zt(ε)) we can rewrite the (normalized by T ) bound as

2 sup
g

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εt`
′(π,gt(ε))] ≜ 2Rseq(Π) .

We remark that in the case π ∈ Π are constant history-independent strategies πf1 = . . . = πfT = f ∈ F , we
recover the sequential Rademacher complexity. In fact, for all the notions we present below, taking Π to
be the set of all constant strategies should recover the notions introduced earlier.
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166 Sequential Prediction: Competing With Strategies

Example 25. Theorem 24.2 has the following immediate implication. Let Πk be a set of strategies which
only look back at k past outcomes to determine the next move. The bound then becomes

V(Πk) ≤ 2 sup
w,z

Eε sup
π∈Πk

[ 1

T

T

∑
t=1

εt`(πt(wt−k(ε), . . . ,wt−1(ε)),zt(ε))]

Now, suppose that Z is a finite set, of cardinality s. Then there are effectively ss
k

strategies π. The bound

on the sequential Rademacher complexity will then scale as
√

2sk log s
T

. However, we could have used the
Exponential Weights algorithm here, treating each π as an expert, arriving at the same bound on regret.
The next example presents a situation where one cannot simply use the exponential weights algorithm.

Example 26. Let Πk be the set of strategies which only depend on the past k moves, and let us parametrize
the strategies by a set Θ ⊂ Rk as:

πθt (z1, . . . , zt−1) = πθt (zt−k, . . . , zt−1) =
k

∑
i=1

θizt−i θ = (θ1, . . . , θk) ∈ Θ

Note that in this example the parameters θ of a given strategy πθ are fixed throughout time. We may
view this as an auto-regressive strategy. For illustration purposes, suppose Θ = Z = F are `2 unit balls and
`(f, z) = ⟨f, z⟩. Then

R(Π) = sup
w,z

Eε sup
θ∈Θ

[
T

∑
t=1

εt ⟨πθ(wt−k(ε), . . . ,wt−1(ε)),zt(ε)⟩]

= sup
w,z

Eε sup
θ∈Θ

[
T

∑
t=1

εtzt(ε)T[wt−k(ε), . . . ,wt−1(ε)] ⋅ θ]

= sup
w,z

Eε ∥
T

∑
t=1

εtzt(ε)T[wt−k(ε), . . . ,wt−1(ε)]∥

≤
√
T

This bound against all strategies parametrized by Θ is achieved by the gradient-descent method. However,
one can see that it is possible to consider slowly-changing strategies, and one may arrive at an upper bound
on the value in a non-constructive way.

Example 27. As another example, consider the binary prediction problem, Z = {0,1}, and the indicator
loss. Suppose for now, strategies have potentially dependence on the full history. Then,

sup
w,z

Eε sup
π∈Πk

[
T

∑
t=1

εtI{πt(w1(ε), . . . ,wt−1(ε)) ≠ zt(ε)}]

= sup
w,z

Eε sup
π∈Πk

[
T

∑
t=1

εt(πt(w1(ε), . . . ,wt−1(ε))(1 − 2zt(ε)) + zt(ε))]

= sup
w

Eε sup
π∈Πk

[
T

∑
t=1

εtπt(w1(ε), . . . ,wt−1(ε))]

24.2 Static Experts

It is now easy to recover the results of [15] for static experts. These are experts that do not depend on the
history! That is, each strategy π is a predetermined sequence of outcomes, and we may therefore associate
each π with a vector in ZT . Since there is not dependence on the history, the sequential Rademacher
complexity of Π simplifies:

V(Π) ≤ 2Rseq(Π) = 2 sup
g

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εt`
′(π,gt(ε))] = 2 sup

z
Eε sup

π∈Π
[ 1

T

T

∑
t=1

εt`(πt,zt(ε))]
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24.3 Covering Numbers and Combinatorial Parameters 167

Suppose Z = {0,1}, the loss is the indicator of a mistake, and π ∈ ZT for each π ∈ Π. Then we may
erase the tree z as in the above example:

V(Π) ≤ 2Eε sup
π∈Π

[ 1

T

T

∑
t=1

εtπt] =Riid(Π)

which is simply the classical i.i.d. Rademacher averages. One may, of course, further upper bound this
complexity by covering numbers, as done in the earlier part of the course. This example has been worked
out in [15], and it was shown that the minimax value has a closed form. The authors were intrigued by
the fact that empirical process theory came into play in the problem of sequential prediction. In fact, the
development of the general theory we presented was also largely influenced by this surprising fact. It is
now clear how the classical empirical process theory arises due to the static nature of experts, yet in the
non-static case a more general theory is required.

