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Abstract

We provide several applications of Optimistic Mirror Descent, an online learning
algorithm based on the idea of predictable sequences. First, we recover the Mirror
Prox algorithm, prove an extension to Hölder-smooth functions, and apply the re-
sults to saddle-point type problems. Second, we prove that a version of Optimistic
Mirror Descent (which has a close relationship to the Exponential Weights algo-
rithm) can be used by two strongly-uncoupled players in a finite zero-sum matrix
game to converge to the minimax equilibrium at the rate of O((logT )/T ). This
addresses a question of Daskalakis et al [5]. Further, we consider a partial infor-
mation version of the problem. We then apply the results to approximate convex
programming and show a simple algorithm for the approximate Max-Flow prob-
lem.

1 Introduction

Recently, no-regret algorithms have received increasing attention in a variety of communities, in-
cluding theoretical computer science, optimization, and game theory [3, 1]. The wide applicability
of these algorithms is arguably due to the black-box regret guarantees that hold for arbitrary se-
quences. However, such regret guarantees can be loose if the sequence being encountered is not
“worst-case”. Such a reduction in “arbitrariness” of the sequence can arise from the particular struc-
ture of the problem at hand, and should be exploited. For instance, in some applications of online
methods, the sequence comes from an additional computation done by the learner, thus being far
from arbitrary.

One way to formally capture the partially benign nature of data is through a notion of predictable
sequences [9]. We exhibit applications of this idea in several domains. First, we show that the
Mirror Prox method [7], designed for optimizing non-smooth structured saddle-point problems, can
be viewed as an instance of the predictable sequence approach. Predictability in this case is due
precisely to smoothness of the inner optimization part and the saddle-point structure of the problem.
We extend the results to Hölder-smooth functions, interpolating between the case of well-predictable
gradients and “unpredictable” gradients.

Second, we address the question raised in [5] about existence of “simple” algorithms that converge
at the rate of O(T −1) when employed in an uncoupled manner by players in a zero-sum finite
matrix game, yet maintain the usual O(T −1/2) rate against arbitrary sequences. Moreover, the
prior knowledge of whether the other player is collaborating is not required, as the algorithm is
fully adaptive. Here, the additional predictability comes from the fact that both players attempt to
converge to the minimax value. We also tackle a partial information version of the problem where
the player only has access to the payoffs of the mixed actions played by the two players on each
round rather than the entire vector.

Our third application is to convex programming: optimization of a linear function subject to convex
constraints. This problem often arises in theoretical computer science, and we show that the idea
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of predictable sequences can be used here too. We exhibit a simple algorithm for ε-approximate
max-flow for a graph with d edges in time Õ(d3/2/ε), a performance previously obtained through a
relatively involved procedure [6].

2 Online Learning with Predictable Gradient Sequences

Let us describe the online convex optimization (OCO) problem and the basic algorithm studied in
[9, 4]. Let F be a convex set of moves of the learner. On round t = 1, . . . , T , the learner makes
a prediction ft ∈ F and observes a convex function Gt on F . The objective is to keep regret
1
T ∑

T
t=1Gt(ft) −Gt(f

∗) small for any f∗ ∈ F . Let R be a 1-strongly convex function w.r.t. some
norm ∥ ⋅ ∥ on F , and let g0 = arg ming∈F R(g). Suppose that at the beginning of every round t, the
learner has access to Mt, a vector computable based on the past observations or side information. In
this paper we study the Optimistic Mirror Descent algorithm, defined by the interleaved sequence

ft = argmin
f∈F

ηt ⟨f,Mt⟩ +DR(f, gt−1) , gt = argmin
g∈F

ηt ⟨g,∇Gt(ft)⟩ +DR(g, gt−1) (1)

where DR is the Bregman Divergence with respect to R and {ηt} is a sequence of step sizes that
can be chosen adaptively based on the sequence observed so far. The method adheres to the OCO
protocol since Mt is available at the beginning of round t, and ∇Gt(ft) becomes available after
the prediction ft is made. The sequence {ft} will be called primary, while {gt} – secondary. This
method was proposed in [4] for Mt = ∇Gt−1(ft−1), and the following lemma is a straightforward
extension of the result in [9] for general Mt:
Lemma 1. Let F be a convex set in a Banach space B. Let R ∶ B ↦ R be a 1-strongly convex
function on F with respect to some norm ∥ ⋅ ∥, and let ∥ ⋅ ∥∗ denote the dual norm. For any fixed
step-size η, the Optimistic Mirror Descent Algorithm yields, for any f∗ ∈ F ,

T

∑
t=1

Gt(ft) −Gt(f
∗
) ≤

T

∑
t=1

⟨ft − f
∗,∇t⟩

≤ η−1R2
+

T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥ −
1

2η

T

∑
t=1

(∥gt − ft∥
2
+ ∥gt−1 − ft∥

2
) (2)

where R ≥ 0 is such that DR(f∗, g0) ≤ R
2 and ∇t = ∇Gt(ft).

When applying the lemma, we will often use the simple fact that

∥∇t −Mt∥∗ ∥gt − ft∥ = inf
ρ>0

{
ρ

2
∥∇t −Mt∥

2
∗ +

1

2ρ
∥gt − ft∥

2
} . (3)

In particular, by setting ρ = η, we obtain the (unnormalized) regret bound of η−1R2 +

(η/2)∑
T
t=1 ∥∇t −Mt∥

2
∗, which isR

√

2∑
T
t=1 ∥∇t −Mt∥

2
∗ by choosing η optimally. Since this choice

is not known ahead of time, one may either employ the doubling trick, or choose the step size adap-
tively:

Corollary 2. Consider step size ηt = Rmax min{(

√

∑
t−1
i=1 ∥∇i −Mi∥

2
∗ +

√

∑
t−2
i=1 ∥∇i −Mi∥

2
∗)

−1

,1}

with R2
max = supf,g∈F DR(f, g). Then regret of the Optimistic Mirror Descent algorithm is upper

bounded by 3.5Rmax (

√

∑
T
t=1 ∥∇t −Mt∥

2
∗ + 1) /T .

These results indicate that tighter regret bounds are possible if one can guess the next gradient ∇t
by computing Mt. One such case arises in offline optimization of a smooth function, whereby the
previous gradient turns out to be a good proxy for the next one. More precisely, suppose we aim to
optimize a functionG(f) whose gradients are Lipschitz continuous: ∥∇G(f)−∇G(g)∥∗ ≤H∥f−g∥
for some H > 0. In this optimization setting, no guessing of Mt is needed: we may simply query
the oracle for the gradient and set Mt = ∇G(gt−1). The Optimistic Mirror Descent then becomes

ft = argmin
f∈F

ηt ⟨f,∇G(gt−1)⟩ +DR(f, gt−1) , gt = argmin
g∈F

ηt ⟨g,∇G(ft)⟩ +DR(g, gt−1)
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which can be recognized as the Mirror Prox method, due to Nemirovski [7]. By smoothness,
∥∇G(ft) − Mt∥∗ = ∥∇G(ft) − ∇G(gt−1)∥∗ ≤ H∥ft − gt−1∥, and Lemma 1 with Eq. (3) and
ρ = η = 1/H immediately yields a bound

T

∑
t=1

G(ft) −G(f∗) ≤HR2,

which implies that the average f̄T = 1
T ∑

T
t=1 ft satisfies G(f̄T ) −G(f∗) ≤ HR2/T , a known bound

for Mirror Prox. We now extend this result to arbitrary α-Hölder smooth functions, that is convex
functions G such that ∥∇G(f) −∇G(g)∥∗ ≤H∥f − g∥α for all f, g ∈ F .
Lemma 3. Let F be a convex set in a Banach space B and let R ∶ B ↦ R be a 1-strongly convex
function on F with respect to some norm ∥ ⋅ ∥. Let G be a convex α-Hölder smooth function with
constantH > 0 and α ∈ [0,1]. Then the average f̄T = 1

T ∑
T
t=1 ft of the trajectory given by Optimistic

Mirror Descent Algorithm enjoys

G(f̄T ) − inf
f∈F

G(f) ≤
8HR1+α

T
1+α
2

where R ≥ 0 is such that supf∈F DR(f, g0) ≤ R.

This result provides a smooth interpolation between the T −1/2 rate at α = 0 (that is, no predictability
of the gradient is possible) to the T −1 rate when the smoothness structure allows for a dramatic
speed up with a very simple modification of the original Mirror Descent.

