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The main question A probabilistic classifier is a map-
ping h : X → [0, 1], where we interpret h(x) as the
probability to predict the label +1 and 1 − h(x) is the
probability to predict the label 0. The error of h on a
classification example (x, y) ∈ X × {0, 1} is |h(x) − y|,
which is the expected 0-1 error. Given a distribution D
on X × {0, 1}, the (generalization) error of h is:

err(h) = E(x,y)∼D[|h(x)− y|] .

Let X be the unit `2 ball of a Hilbert space, let φ : R→
[0, 1] be a transfer function, and consider the class of
probabilistic classifiers:

H = {h(w) = φ(〈w,x〉) : ‖w‖2 ≤ 1} ,

where 〈w,x〉 is the inner product between the vectors
x and w. For the 0-1 transfer function, φ0−1(a) =
sgn(a)+1

2 , H becomes the class of halfspaces. We allow
any transfer functions that satisfy the following (µ, ε)
margin condition: max{|φ(a)− φ0−1(a)| : |a| > µ} ≤ ε.
For example, the sigmoid function φsig(a) = 1

1+e−a/σ

satisfies the (µ, ε) condition if σ ≤ µ/(log(1/ε− 1). For
an illustration see Figure 1.

An improper agnostic learning algorithm, A, re-
ceives as input a training set of m i.i.d. samples from D,
and returns a classifier (not necessarily from H). The
output classifier is a random variable and we denote it
by A(m). We use err(A(m)) to denote the expected gen-
eralization error of the predictor returned by A, where
expectation is with respect to the random choice of the
training set. We denote by time(A,m) the expected
runtime of the algorithm A when running on a training
set of m examples.

Open Question 1 Given ε, µ > 0, let φ be a trans-
fer function that satisfies the (µ, ε) margin condition
and let H be the corresponding hypothesis class. For
which pairs (m,T ), there exists an algorithm A such
that time(A,m) ≤ T and

err(A(m)) ≤ min
h∈H

err(h) + ε .

How do m and T depend on ε and on the margin µ ?
In particular, does there exist a pair (m,T ) such that T
is sub-exponential in the margin parameter µ ?

Motivation and Importance Some of the most im-
portant machine learning tools are based on learning
large-margin halfspaces. Examples include the Percep-
tron [10], Support Vector Machines [12], and AdaBoost
[7]. The class of halfspace classifiers correspond to the
classH with the 0-1 transfer function. While the expres-
sive power of halfspaces seems to be rather restricted –
for example, it is impossible to express XOR functions
using linear classifiers – one can use the so-called kernel
trick to implicitly map the instances into a higher di-
mension space and then learn a halfspace in that space.
The kernel trick has had tremendous impact on machine
learning theory and algorithms over the past decade
(e.g. [4, 11]).

It is well known that the VC dimension of (homo-
geneous) halfspaces in an n-dimensional space equals n.
This implies that the number of training examples re-
quired to learn the class of halfspaces with the 0-1 loss
function scales linearly with the dimension n. Without
imposing more assumptions, this bound on the number
of examples is tight, namely, there exist distributions for
which less examples will cause overfitting. When learn-
ing with kernels we in fact learn a halfspace in a possi-
bly infinite dimensional inner product space. Since the
VC dimension in this case is inifinite, we cannot learn
with the 0-1 transfer function. A common solution is
to require that the transfer function will be Lipschitz.
This requirement is also closely related to the principle
of large margin analysis because it is easy to construct
Lipschitz transfer functions that satisfy the (µ, ε) mar-
gin condition with L = O(1/µ). Using the technique
of Rademacher complexities [1], it was shown that from
the statistical perspective it is possible to learn using
1/(µε)2 examples. Since this bound does not depend on
the dimension we can learn even in infinite dimensional
spaces, which is the heart of kernel-based learning.

From a computational perspective, practical algo-
rithms such as support vector machines often use a con-
vex surrogate objective function, and then apply convex
optimization tools. However, there are no guarantees
on how well the surrogate function approximates the 0-
1 error function (there do exist some recent results on
the asymptotic relationship between these error func-
tions in some cases (cf. [2]), but these do not apply to
the finite-sample finite-time setting we are studying).



Understanding which pairs of sample-time values allow
us to learn an accurate classifier w.r.t. the 0-1 error is
therefore an important question.

Known Partial Results There exist strong hard-
ness of approximation results for proper learning with-
out margin, i.e. with the 0-1 transfer function (see for
example [8, 5] and the references therein). There are
also hardness results for proper learning with sufficiently
small margins [3]. We emphasize that we allow improper
learning, which is just as useful for the purpose of learn-
ing good classifiers, and thus these hardness results do
not apply.

As to positive results, it is well known that if the
data is separable with margin µ then it is possible (e.g.
using the kernel Perceptron of [6]) to learn a halfspace
with excess error of ε in time poly(1/(µε)). For ag-
nostically learning halfspaces when X = Rn, the best
current result is the algorithm of [9], with complex-
ity poly(n) for any constant ε > 0. However, this al-
gorithm crucially assumes a restricted set of marginal
distribution on X and also has an explicit dependence
on the dimension of X . A computational complexity
analysis under margin assumptions for the agnostic case
was first carried out in [3]. The technique used in [3]
is the observation that in the noise-free case, an opti-
mal halfpsace can be expressed as a linear sum of at
most 1/µ2 examples. Therefore, one can perform an
exhaustive search over all sub-sequences of 1/µ2 exam-
ples, and choose the optimal halfspace. Combining this
with standard margin-based sample complexity bounds,
we obtain learnability with m = 1/(µε)2 examples and
time poly(exp(( 1

µ )2 log( 1
µε ))). We recently proposed a

different approach for learning with respect to the sig-
moid transfer function where both m and the runtime
are poly(exp( 1

µ log( 1
µε )) (see [? ]).
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Figure 1: Illustrations of transfer functions: the 0-1
transfer function (dashed blue line) and the sigmoid
transfer function (dotted black line, for σ = 0.1).
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