After introducing the combinatorial parameters and covering numbers which are specific to history
trees, we will turn to the case of monotonic experts and resolve an open issue left by [15].

24.3 Covering Numbers and Combinatorial Parameters

We may now define covering numbers, combinatorial parameters, and other measures of complexity for the
set Π of strategies over the history-outcome trees g. If we assume that the loss function is Lipschitz, then
we may only need to define covering numbers on history trees h. The development is a straightforward
modification of the notions we developed earlier, where we replace “any x” with a “history tree” h.

Definition 24.3. A set V of R-valued history trees is a α-cover (with respect to `p) of a set of strategies
Π on an X -valued history tree h if

∀π ∈ Π, ∀ε ∈ {±1}T , ∃v ∈ V s.t. ( 1

T

T

∑
t=1

∣πt(ht(ε)) − vt(ε)∣p)
1/p

≤ α . (24.1)

An α-covering number is defined as

Np(Π,h, α) = min{card (V ) ∶ V is an α-cover}.

If Π is a set of all constant strategies πf with πf1 = . . . = πfT = f ∈ F , we recover the notion of a covering
number defined in Section 11.1.

For any history tree h, sequential Rademacher averages of a class of strategies Π, where each π ∈ Π is
a sequence (πt)Tt=1 with πt ∶ X t−1 ↦ F satisfy

Rseq(Π,h) ≤ inf
α≥0

⎧⎪⎪⎨⎪⎪⎩
α +

√
2 logN1(Π, α,h)

T

⎫⎪⎪⎬⎪⎪⎭
and the Dudley entropy integral type bound also holds:

Rseq(Π,h) ≤ inf
α≥0

{4α + 12√
T
∫

1

α

√
log N2(Π,h, δ) dδ} (24.2)

For completeness, let us define history-based fat-shattering dimension.

Definition 24.4. An history tree h of depth T is α-shattered by a set of strategies Π, if there exists an
R-valued tree s of depth T such that

∀ε ∈ {±1}T , ∃π ∈ Π s.t. , εt(πt(ht(ε)) − st(ε)) > α/2 ∀t ∈ {1, . . . , T}

The (sequential) fat-shattering dimension for history trees fat(F , α) at scale α is the largest T such that
F α-shatters some history tree of depth T .
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168 Sequential Prediction: Competing With Strategies

In general, the combinatorial results of Section 11.3 do not immediately extend to history trees, due to
the fact that, technically, two subtrees of a history tree are not (according to our definition) valid history
trees. There might be modified definitions such that the combinatorial results extend more naturally.
However, we now present a case where the upper bound on the sequential covering does hold. Together
with the Dudley entropy bound for the sequential cover, this resolves a problem of [15].

24.4 Monotonic Experts

Consider a class Π of strategies (non-static experts), each predicting a value πt(z1, . . . , zt−1) ∈ [0,1] = F
which we can treat as the probability of predicting a 1. The outcome sequence is {0,1}-valued, and the
loss is `(f, z) = ∣f − z∣. This is the probabilistic version of the indicator loss considered in the previous
example, but one can pass easily from one setting to the other.

The requirement we place on the experts in the collection Π is that their predictions either never
decrease or never increase. That is, for every π ∈ Π, either

∀t,∀(z1, . . . , zT ) ∶ πt(z1, . . . , zt−1) ≤ πt+1(z1, . . . , zt)

or
∀t,∀(z1, . . . , zT ) ∶ πt(z1, . . . , zt−1) ≥ πt+1(z1, . . . , zt)

Following [15], we will call these experts monotonic. Observe that they are non-static, as their actual
predictions may depend on the history. Also, observe that this class of experts is huge! We will calculate
an upper bound on the sequential covering number and will see that it does not behave as a “parametric”
class.

Recall that a related class of nondecreasing (or, nonincreasing) functions on the real line played an
important role in Section 9.3 for the problem of Statistical Learning. The i.i.d. `∞-covering numbers at
scale α were shown to be bounded by T 2/α. It was then shown that a bound of Proposition 9.3 at a
single scale gives a suboptimal rate of Õ(T −1/3) while the Dudley entropy integral bound of Theorem 9.4
yields the correct (up to logarithmic factors) rate of Õ(T −1/2). Further, it was also shown that the i.i.d.
fat-shattering dimension of this class is 2/α, which gave us a direct estimate on the `∞ covering numbers
via the combinatorial result. This was all done in the setting of Statistical Learning, and one may wonder
if the same gap exists in the sequential case.