3 Structured Optimization

In this section we consider the structured optimization problem

argmin
f∈F

G(f)

where G(f) is of the form G(f) = supx∈X φ(f, x) with φ(⋅, x) convex for every x ∈ X and φ(f, ⋅)
is concave for every f ∈ F . Both F and X are assumed to be convex sets. WhileG itself need not be
smooth, it has been recognized that the structure can be exploited to improve rates of optimization
if the function φ is smooth [8]. From the point of view of online learning, we will see that the opti-
mization problem of the saddle point type can be solved by playing two online convex optimization
algorithms against each other (henceforth called Players I and II).

Specifically, assume that Player I produces a sequence f1, . . . , fT by using a regret-minimization
algorithm, such that

1

T

T

∑
t=1

φ(ft, xt) − inf
f∈F

1

T

T

∑
t=1

φ(f, xt) ≤ Rate1
(x1, . . . , xT ) (4)

and Player II produces x1, . . . , xT with

1

T

T

∑
t=1

(−φ(ft, xt)) − inf
x∈X

1

T

T

∑
t=1

(−φ(ft, x)) ≤ Rate2
(f1, . . . , fT ) . (5)

By a standard argument (see e.g. [? ]),

inf
f

1

T

T

∑
t=1

φ(f, xt) ≤ inf
f
φ (f, x̄T ) ≤ sup

x
inf
f
φ (f, x) ≤ inf

f
sup
x
φ(f, x) ≤ sup

x
φ (f̄T , x) ≤ sup

x

1

T

T

∑
t=1

φ(ft, x)

where f̄T = 1
T ∑

T
t=1 ft and x̄T = 1

T ∑
T
t=1 xt. By adding (4) and (5), we have

sup
x∈X

1

T

T

∑
t=1

φ(ft, x) − inf
f∈F

1

T

T

∑
t=1

φ(f, xt) ≤ Rate1
(x1, . . . , xT ) +Rate2

(f1, . . . , fT ) (6)

which sandwiches the previous sequence of inequalities up to the sum of regret rates and implies
near-optimality of f̄T and x̄T .
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Lemma 4. Suppose both players employ the Optimistic Mirror Descent algorithm with, respectively,
predictable sequences M1

t and M2
t , 1-strongly convex functions R1 on F (w.r.t. ∥ ⋅ ∥F ) and R2 on

X (w.r.t. ∥ ⋅ ∥X ), and fixed learning rates η and η′. Let {ft} and {xt} denote the primary sequences
of the players while let {gt},{yt} denote the secondary. Then for any α,β > 0,

sup
x∈X

φ (f̄T , x) − inf
f∈F

sup
x∈X

φ(f, x) (7)

≤
R2

1

η
+
α

2

T

∑
t=1

∥∇fφ(ft, xt) −M
1
t ∥

2
F∗ +

1

2α

T

∑
t=1

∥gt − ft∥
2
F −

1

2η

T

∑
t=1

(∥gt − ft∥
2
F + ∥gt−1 − ft∥

2
F)

+
R2

2

η′
+
β

2

T

∑
t=1

∥∇xφ(ft, xt) −M
2
t ∥

2
X∗ +

1

2β

T

∑
t=1

∥yt − xt∥
2
X −

1

2η′

T

∑
t=1

(∥yt − xt∥
2
X + ∥yt−1 − xt∥

2
X )

where R2
1 = supf DR1(f, g0), R2

2 = supxDR1(x, y0), and f̄T = 1
T ∑

T
t=1 ft.

The proof of Lemma 7 is immediate from Lemma 1. We obtain the following corollary:

Corollary 5. Suppose φ ∶ F ×X ↦ R is Hölder smooth in the following sense:

∥∇fφ(f, x) −∇fφ(g, x)∥F∗ ≤H1∥f − g∥
α
F , ∥∇fφ(f, x) −∇fφ(f, y)∥F∗ ≤H2∥x − y∥

α′

X
and ∥∇xφ(f, x) −∇xφ(g, x)∥X∗ ≤H4∥f − g∥

β
F , ∥∇xφ(f, x) −∇xφ(f, y)∥X∗ ≤H3∥x − y∥

β′

X .

Let γ = min{α,α′, β, β′}, H = max{H1,H2,H3,H4}. Suppose both players employ Optimistic
Mirror Descent with M1

t = ∇fφ(gt−1, yt−1) and M2
t = ∇xφ(gt−1, yt−1), where {gt} and {yt}

are the secondary sequences updated by the two algorithms, and with step sizes η = η′ = (R2
1 +

R2
2)

1−γ
2 (2H)−1 (T

2
)
γ−1
2 . Then

sup
x∈X

φ (f̄T , x) − inf
f∈F

sup
x∈X

φ(f, x) ≤
4H(R2

1 +R
2
2)

1+γ
2

T
1+γ
2

(8)

As revealed in the proof of this corollary, the negative terms in (7), that come from an upper bound
on regret of Player I, in fact contribute to cancellations with positive terms in regret of Player II, and
vice versa. Such coupling of the two regret upper bounds for the players can be seen as leading to
faster rates under the appropriate assumptions, and this idea will be exploited to a great extent in the
proofs of the next section.

4 Zero-sum Game and Uncoupled Dynamics

The notions of a zero-sum matrix game and a minimax equilibrium are arguably the most basic and
important notions of game theory. The tight connection between linear programming and minimax
equilibrium suggests that there might be simple dynamics that can lead the two players of the game
to eventually converge to the equilibrium value. Existence of such simple or natural dynamics is of
interest in behavioral economics, where one asks how agents can discover static solution concepts
of the game iteratively and without extensive communication.

More formally, let A ∈ [−1,1]n×m be a matrix with bounded entries. The two players aim to
find a pair of near-optimal mixed strategies (f̄ , x̄) ∈ ∆n × ∆m such that f̄TAx̄ is close to the
minimax value minf∈∆n maxx∈∆m f

TAx, where ∆n is the probability simplex over n actions. Of
course, this is a particular form of the saddle point problem considered in the previous section, with
φ(f, x) = fTAx. It is well-known (and follows immediately from (6)) that the players can achieve
the goal of computing near-optimal strategies by simply playing no-regret algorithms [? ]. More
precisely, on round t, the players I and II “predict” the mixed strategies ft and xt and observe
Axt and fT

tA, respectively. While black-box regret minimization algorithms, such as Exponential
Weights, immediately yield O(T −1/2) convergence rates, Daskalakis et al [5] asked whether faster
methods exist. To make the problem well-posed, it is required that the two players are strongly
uncoupled: neither A nor the number of available actions of the opponent is known to each player,
no “funny bit arithmetic” is allowed, and memory storage of each player allows only for constant
number of payoff vectors. The authors of [5] exhibited a near-optimal algorithm that, if used by
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both players, yields a pair of mixed strategies that constitutes an O (
log(m+n)(logT+(log(m+n))3/2)

T
)-

approximate minimax equilibrium. Furthermore, the method has a regret bound of the same order
as Exponential Weights when faced with an arbitrary sequence. The method in [5] is an application
of the excessive gap technique of Nesterov, and requires careful choreography and interleaving of
rounds between the two non-communicating players. The authors, therefore, asked whether a simple
algorithm (e.g. a modification of Exponential Weights) can in fact achieve the same result. We
answer this in the affirmative. While a direct application of Mirror Prox does not yield the result
(and also does not provide strong decoupling), below we show that a modification of Optimistic
Mirror Descent achieves the goal. Furthermore, by choosing the step size adaptively, the same
method guarantees the typical O(T −1/2) regret if not faced with a compliant player.

In Section 4.1, we analyze the “first-order information” version of the problem, as described above:
upon playing the respective mixed strategies ft and xt on round t, Player I observes Axt and Player
II observes fT

tA. Then, in Section 4.2, we consider an interesting extension to partial information,
whereby the players submit their moves ft, xt but only observe the real value fT

tAxt. Recall that in
both cases the matrix A is not known to the players.

4.1 First-Order Information

Consider the following simple algorithm. Initialize g′0 ∈ ∆n and y′0 ∈ ∆m to be uniform distributions
and proceed as follows:

On round t, Player I performs

Play ft and observe Axt

Update gt(i)∝ g′t−1(i) exp{−ηt[Axt]i}, g′t = (1 − 1/T 2) gt + (1/(nT 2
))1n

ft+1(i)∝ g′t(i) exp{−ηt+1[Axt]i}

while simultaneously Player II performs

Play xt and observe f⊺t A

Update yt(i)∝ y′t−1(i) exp{−η′t[f
T

tA]i}, y′t = (1 − 1/T 2) yt + (1/(nT 2
))1m

xt+1(i)∝ y′t(i) exp{−η′t+1[f
T

tA]i}

Here, 1n ∈ Rn is a vector of all ones. Other than the “mixing in” of the uniform distribution,
the algorithm for both players is simply the Optimistic Mirror Descent with the (negative) entropy
function. In fact, the step of mixing in the uniform distribution is only needed when some coordinate
of gt (resp., yt) is smaller than 1/(nT ). Furthermore, this step is also not needed if none of the
players deviate from the prescribed method. In such a case, the resulting algorithm is simply the
constant step-size Exponential Weights ft(i) ∝ exp{−η∑

t−2
s=1[Axs−1]i + 2η[Axt−1]i}, but with a

factor 2 in front of the latest loss vector!
Proposition 6. Let A ∈ [−1,1]n×m, F = ∆n, X = ∆m. If both players use above algorithm with,
respectively, M1

t = Axt−1 and M2
t = f

T
t−1A, and the adaptive step sizes

ηt = min{log(nT ) (

√

∑
t−1
i=1 ∥Axi −Axi−1∥

2
∗ +

√

∑
t−2
i=1 ∥Axi −Axi−1∥

2
∗)

−1

, 1
11

}

and

η′t = min{log(mT ) (

√

∑
t−1
i=1 ∥fT

i A − fT

i−1A∥
2

∗ +
√

∑
t−2
i=1 ∥fT

i A − fT

i−1A∥
2

∗)
−1

, 1
11

}

respectively, then the pair (f̄T , x̄T ) is an O (
logm+logn+logT

T
)-approximate minimax equilibrium.

Furthermore, if only one player (say, Player I) follows the above algorithm, her regret against any
sequence x1, . . . , xT of plays is

O
⎛
⎜
⎝

log(nT )

T

⎛
⎜
⎝

¿
Á
ÁÀ

T

∑
t=1

∥Axt −Axt−1∥
2
∗ + 1

⎞
⎟
⎠

⎞
⎟
⎠
. (9)
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In particular, this implies the worst-case regret of O (
log(nT )√

T
) in the general setting of online linear

optimization.

We remark that (9) can give intermediate rates for regret in the case that the second player deviates
from the prescribed strategy but produces “stable” moves. For instance, if the second player follows
a mirror descent algorithm (or Follow the Regularized Leader / Exponential Weights method) with
step size η, one can typically show stability ∥xt − xt−1∥ = O(η). In this case, (9) yields the rate
O (

η logT√
T

) for the first player. A typical setting of η = O(T −1/2) for the second player still ensures
the O(logT /T ) regret for the first player.

Let us finish with a technical remark. The reason for the extra step of “mixing in” the uniform
distribution stems from the goal of having an adaptive method that still attains O(T −1/2) regret
if the other player deviated from using the algorithm. If one is only interested in the dynamics
when both players cooperate, this step is not necessary, and in this case the extraneous logT factor
disappears from the above bound, leading to the O (

logn+logm
T

) convergence. On the technical side,
the need for the extra step is the following. The adaptive step size result of Corollary 2 involves
the term R2

max = supgDR1(f
∗, g) which is potentially infinite for the negative entropy function

R1. It is possible that the doubling trick or the analysis of Auer et al [2] (who encountered the
same problem for the Exponential Weights algorithm) can remove the extra logT factor while still
preserving the regret minimization property. Finally, Rmax is small for the p-norm functionR1, and
so the use of this regularizer avoids the extraneous logarithmic in T factor while still preserving the
logarithmic dependence on n and m. However, projection onto simplex under the p-norm is not as
elegant as the Exponential Weights update.

4.2 Partial Information

We now turn to the partial (or, zero-th order) information model. Recall that the matrix A is not
known to the players, yet we are interested in finding ε-optimal minimax strategies. On each round,
the two players choose mixed strategies ft ∈ ∆n and xt ∈ ∆m, respectively, and observe fT

tAx. Now
the question is, how many such observations do we need to get to an ε-optimal minimax strategy?
Can this be done while still ensuring the usual no-regret rate?

The specific setting we consider below requires that on each round t, the two players play four
times, and that these four plays are δ-close to each other (that is, ∥f it −f

j
t ∥1 ≤ δ for i, j ∈ {1, . . . ,4}).

Interestingly, up to logarithmic factors, the fast rate of the previous section is possible even in this
scenario, yet we do require the knowledge of the number of actions of the opposing player (or, an
upper bound on this number). We leave it as an open problem the question of whether one can attain
the 1/T -type rate with only one play per round.

Player I
u1, . . . , un−1 : orthonormal basis of ∆n

Initialize g1, f1 = (
1
n
, . . . , 1

n
)

Draw i0 ∼ Unif([n − 1])
At time t = 1 to T

Play ft
Draw it ∼ Unif([n − 1])
Observe :
r+t = (ft + δuit−1)

⊺Axt
r−t = (ft − δuit−1)

⊺Axt
r̄+t = (ft + δuit)

⊺Axt
r̄−t = (ft − δuit)

⊺Axt
Build estimates :
ât =

n
2δ

(r+t − r
−

t )uit−1
āt =

n
2δ

(r̄+t − r̄
−

t )uit
Update :
gt(i)∝ g′t−1(i) exp{−ηtât(i)}
g′t = (1 − 1

T2 ) gt +
1
nT2

ft+1(i)∝ g′t(i) exp{−ηt+1āt(i)}
End

Player II
v1, . . . , vm−1 : orthonormal basis of ∆m

Initialize y1, x1 = (
1
m
, . . . , 1

m
)

Draw j0 ∼ Unif([m − 1])
At time t = 1 to T

Play xt
Draw jt ∼ Unif([m − 1])
Observe :
s+t = −f

⊺

t A(xt + δvjt−1)
s−t = −f

⊺

t A(xt − δvjt−1)
s̄+t = −f

⊺

t A(xt + δvjt)
s̄−t = −f

⊺

t A(xt − δvjt)
Build estimates :
b̂t =

m
2δ

(s+t − s
−

t ) vjt−1
b̄t =

m
2δ

(s̄+t − s̄
−

t ) vjt
Update :
yt(i)∝ y′t−1(i) exp{−η′tb̂t(i)}
y′t = (1 − 1

T2 ) yt +
1
nT2

xt+1(i)∝ y′t(i) exp{−η′t+1b̄t(i)}
End
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Lemma 7. Let A ∈ [−1,1]n×m, F = ∆n, X = ∆m, and let δ be small enough (e.g. exponentially
small in m,n,T ). If both players use above algorithms with the adaptive step sizes

ηt = min{
√

log(nT )

√
∑t−1i=1∥âi−āi−1∥

2
∗
−
√
∑t−2i=1∥âi−āi−1∥

2
∗

∥ât−1−āt−2∥2∗
, 1

28m
√

log(mT )
}

and

η′t = min

⎧⎪⎪
⎨
⎪⎪⎩

√
log(mT )

√
∑t−1i=1∥b̂i−b̄i−1∥

2

∗

−
√
∑t−2i=1∥b̂i−b̄i−1∥

2

∗

∥b̂t−1−b̄t−2∥
2

∗

, 1

28n
√

log(nT )

⎫⎪⎪
⎬
⎪⎪⎭

respectively, then the pair (f̄T , x̄T ) is an

O
⎛
⎜
⎝

(m log(nT )
√

log(mT ) + n log(mT )
√

log(nT ))

T

⎞
⎟
⎠

-approximate minimax equilibrium. Furthermore, if only one player (say, Player I) follows the above
algorithm, her (averaged over T ) regret against any sequence x1, . . . , xT of plays is bounded by

O
⎛
⎜
⎝

m
√

log(mT ) log(nT ) + n
√

log(nT )∑
T
t=1 ∥xt − xt−1∥

2

T

⎞
⎟
⎠

We leave it as an open problem to provide an algorithm that attains the 1/T -type rate when both
players only observe the value eTiAej = Ai,j upon drawing pure actions i, j from their respective
mixed strategies ft, xt. We hypothesize a rate better than T −1/2 is not possible in this scenario.