In fact, we have all the tools necessary to prove the Õ(T −1/2) bound for the sequential case with
monotonic (in time) experts, resolving the question of [15]. Consider the bound given by Theorem 24.2:

V(Π) ≤ 2 sup
w,z

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εt ∣πt(w1(ε), . . . ,wt−1(ε)) − zt(ε)∣]

= 2 sup
w

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εtπt(w1(ε), . . . ,wt−1(ε))]

= 2 sup
h

Eε sup
π∈Π

[ 1

T

T

∑
t=1

εtπt(ht(ε))]

where we employed the same contraction technique as in Example 27 and then passed to a history tree.
We claim that the sequential fat-shattering dimension for history trees is at most 2/α for exactly the same
reason as in the i.i.d. case: by taking the alternating sequence of signs (tracing the left-right-left-right path)
the shattered tree needs to furnish a function that passes above and below the witness levels. Exactly as
argued in Example 9, monotonicity prevents us from having a shattered tree of depth more than 2/α.

To conclude the argument, it remains to show that the covering numbers on any history tree are at
most O((2eT /α)fatα), similarly to the combinatorial result of Theorem 11.5, and then plug this bound
into (24.2), exactly as in Section 9.3. The combinatorial proof does hold in this particular case, yet there
are several subtleties: at certain steps in the proof of Theorem 11.6, we need to guarantee existence of a
shattered tree, but it, unfortunately, the tree might not respect our restriction of being a history tree. Still,
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a simple modification works: we need to simply extend the notion of fat shattering from history trees to
a larger set. Instead of getting involved in these modifications, we now give a separate proof of the fact
that the covering numbers are polynomial for the class of nonincreasing experts (the non-decreasing case is
analogous). The proof is also a good illustration of a combinatorial argument that underlies Theorem 11.6.

Lemma 24.5. For the class Π of nonincreasing experts satisfying

∀t,∀(z1, . . . , zT ) ∶ πt(z1, . . . , zt−1) ≥ πt+1(z1, . . . , zt),

the size of the sequential `∞ cover is O((2eT /α)1/α).

Proof. Define gk(d, T ) = ∑di=0 (T
i
)ki, as in the proof of Theorem 11.6. The key recursion for gk is:

gk(d, T ) = gk(d, T − 1) + kgk(d − 1, T − 1) .

Throughout the proof we will refer to a subtree of a history tree simply as a history tree. Let k = 1
α

, and
assume for simplicity that k is an integer. Fix a history tree h. Let t = ∣h1∣ stand for the size of the history
at the root h1. Since h can be a subtree of the history tree, t may not be 1. Let Π′ be a set of nonincreasing
experts, subset of the original class Π. Define

d(Π′,h) = max{⌈πt(h1)/α⌉ ∶ π ∈ Π′}

It is not difficult to see that d in fact corresponds to an upper bound on the fat-shattering dimension of
the class Π′ on h. We now proceed by induction. Fix d and T . We suppose by the way of induction
that for any Π′, the size of the `∞ cover of Π′ on any history tree h of size T − 1 is upper bounded by
gk(d(Π′,h), T − 1) under the assumption d(Π′,h) ≤ d − 1. The basis of the induction is trivial, so let’s
proceed to the induction step. Suppose we have a history tree h of size T and a subset Π′ of nonincreasing
experts such that d(Π′,h) = d. Define 1/α subsets Πi = {π ∈ Π′ ∶ ⌈πt(h1)/α⌉ = i} according to their (rounded
up) value at the root h1, where t = ∣h1∣. Consider any j ≠ d(Π′,h). By definition, d(Πj ,h) < d(Π′,h). Let
h` and hr be the left and the right subtrees of h at the root. By the nonincreasing property of the experts,
d(Πj ,h

`) ≤ d(Πj ,h) < d(Π,h) and similarly d(Πj ,h
r) < d(Π,h). By the induction assumption, there is an

`∞-cover of Πj on hr of size at most gk(d(Π′,h) − 1, T − 1), and the same holds on the left subtree. The
covering trees for the left subtree and for the right subtree can be joined together, with the root being
the value jα. It is easy to see that this preserves the property of an α-cover in the `∞ sense. In this
process, the size of the cover stays the same, so the `∞-cover for Πj is of size at most gk(d(Π′,h)−1, T −1).
Note that there are a total of at most k = 1/α such sets Πj , resulting in the total size of the cover of
k ⋅ gk(d(Π′,h) − 1, T − 1). It remains to provide a cover for the case j = d(Π′,h). We perform the same
joining operation, yet we can only guarantee the size gk(d(Π′,h), T −1) rather than gk(d(Π′,h)−1, T −1).
But this is exactly what is needed to prove the inductive step, thanks to the recursive form of gk.