5 Approximate Smooth Convex Programming

In this section we show how one can use the structured optimization results from Section 3 for
approximate convex programming problems. Specifically consider the optimization problem,

argmax
f∈G

c⊺f (10)

s.t. ∀i ∈ [d], Gi(f) ≤ 1

where G is a convex set and each Gi is an H-smooth convex function. Assume that the optimal
value of the above optimization problem is given by F ∗ > 0. Without loss of generality we assume
F ∗ is known (one typically performs binary search if it is not known). Define the sets F = {f ∶

f ∈ G, c⊺f = F ∗} and X = ∆d. Now note that the convex programming problem in (10) can be
reformulated as the alternative optimization problem of ,

argmin
f∈F

max
i∈[d]

Gi(f) = argmin
f∈F

sup
x∈X

d

∑
i=1

x[i]Gi(f) . (11)

Observe that it is of the saddle-point form studied earlier in the paper in Section 3. We may think of
the first player as aiming to minimize the above expression over F (and thus satisfy the constraints),
while the second player maximizes over a mixture of constraints over ∆d.
Lemma 8. Assume there exists f0 ∈ G such that c⊺f0 ≥ 0 and for every i ∈ [d], Gi(f0) ≤ 1 − γ. Fix
ε > 0 and consider the solution

f̂T = (1 − α)f̄T + αf0

where α = ε
ε+γ and f̄T = 1

T ∑
T
t=1 ft ∈ F is the average of the trajectory returned by employing

the optimization procedure as in Lemma 4 to the optimization problem specified in Eq. (11) with

R1(⋅) = 1
2
∥⋅∥

2
2, R2 the entropy function, η = 1

η′
=

∥f∗−g0∥2
H

√
log d

M1
t = ∑

d
i=1 yt−1[i]∇Gi(gt−1) and

M2
t = (G1(gt−1), . . . ,Gd(ft)). Let number of iterations T be such that

T >
4H ∥f∗ − g0∥2

√
log d

ε

7



where g0 ∈ F is some initialization and f∗ ∈ F is the (unknown) solution to the optimization
problem. We have that f̂T ∈ G satisfies all d constraints and is ε

γ
-approximate, that is

c⊺f̂T ≥ (1 −
ε

γ
)F ∗

The above lemma tells us that using the predictable sequences for the two players approach, one can
obtain an ε

γ
approximate solution to smooth convex programming problem in number of iterations at

most order 1/ε. If T1 is the time complexity for single update of the predictable sequence algorithm
of Player I and T2 is the time complexity for single update of the predictable sequence algorithm of
Player II then we can conclude that the time complexity of the overall procedure is O (

(T1+T2)
ε

)

5.1 Application to Max-Flow

We now apply the result to the problem of finding max-flow between a source and a sink in a net-
work. Specifically consider the max-flow problem on a network where each edge has capacity 1 (the
method can easily be extended to varying capacity on each edge). The max flow problem consists of
finding the maximal flow between a source and sink in the network such that the capacity constraint
on each edge is satisfied. Let us consider the case when the number of edges d in the network is the
same order as number of vertices in the network. The max-flow problem can be considered as an
instance of a convex (linear) programming problem. We therefore apply the proposed algorithm for
structured optimization to obtain an approximate solution to this problem.

In the max-flow problem G is given by a set of linear equalities and so is F . Further, if we use
Euclidean norm squared as regularizer for flow player, then projection step can be performed O(d)
time using conjugate gradient method. This is because we are simply minimizing Euclidean norm
squared subject to equality constraints which is well conditioned. Hence T1 = O(d). Similarly the
Exponential Weights update also has time complexity O(d) as there are order d constraints, and
so overall time complexity to produce ε approximate solution is given by O(nd), where n is the
number of iterations of the proposed procedure. Specifically we shall assume that we know the
value of the maximum flow F ∗ (if not we can use binary search to obtain it) and knowing this we
have the following corollary.
Corollary 9. Applying the procedure for smooth convex programming from Lemma 8 to the max-
flow problem with f0 = 0 ∈ G the 0 flow, we can conclude that the time complexity to compute an
ε-approximate max-flow is bounded by

O (
d3/2√log d

ε
)

This time complexity matches the known result from [6], but with a much simpler procedure (gradi-
ent descent for the flow player and Exponential Weights for the constraints). It would be interesting
to see whether the techniques presented here can be used to improve the dependence on d to d4/3

or better while maintaining the 1/ε dependence. While the result of [? ] has the improved d4/3

dependence, the complexity in terms of ε is much worse.

6 Discussion

We close this paper with a discussion. As we showed, the notion of using extra information about the
sequence is a powerful tool with applications in optimization, convex programming, game theory, to
name a few. All the applications considered in this paper, however, used some notion of smoothness
for constructing the predictable process Mt. An interesting direction of further research is to isolate
more general conditions under which the next gradient is predictable, perhaps even when the func-
tions are not smooth in any sense. For instance one could use techniques from bundle methods to
further restrict the set of possible gradients the function being optimized can have at various points
in the feasible set. This could then be used to solve for the right predictable sequence to use so as
to optimize the bounds. Using this notion of selecting predictable sequences one can hope to derive
adaptive optimization procedures that in practice can provide rapid convergence.
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Proofs

Proof of Lemma 1. For any f∗ ∈ F ,
⟨ft − f

∗,∇t⟩ = ⟨ft − gt,∇t −Mt⟩ + ⟨ft − gt,Mt⟩ + ⟨gt − f
∗,∇t⟩ (12)

First observe that
⟨ft − gt,∇t −Mt⟩ ≤ ∥ft − gt∥ ∥∇t −Mt∥∗ . (13)

Any update of the form a∗ = arg mina∈A ⟨a, x⟩ +DR(a, c) satisfies for any d ∈ A
⟨a∗ − d, x⟩ ≤DR(d, c) −DR(d, a∗) −DR(a∗, c) . (14)

This yields

⟨ft − gt,Mt⟩ ≤
1

η
(DR(gt, gt−1) −DR(gt, ft) −DR(ft, gt−1)) (15)

and

⟨gt − f
∗,∇t⟩ ≤

1

η
(DR(f∗, gt−1) −DR(f∗, gt) −DR(gt, gt−1)) . (16)

Combining, ⟨ft − f∗,∇t⟩ is upper bounded by

∥∇t −Mt∥∗ ∥ft − gt∥ +
1

η
(DR(gt, gt−1) −DR(gt, ft) −DR(ft, gt−1))

+
1

η
(DR(f∗, gt−1) −DR(f∗, gt) −DR(gt, gt−1)))

= ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

η
(DR(f∗, gt−1) −DR(f∗, gt) −DR(gt, ft) −DR(ft, gt−1))

≤ ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

η
(DR(f∗, gt−1) −DR(f∗, gt) −

1

2
∥gt − ft∥

2
−

1

2
∥gt−1 − ft∥

2
) (17)

where in the last step we used strong convexity: for any f, f ′, DR(f, f ′) ≥ 1
2
∥f − f ′∥

2. Summing
over t = 1, . . . , T yields, for any f∗ ∈ F ,
T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤ η

−1DR(f∗, g0) +
T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥ −
1

2η

T

∑
t=1

(∥gt − ft∥
2
+ ∥gt−1 − ft∥

2
) .

Appealing to convexity of Gt’s completes the proof.

Proof of Corollary 2. Let us re-work the proof of Lemma 1 for the case of a changing ηt. Eq. (15)
and (16) are now replaced by

⟨ft − gt,Mt⟩ ≤
1

ηt
(DR(gt, gt−1) −DR(gt, ft) −DR(ft, gt−1)) (18)

and

⟨gt − f
∗,∇t⟩ ≤

1

ηt
(DR(f∗, gt−1) −DR(f∗, gt) −DR(gt, gt−1)) . (19)

The upper bound of Eq. (17) becomes

∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR(f∗, gt−1) −DR(f∗, gt) −

1

2
∥gt − ft∥

2
−

1

2
∥gt−1 − ft∥

2
) .

Summing over t = 1, . . . , T yields, for any f∗ ∈ F ,
T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤ η

−1
1 DR(f∗, g0) +

T

∑
t=2

DR(f∗, gt−1) (
1

ηt
−

1

ηt−1
) +

T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥

−
T

∑
t=1

1

2ηt
(∥gt − ft∥

2
+ ∥gt−1 − ft∥

2
)

≤ (η−1
1 + η−1

T )R2
max +

T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥gt−1 − ft∥

2
)

(20)
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Observe that

ηt = Rmax min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
√

∑
t−1
i=1 ∥∇i −Mi∥

2
∗ +

√

∑
t−2
i=1 ∥∇i −Mi∥

2
∗

,1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(21)

= Rmax min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

√

∑
t−1
i=1 ∥∇i −Mi∥

2
∗ −

√

∑
t−2
i=1 ∥∇i −Mi∥

2
∗

∥∇t−1 −Mt−1∥
2
∗

,1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(22)

From (21),

η−1
t ≤ R−1

max max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2

¿
Á
ÁÀ

t−1

∑
i=1

∥∇i −Mi∥
2
∗,1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Using this step size in Equation (20) and defining η1 = 1, ∑Tt=1 ⟨ft − f
∗,∇t⟩ is upper bounded by

Rmax

⎛
⎜
⎝

2

¿
Á
ÁÀ

T−1

∑
t=1

∥∇t −Mt∥
2
∗ + 2

⎞
⎟
⎠
+

T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥gt−1 − ft∥

2
)

≤ Rmax

⎛
⎜
⎝

2

¿
Á
ÁÀ

T−1

∑
t=1

∥∇t −Mt∥
2
∗ + 2

⎞
⎟
⎠
+

1

2

T

∑
t=1

ηt+1 ∥∇t −Mt∥
2
∗ +

1

2

T

∑
t=1

η−1
t+1 ∥ft − gt∥

2
−

1

2

T

∑
t=1

η−1
t ∥gt − ft∥

2

where we used (3) with ρ = ηt+1 and dropped one of the positive terms. The last two terms can be
upper bounded as

1

2

T

∑
t=1

η−1
t+1 ∥ft − gt∥

2
−

1

2

T

∑
t=1

η−1
t ∥gt − ft∥

2
≤
R2

max

2

T

∑
t=1

(η−1
t+1 − η

−1
t ) ≤

R2
max

2
η−1
T+1,

yielding an upper bound

Rmax

⎛
⎜
⎝

2

¿
Á
ÁÀ

T

∑
t=1

∥∇t −Mt∥
2
∗ + 2

⎞
⎟
⎠
+

1

2

T

∑
t=1

ηt+1 ∥∇t −Mt∥
2
∗ +

R2
max

2
η−1
T+1

≤ 3Rmax

⎛
⎜
⎝

¿
Á
ÁÀ

T

∑
t=1

∥∇t −Mt∥
2
∗ + 1

⎞
⎟
⎠
+

1

2

T

∑
t=1

ηt+1 ∥∇t −Mt∥
2
∗ .

In view of (21), we arrive at

3Rmax

⎛
⎜
⎝

¿
Á
ÁÀ

T

∑
t=1

∥∇t −Mt∥
2
∗ + 1

⎞
⎟
⎠
+
Rmax

2

T

∑
t=1

⎛
⎜
⎝

¿
Á
ÁÀ

t

∑
i=1

∥∇i −Mi∥
2
∗ −

¿
Á
ÁÀ

t−1

∑
i=1

∥∇i −Mi∥
2
∗

⎞
⎟
⎠

≤ 3Rmax

⎛
⎜
⎝

¿
Á
ÁÀ

T

∑
t=1

∥∇t −Mt∥
2
∗ + 1

⎞
⎟
⎠
+
Rmax

2

¿
Á
ÁÀ

T

∑
i=1

∥∇i −Mi∥
2
∗

≤ 3.5 Rmax

⎛
⎜
⎝

¿
Á
ÁÀ

T

∑
t=1

∥∇t −Mt∥
2
∗ + 1

⎞
⎟
⎠

Proof of Lemma 3. Let ∇t = ∇G(ft) and Mt = ∇G(gt−1). Then by Lemma 1 and by Hölder
smoothness,

T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤

R2

η
+H

T

∑
t=1

∥gt − ft∥
1+α

−
1

2η

T

∑
t=1

∥gt − ft∥
2
. (23)
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We can re-write the middle term in the upper bound as

H
T

∑
t=1

∥gt − ft∥
1+α

=
T

∑
t=1

H ((1 + α)η)
1+α
2

⎛

⎝

∥gt − ft∥
√

(1 + α)η

⎞

⎠

1+α

≤ (
T

∑
t=1

H
2

1−α ((1 + α)η)
1+α
1−α )

1−α
2

(
T

∑
t=1

∥gt − ft∥
2

(1 + α)η
)

1+α
2

by Hölder’s inequality with conjugate powers 1/p = (1 − α)/2 and 1/q = (1 + α)/2. We further
upper bound the last term using AM-GM inequality as

1 − α

2
(TH

2
1−α (1 + α)

1+α
1−α η

1+α
1−α ) +

1

2η

T

∑
t=1

∥gt − ft∥
2
.

Plugging into (23),
T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤

R2

η
+

1 − α

2
(TH

2
1−α (1 + α)

1+α
1−α η

1+α
1−α ) .

Setting η = R1−αH−1(1 + α)−
1+α
2 (1 − α)−

1−α
2 T −

1−α
2 yields an upper bound of

T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤HR

1+α
(1 + α)

1+α
2 (1 − α)

1−α
2 T

1−α
2 ≤ 8HR1+αT

1−α
2 .

Proof of Corollary 5. Using Lemma 4,

sup
x∈X

φ(
1

T

T

∑
t=1

ft, x) − inf
f∈F

sup
x∈X

φ(f, x)

≤
R2

1

η
+
η

2

T

∑
t=1

∥∇fφ(ft, xt) −∇fφ(gt−1, yt−1)∥
2
F∗ −

1

2η

T

∑
t=1

∥gt−1 − ft∥
2
F

+
R2

2

η′
+
η′

2

T

∑
t=1

∥∇xφ(ft, xt) −∇xφ(gt−1, yt−1)∥
2
X∗ −

1

2η′

T

∑
t=1

∥yt−1 − xt∥
2
X

Using ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 and the smoothness assumption yields

η

2

T

∑
t=1

∥∇fφ(ft, xt) −∇fφ(gt−1, yt−1)∥
2
F∗

≤ η
T

∑
t=1

∥∇fφ(ft, xt) −∇fφ(gt−1, xt)∥
2
F∗ + η

T

∑
t=1

∥∇fφ(gt−1, xt) −∇fφ(gt−1, yt−1)∥
2
F∗

≤ ηH2
1

T

∑
t=1

∥ft − gt−1∥
2α
F + ηH2

2

T

∑
t=1

∥xt − yt−1∥
2α′

X

and similarly

η′

2

T

∑
t=1

∥∇xφ(ft, xt) −∇xφ(gt−1, yt−1)∥
2
X∗

≤ η′
T

∑
t=1

∥∇xφ(ft, xt) −∇xφ(ft, yt−1)∥
2
X∗ + η′

T

∑
t=1

∥∇xφ(ft, yt−1) −∇xφ(gt−1, yt−1)∥
2
X∗

≤ η′H2
3

T

∑
t=1

∥xt − yt−1∥
2β′

X + η′H2
4

T

∑
t=1

∥ft − gt−1∥
2β
F .

Combining, we get the upper bound of

R2
1

η
+

T

∑
t=1

(4αη)αηH2
1 (

∥ft − gt−1∥F
√

4αη
)

2α

+
T

∑
t=1

(4α′η′)α
′

ηH2
2 (

∥xt − yt−1∥X
√

4α′η′
)

2α′

−
1

2η

T

∑
t=1

∥gt−1 − ft∥
2
F

+
R2

2

η′
+

T

∑
t=1

(4β′η′)β
′

η′H2
3 (

∥xt − yt−1∥X
√

4β′η′
)

2β′

+
T

∑
t=1

(4βη)βη′H2
4 (

∥ft − gt−1∥F
√

4βη
)

2β

−
1

2η′

T

∑
t=1

∥yt−1 − xt∥
2
X
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As in the proof of Lemma 3, we use Hölder inequality to further upper bound by

R2
1

η
+
R2

2

η′
−

1

2η

T

∑
t=1

∥gt−1 − ft∥
2
F −

1

2η′

T

∑
t=1

∥yt−1 − xt∥
2
X (24)

+ (T (4αη)
α

1−α η
1

1−αH
2

1−α

1 )
1−α

(
T

∑
t=1

∥ft − gt−1∥
2
F

4αη
)

α

+ (T (4α′η′)
α′

1−α′ η
1

1−α′H
2

1−α′

2 )
1−α′

(
T

∑
t=1

∥xt − yt−1∥
2
X

4α′η′
)

α′

+ (T (4β′η′)
β′

1−β′ η′
1

1−β′H
2

1−β′

3 )

1−β′

(
T

∑
t=1

∥xt − yt−1∥
2
X

4β′η′
)

β′

+ (T (4βη)
β

1−β η′
1

1−βH
2

1−β

4 )
1−β

(
T

∑
t=1

∥ft − gt−1∥
2
F

4βη
)

β

≤
R2

1

η
+
R2

2

η′
+ ((1 − α)(4αη)