Remark 24.6. Clearly, it is impossible to compete with the set of all possible strategies. It is quite
interesting that the seemingly innocuous assumption of monotonicity of the non-static experts yields the
rate of Õ(T −1/2). Such a rate is expected from a small class. Yet, we see that the covering numbers are

of the type O((T /α)1/α), which is larger than the VC type O((T /α)dim) size of the `∞ cover. It is then
imperative to use the Dudley type bound in order to obtain the correct rate. Thanks to the extension of the
empirical process theory to the sequential prediction problem, this is now possible.

24.5 Compression and Sufficient Statistics

We now assume that the strategies in Π have a particular form: they all work with a “sufficient statistic”,
or, more loosely, compression of the past data. Suppose “sufficient statistics” can take values in some set
Γ. Fix a set Π̄ of mappings π̄ ∶ Γ↦ F . We assume that all the strategies in Π are of the form

πt(z1, . . . , zt−1) = π̄(γ(z1, . . . , zt−1)), for some π̄ ∈ Π̄
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and γ ∶ Z∗ ↦ Γ is a fixed function (we can relax this assumption). Such a bottleneck Γ can arise due
to a finite memory or finite precision, but can also arise if the strategies in Π are actually solutions to a
statistical problem. The latter case is of a particular interest to us. If we assume a certain stochastic source
for the data, we may estimate the parameters of the model, and there is often a natural set of sufficient
statistics associated with it. If we collect all such solutions to stochastic models in a set Π, we may compete
with all these strategies as long as the set where the sufficient statistics take values is not too large.

In the setting described above, the sequential Rademacher complexity for strategies Π can be upper
bounded by the complexity of Π̄ on Γ-valued trees:

Rseq(Π) ≤ sup
g

Eε sup
π̄∈Π̄

[ 1

T

T

∑
t=1

εt`(π̄,gt(ε))]

We refer to [23, 44] for more details on these types of bounds.
[TO BE EXPANDED]

170



25
Localized Analysis and Fast Rates. Local Rademacher
Complexities

171



172 Localized Analysis and Fast Rates. Local Rademacher Complexities

172



26
Adaptive Algorithms

173



174 Adaptive Algorithms

174



Bibliography

[1] J. Abernethy, P. L. Bartlett, and E. Hazan. Blackwell approachability and low-regret learning are
equivalent. CoRR, abs/1011.1936, 2010.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform con-
vergence, and learnability. Journal of the ACM, 44:615–631, 1997.

[3] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

[4] P.L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine Learning,
48(1):85–113, 2002.

[5] P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. The Journal of Machine Learning Research, 3:463–482, 2003.

[6] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003.

[7] J.O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

[8] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics,
6(1):1–8, 1956.

[9] D. Blackwell. Minimax vs. bayes prediction. Probability in the Engineering and Informational Sciences,
9:pp 53–58, 1995.

[10] D. Blackwell and Meyer A. Girshick. Theory of games and statistical decisions. Wiley publications in
statistics. Dover Publications, 1979.

[11] V.I. Bogachev. Measure Theory, volume 2. Springer, 2007.

[12] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to Statistical Learning Theory. In O. Bous-
quet, U.v. Luxburg, and G. Rtsch, editors, Advanced Lectures in Machine Learning, pages 169–207.
springer, 2004.

[13] L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the author).
Statistical Science, 16(3):199–231, 2001.

175



176 BIBLIOGRAPHY

[14] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algo-
rithms. Information Theory, IEEE Transactions on, 50(9):2050–2057, 2004.

[15] N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. The Annals of Statistics,
27(6):1865–1895, 1999.

[16] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.

[17] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with expert
advice. Machine Learning, 66(2):321–352, 2007.

[18] C.K. Chiang, T. Yang, C.J. Lee, M. Mahdavi, C.J. Lu, R. Jin, and S. Zhu. Online optimization with
gradual variations. COLT, 2012.

[19] A.S. Dalalyan and A.B. Tsybakov. Aggregation by exponential weighting and sharp oracle inequalities.
In Proceedings of the 20th annual conference on Learning theory, pages 97–111. Springer-Verlag, 2007.

[20] P. A. Dawid and V.G. Vovk. Prequential probability: Principles and properties. Bernoulli, 5(1):125–
162, 1999.

[21] L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer
Verlag, 1996.

[22] R.M. Dudley. Central limit theorems for empirical measures. The Annals of Probability, 6(6):899–929,
1978.

[23] D. Foster, A. Rakhlin, K. Sridharan, and A. Tewari. Complexity-based approach to calibration with
checking rules. In COLT, 2011.
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