α
1−α η

1
1−αH

2
1−α

1 )T + ((1 − α′)(4α′η′)
α′

1−α′ η
1

1−α′H
2

1−α′

2 )T

+ ((1 − β′)(4β′η′)
β′

1−β′ η′
1

1−β′H
2

1−β′

3 )T + ((1 − β)(4βη)
β

1−β η′
1

1−βH
2

1−β

4 )T

Setting η = η′ we get an upper bound of

R2
1 +R

2
2

η
+ ((1 − α)(4α)

α
1−α η

1+α
1−αH

2
1−α

1 )T + ((1 − α′)(4α′)
α′

1−α′ η
1+α′

1−α′H
2

1−α′

2 )T

+ ((1 − β′)(4β′)
β′

1−β′ η
1+β′

1−β′H
2

1−β′

3 )T + ((1 − β)(4β)
β

1−β η
1+β
1−βH

2
1−β

4 )T

≤
R2

1 +R
2
2

η
+ ((1 − α)(α)

α
1−α η

1+α
1−α (2H1)

2
1−α )T + ((1 − α′)(α′)

α′

1−α′ η
1+α′

1−α′ (2H2)
2

1−α′ )T

+ ((1 − β′)(β′)
β′

1−β′ η
1+β′

1−β′ (2H3)
2

1−β′ )T + ((1 − β)(β)
β

1−β η
1+β
1−β (2H4)

2
1−β )T

≤
R2

1 +R
2
2

η
+ (η

1+α
1−α (2H1)

2
1−α )T + (η

1+α′

1−α′ (2H2)
2

1−α′ )T

+ (η
1+β′

1−β′ (2H3)
2

1−β′ )T + (η
1+β
1−β (2H4)

2
1−β )T

≤
R2

1 +R
2
2

η
+ (2Hη)

1+γ
1−γHT

Finally picking step size as η = (R2
1 +R

2
2)

1−γ
2 (2H)−1 (T

2
)
γ−1
2 we conclude that

sup
x∈X

φ(
1

T

T

∑
t=1

ft, x) − inf
f∈F

sup
x∈X

φ(f, x) ≤
4H(R2

1 +R
2
2)

1+γ
2

T
1+γ
2

(25)

Proof of Proposition 6. Let R1(f) = ∑
n
i=1 f(i) ln f(i) and, respectively, R2(x) =

∑
m
i=1 x(i) lnx(i). These functions are strongly convex with respect to ∥ ⋅ ∥1 norm on the re-

spective flat simplex. We first upper bound regret of Player I, writing ∇t as a generic observation
vector, later to be chosen as Axt, and Mt as a generic predictable sequence, later chosen to be
Axt−1. Observe that ∥g′t − gt∥1 ≤ 1/T . Then

⟨ft − f
∗,∇t⟩ = ⟨ft − gt,∇t −Mt⟩ + ⟨ft − gt,Mt⟩ + ⟨gt − f

∗,∇t⟩

By the update rule,

⟨ft − gt,Mt⟩ ≤
1

ηt
(DR1(gt, g

′
t−1) −DR1(gt, ft) −DR1(ft, g

′
t−1))

and, assuming ∥∇t∥∞ ≤ 1,

⟨gt − f
∗,∇t⟩ ≤

1

ηt
(DR1(f

∗, g′t−1) −DR1(f
∗, gt) −DR1(gt, g

′
t−1))

13



We conclude that ⟨ft − f∗,∇t⟩ is upper bounded by

∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR1(gt, g

′
t−1) −DR1(gt, ft) −DR1(ft, g

′
t−1))

+
1

ηt
(DR1(f

∗, g′t−1) −DR1(f
∗, gt) −DR1(gt, g

′
t−1)))

= ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR1

(f∗, g′t−1) −DR1(f
∗, gt) −DR1(gt, ft) −DR1(ft, g

′
t−1))

≤ ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR1(f

∗, g′t−1) −DR1(f
∗, gt) −

1

2
∥gt − ft∥

2
−

1

2
∥g′t−1 − ft∥

2
)

= ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR1(f

∗, g′t−1) −DR1(f
∗, g′t) −

1

2
∥gt − ft∥

2
−

1

2
∥g′t−1 − ft∥

2
)

+
1

ηt
(DR1(f

∗, g′t) −DR1(f
∗, gt))

= ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR1(f

∗, g′t−1) −DR1(f
∗, g′t) −

1

2
∥gt − ft∥

2
−

1

2
∥g′t−1 − ft∥

2
)

+
1

ηt
(DR1(f

∗, g′t) −DR1(f
∗, gt))

= ∥∇t −Mt∥∗ ∥ft − gt∥ +
1

ηt
(DR1(f

∗, g′t−1) −DR1(f
∗, g′t) −

1

2
∥gt − ft∥

2
−

1

2
∥g′t−1 − ft∥

2
)

+
1

ηt
ln
gt(i

∗)

g′t(i
∗)
.

Now let us bound the term 1
ηt

ln gt(i∗)
g′t(i∗)

. First note that whenever g′t(i
∗) ≥ gt(i

∗) then the term is

negative. Since g′t(i
∗) = (1 − 1/T 2)gt(i

∗) + 1/nT 2 we see that whenever gt(i∗) ≤ 1/n this term is
negative. On the other hand, for gt(i∗) > 1/n we can bound

ln
gt(i

∗)

g′t(i
∗)

= ln
gt(i)

(1 − 1/T 2)gt(i) + 1/(nT 2)
≤

2

T 2
,

Using the above in the bound on ⟨ft − f
∗,∇t⟩ and summing over t = 1, . . . , T , and using the fact

that the step size are non-increasing, we conclude that
T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤ η

−1
1 DR1(f

∗, g0) +
T

∑
t=2

DR1(f
∗, g′t−1) (

1

ηt
−

1

ηt−1
) +

T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥

−
T

∑
t=1

1

2ηt
(∥gt − ft∥

2
+ ∥g′t−1 − ft∥

2
) +

2

T 2

T

∑
t=1

1

ηt

≤ (η−1
1 + η−1

T )R2
1,max +

T

∑
t=1

∥∇t −Mt∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥g′t−1 − ft∥

2
)

+
2

T 2

T

∑
t=1

1

ηt
. (26)

where i∗ is the coordinate on which f∗ is 1 (the best action in hind-sight) and R2
1,max is an upper

bound on the largest KL divergence between f∗ and any g′ that has all coordinates at least 1/(nT 2).
Since f∗ is a vertex of the flat simplex, we may take R2

1,max ≜ log(nT 2). Also note that 1/ηt ≤
√
T

and so 2
T 2 ∑

T
t=1

1
ηt

≤ 1
T 1/2 ≤ 1. Hence we conclude that for our matrix game, from the above result,

bound on regret of Player I is given by,
T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤ (η−1

1 + η−1
T )R2

1,max +
T

∑
t=1

∥Axt −Axt−1∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t (∥g′t − ft∥

2
+ ∥g′t−1 − ft∥

2
) + 1

(27)
Observe that

ηt = min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

R2
1,max

√

∑
t−1
i=1 ∥Axi −Axi−1∥

2
∗ −

√

∑
t−2
i=1 ∥Axi −Axi−1∥

2
∗

∥Axt−1 −Axt−2∥
2
∗

,
1

11

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

14



and
11 ≤ η−1

t ≤ max{2R−2
1,max

√

∑
t−1
i=1 ∥Axi −Axi−1∥

2
∗,11}

With this, the upper bound on Player I’s unnormalized regret is

1 + 22R2
1,max + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

T

∑
t=1

∥Axt −Axt−1∥∗ ∥gt − ft∥ −
11

2

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
)

Adding the regret of the second player who uses step size η′t, the overall bound on the suboptimality,
as in Eq.(6), is

2 + 22R2
1,max + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

T

∑
t=1

∥Axt −Axt−1∥∗ ∥gt − ft∥

+ 22R2
2,max + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥fT
tA − fT

t−1A∥
2
∗ +

T

∑
t=1

∥fT

tA − fT

t−1A∥∗ ∥yt − xt∥

−
11

2

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
) −

11

2

T

∑
t=1

(∥yt − xt∥
2
+ ∥y′t−1 − xt∥

2
)

By over-bounding with
√
c ≤ c + 1 for c ≥ 0, we obtain an upper bound

T

∑
t=1

⟨ft − f
∗,∇t⟩ ≤ 6 + 22R2

1,max +
T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

T

∑
t=1

∥Axt −Axt−1∥∗ ∥g
′
t − ft∥

+ 22R2
2,max +

T−1

∑
t=1

∥fT

tA − fT

t−1A∥
2
∗ +

T

∑
t=1

∥fT

tA − fT

t−1A∥∗ ∥y
′
t − xt∥

−
11

2

T

∑
t=1

(∥g′t − ft∥
2
+ ∥g′t−1 − ft∥

2
) −

11

2

T

∑
t=1

(∥y′t − xt∥
2
+ ∥y′t−1 − xt∥

2
)

≤ 6 + 22R2
1,max +

5

2

T

∑
t=1

∥Axt −Axt−1∥
2
∗ +

1

2

T

∑
t=1

∥gt − ft∥
2

+ 22R2
2,max +

5

2

T

∑
t=1

∥fT

tA − fT

t−1A∥
2
∗ +

1

2

T

∑
t=1

∥yt − xt∥
2

−
11

2

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
) −

11

2

T

∑
t=1

(∥yt − xt∥
2
+ ∥y′t−1 − xt∥

2
)

Since each entry of the matrix is bounded by 1,

∥Axt −Axt−1∥
2
∗ ≤ ∥xt − xt−1∥

2
≤ 2 ∥xt − y

′
t−1∥

2
+ 2 ∥xt−1 − y

′
t−1∥

2

and similar inequality holds for the other player too. This leads to an upper bound of

6 + 22R2
1,max + 22R2

2,max +
1

2

T

∑
t=1

∥yt − xt∥
2
+

1

2

T

∑
t=1

∥gt − ft∥
2

+ 5
T

∑
t=1

(∥g′t − ft∥
2
+ ∥g′t−1 − ft∥

2
) + 5

T

∑
t=1

(∥y′t − xt∥
2
+ ∥y′t−1 − xt∥

2
)

−
11

2

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
) −

11

2

T

∑
t=1

(∥yt − xt∥
2
+ ∥y′t−1 − xt∥

2
)

≤ 6 + 22R2
1,max + 22R2

2,max

+ 5
T

∑
t=1

(∥g′t − ft∥
2
− ∥gt − ft∥

2
) + 5

T

∑
t=1

(∥y′t − xt∥
2
− ∥yt − xt∥

2
) . (28)

Now note that
∥g′t − ft∥

2
− ∥gt − ft∥

2
= (∥g′t − ft∥ + ∥gt − ft∥) (∥g

′
t − ft∥ − ∥gt − ft∥)

≤ (∥g′t − ft∥ + ∥gt − ft∥) (∥g
′
t − g

′
t∥) ≤

4

T 2

15



Similarly we also have that ∥y′t − xt∥
2
− ∥yt − xt∥

2
≤ 4
T 2 . Using these in Eq ?? we conclude that the

overall bound on the suboptimality, as in Eq.(6), is

6 + 22R2
1,max + 22R2

2,max +
40

T
= 6 + 22 log(nT 2

) + 22 log(mT 2
) +

40

T

= 6 + 22 log(nmT 4
) +

40

T
.

This proves the result for the case when both players adhere to the prescribed algorithm. Now,
consider the case when Player I adheres, but we do not make any assumption about Player II. Then,
from Eq. (27) and Eq. (3) with ρ = ηt, the upper bound on, ∑Tt=1 ⟨ft − f

∗,∇t⟩, the unnormalized
regret of Player I’s is

(η−1
1 + η−1

T )R2
1,max + 1 +

T

∑
t=1

∥Axt −Axt−1∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥g′t−1 − ft∥

2
)

≤ 22R2
1,max + 1 + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

T

∑
t=1

∥Axt −Axt−1∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t ∥gt − ft∥

2

≤ 22R2
1,max + 1 + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

1

2

T

∑
t=1

ηt+1 ∥Axt −Axt−1∥
2
∗ +

1

2

T

∑
t=1

(η−1
t+1 − η

−1
t ) ∥gt − ft∥

2

= 22R2
1,max + 1 + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

R2
1,max

2

T

∑
t=1

⎛
⎜
⎝

¿
Á
ÁÀ

t

∑
i=1

∥Axi −Axi−1∥
2
∗ −

¿
Á
ÁÀ

t−1

∑
i=1

∥Axi −Axi−1∥
2
∗

⎞
⎟
⎠

+
1

2

T

∑
t=1

(η−1
t+1 − η

−1
t ) ∥gt − ft∥

2

≤ 22R2
1,max + 1 + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

R2
1,max

2

¿
Á
ÁÀ

T

∑
i=1

∥Axi −Axi−1∥
2
∗ + 2

T

∑
t=1

(η−1
t+1 − η

−1
t )

≤ 22R2
1,max + 1 + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

R2
1,max

2

¿
Á
ÁÀ

T

∑
i=1

∥Axi −Axi−1∥
2
∗ + 4η−1

T+1

≤ 22R2
1,max + 1 + 2

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

R2
1,max

2

¿
Á
ÁÀ

T

∑
i=1

∥Axi −Axi−1∥
2
∗

+ 4 max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2R−2
1,max

¿
Á
ÁÀ

T

∑
i=1

∥Axi −Axi−1∥
2
∗,11

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≤ 22R2
1,max + 45 + 10

¿
Á
ÁÀ

T−1

∑
t=1

∥Axt −Axt−1∥
2
∗ +

R2
1,max

2

¿
Á
ÁÀ

T

∑
i=1

∥Axi −Axi−1∥
2
∗

≤ 22R2
1,max + 45 +

20 +R2
1,max

2

¿
Á
ÁÀ

T

∑
t=1

∥Axt −Axt−1∥
2
∗

concluding the proof.

Proof of Lemma 7. We start with the observation that ât and āt−1 are unbiased estimates of Axt
and Axt−1 respectively. Thats is Eit−1 [ât] = Axt and Eit−1 [āt−1] = Axt−1. Hence we have

E [
T

∑
t=1

f⊺t Axt − inf
f∈∆n

T

∑
t=1

f⊺Axt] ≤ E [
T

∑
t=1

⟨ft, ât⟩ − inf
f∈∆n

T

∑
t=1

⟨f, ât⟩]

Using the predictable sequences result, specifically using the same line of proof as the one used to
arrive at Equation 26 in Proposition 6 we get that the unnormalized regret for Player I can be upper

16



bounded as,

E [
T

∑
t=1

f⊺t Axt − inf
f∈∆n

T

∑
t=1

f⊺Axt]

≤ E [(η−1
1 + η−1

T )R2
1,max + 1 +

T

∑
t=1

∥ât − āt−1∥∗ ∥gt − ft∥ −
1

2

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥g′t−1 − ft∥

2
)]

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

(η−1
1 + η−1

T )R2
1,max + 1 +

T

∑
t=1

ηt+1 ∥ât − āt−1∥
2
∗ +

1

4

T

∑
t=1

η−1
t+1 ∥gt − ft∥

2

−
1

2

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥g′t−1 − ft∥

2
)

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

(η−1
1 + η−1

T )R2
1,max + 1 +

T

∑
t=1

ηt+1 ∥ât − āt−1∥
2
∗ +

T

∑
t=1

(η−1
t+1 − η

−1
t )

−
1

4

T

∑
t=1

η−1
t (∥gt − ft∥

2
+ ∥g′t−1 − ft∥

2
)

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

2R2
1,max(η

−1
1 + η−1

T ) + 1 +
T

∑
t=1

ηt+1 ∥ât − āt−1∥
2
∗ −

1

4

T

∑
t=1

η−1
t (∥g′ t − ft∥

2
+ ∥g′t−1 − ft∥

2
)

⎤
⎥
⎥
⎥
⎥
⎦

Since

ηt = min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

R1,max

√

∑
t−1
i=1 ∥âi − āi−1∥

2
∗ −

√

∑
t−2
i=1 ∥âi − āi−1∥

2
∗

∥ât−1 − āt−2∥
2
∗

,
1

28m R2,max

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

and
28mR2,max ≤ η

−1
t ≤ max{2R−1

1,max

√

∑
t−1
i=1 ∥Axi −Axi−1∥

2
∗,28m R2,max}

With this, the upper bound on Player I’s unnormalized regret is

E [
T

∑
t=1

f⊺t Axt − inf
f∈∆n

T

∑
t=1

f⊺Axt] ≤ 56mR2,maxR
2
1,max + 1 +

7

2
R1,max

¿
Á
ÁÀ

T

∑
t=1

∥ât − āt−1∥
2
∗ (29)

−
28mR2,max

4

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
)

Both players are honest : We first consider the case when both players play the prescribed
algorithm. In this case, a similar regret bound holds for Player II. Adding the regret of the second
player who uses step size η′t, the overall bound on the suboptimality, as in Eq.(6), is

2 + 56R1,maxR2,max (mR1,max + nR2,max) +
7

2
R1,max

¿
Á
ÁÀ

T

∑
t=1

∥ât − āt−1∥
2
∗ +

7

2
R2,max

¿
Á
ÁÀ

T

∑
t=1

∥b̂t − b̄t−1∥
2

∗

− 7mR2,max

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
) − 7nR1,max

T

∑
t=1

(∥yt − xt∥
2
+ ∥y′t−1 − xt∥

2
)

Now note that

∥ât − āt−1∥∗ ≤
n

2δ
∥uit−1∥∗ ∣r

+
t − r

−
t + r̄

−
t − r̄

+
t ∣ =

n

2δ
∥uit−1∥∗ ∣2δu

⊺
it−1

A(xt − xt−1)∣ ≤ n ∣A(xt − xt−1)∣

≤ n ∥xt − xt−1∥

Similarly we have ∥b̂t − b̄t−1∥∗ ≤m ∥ft − ft−1∥. Hence using this, we can bound the sub-optimality
as

2 + 56R1,maxR2,max (mR1,max + nR2,max) +
7

2
nR1,max

¿
Á
ÁÀ

T

∑
t=1

∥xt − xt−1∥
2
+

7

2
mR2,max

¿
Á
ÁÀ

T

∑
t=1

∥ft − ft−1∥
2

− 7mR2,max

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
) − 7nR1,max

T

∑
t=1

(∥yt − xt∥
2
+ ∥y′t−1 − xt∥

2
)
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Using the fact that
√
c2 ≤ c2 + 1 we further bound sub-optimality by

2 + 56R1,maxR2,max (mR1,max + nR2,max) +
7

2
mR2,max +

7

2
nR1,max +

7

2
nR1,max

T

∑
t=1

∥xt − xt−1∥
2

+
7

2
mR2,max

T

∑
t=1

∥ft − ft−1∥
2
− 7mR2,max

T

∑
t=1

(∥gt − ft∥
2
+ ∥g′t−1 − ft∥

2
)

− 7nR1,max

T

∑
t=1

(∥yt − xt∥
2
+ ∥y′t−1 − xt∥

2
)

Now note that
∥xt − xt−1∥

2
≤ 2 ∥xt − y

′
t−1∥

2
+ 2 ∥xt−1 − y

′
t−1∥

2

and similarly
∥ft − ft−1∥

2
≤ 2 ∥ft − g

′
t−1∥

2
+ 2 ∥ft−1 − g

′
t−1∥

2

Hence we can conclude that sub-optimality is bounded by

2 + 56R1,maxR2,max (mR1,max + nR2,max) +
7

2
mR2,max +

7

2
nR1,max

+ 7mR2,max

T

∑
t=1

(∥g′t − ft∥
2
− ∥gt − ft∥

2
) + 7nR1,max

T

∑
t=1

(∥y′t − xt∥
2
− ∥yt − xt∥

2
)

≤ 2 + 56R1,maxR2,max (mR1,max + nR2,max) +
7

2
mR2,max +

7

2
nR1,max

+ 28mR2,max

T

∑
t=1

∥g′t − gt∥ + 28nR1,max

T

∑
t=1

∥y′t − yt∥

≤ 2 + 56R1,maxR2,max (mR1,max + nR2,max) +
7

2
mR2,max +

7

2
nR1,max

+
28(mR2,max + nR1,max)

T

Just as in the proof of Proposition 6 we have R1,max ≤
√

log(nT 2) and R2,max ≤
√

log(mT 2) and
so overall we get the bound on sub-optimality :

2 + 56
√

log(mT 2) log(nT 2) (m
√

log(nT 2) + n
√

log(mT 2)) +
7

2
m

√
log(mT 2) +

7

2
n
√

log(nT 2)

+
28(m

√
log(mT 2) + n

√
log(nT 2))

T

Player II deviates from algorithm : Now let us consider the case when the Player 2 deviates
from the prescribed algorithm. In this case, note that starting from Eq. (29) and simply dropping the
negative term we get,

E [
T

∑
t=1

f⊺t Axt − inf
f∈∆n

T

∑
t=1

f⊺Axt] ≤ 56mR2,maxR
2
1,max + 1 +

7

2
R1,max

¿
Á
ÁÀ

T

∑
t=1

∥ât − āt−1∥
2
∗

As we noted earlier, ∥ât − āt−1∥∗ ≤ n ∥xt − xt−1∥ and so,

E [
T

∑
t=1

f⊺t Axt − inf
f∈∆n

T

∑
t=1

f⊺Axt] ≤ 56mR2,maxR
2
1,max + 1 +

7

2
nR1,max

¿
Á
ÁÀ

T

∑
t=1

∥xt − xt−1∥
2

Further noting that R1,max ≤
√

log(nT ) and R2,max ≤
√

log(mT ) we conclude that

E [
T

∑
t=1

f⊺t Axt − inf
f∈∆n

T

∑
t=1

f⊺Axt] ≤ 56m
√

log(mT ) log(nT ) + 1 +
7

2
n

¿
Á
ÁÀlog(nT )

T

∑
t=1

∥xt − xt−1∥
2

This concludes the proof.
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Proof of Lemma 8. Noting that the constraints are all H-strongly smooth and that the objective
w.r.t. constraint player is linear (weighted average over constraints), we can apply Lemma 4 to the
optimization problem withR1(⋅) =

1
2
∥⋅∥

2
2 andR2 the entropy function to obtain that

max
i∈[d]

Gi(f̄T ) − argmin
f∈F

max
i∈[d]

Gi(f)

≤
∥f∗ − g0∥

2
2

η
+
α

2

T

∑
t=1

∥
d

∑
i=1

xt[i]∇Gi(ft) −
d

∑
i=1

yt−1[i]∇Gi(gt−1)∥
2
2 +

1

2α

T

∑
t=1

∥gt − ft∥
2
2 −

1

2η

T

∑
t=1

(∥gt − ft∥
2
2 + ∥gt−1 − ft∥

2
2)

+
log d

η′
+
β

2

T

∑
t=1

∥G(ft) −G(ft)∥
2
∞ +

1

2β

T

∑
t=1

∥yt − xt∥
2
1 −

1

2η′

T

∑
t=1

(∥yt − xt∥
2
1 + ∥yt−1 − xt∥

2
1)

≤
∥f∗ − g0∥

2
2

η
+
H + 1

2

T

∑
t=1

∥ft − gt−1∥
2
2 −

1

2η

T

∑
t=1

(∥gt − ft∥
2
2 + ∥gt−1 − ft∥

2
2) +

log d

η′

where last step we picked β = η′ and α = 1. Piciking η′ = 1/η appropriately we conclude that

max
i∈[d]

Gi(f̄T ) − argmin
f∈F

max
i∈[d]

Gi(f) ≤
4H(∥f∗ − g0∥2

√
log d)

T

Now since T is such that T ≥
4H(∥f∗−g0∥2

√
log d)

ε
we can conclude that

max
i∈[d]

Gi(f̄T ) − argmin
f∈F

max
i∈[d]

Gi(f) ≤ ε

Observe that for an optimal solution f∗ ∈ G to the original optimization problem (10) we have that
f∗ ∈ F and ∀i,Gi(f∗) ≤ 1. Thus,

max
i∈[d]

Gi (f̄T ) ≤ 1 + ε

Hence, f̄T ∈ F is a solution that attains the optimum value F ∗ and almost satisfies the constraints
(violates by at most ε). Now we have from the lemma statement that f0 ∈ G is such that c⊺f0 ≥ 0
and for every i ∈ [d], Gi(f0) ≤ 1 − γ. Hence by convexity of Gi, we have that for every i ∈ [d],

Gi (αf0 + (1 − α)f̄T ) ≤ αGi(f0) + (1 − α)Gi(f̄T ) ≤ α(1 − γ) + (1 − α)(1 + ε) ≤ 1

Thus for α = ε
ε+γ and f̂T = (1−α)f̄T +αf0 we can conclude that f̂T ∈ G and that all the constraints

are satisfied. That is for every i ∈ [d], Gi(f̂T ) ≤ 1. Also note that

c⊺f̂T = (1 − α)c⊺f̄T + αc
⊺f0 = (1 − α)F ∗

=
γF ∗

ε + γ

and, hence, f̂T is an approximate maximizer, that is

c⊺(f∗ − f̂T ) ≤ F
∗
−
γF ∗

ε + γ
=
F ∗ε + F ∗γ − γF ∗

ε + γ
= ε ( F

∗

ε+γ ) ≤
ε

γ
F ∗

Thus we obtain a (1+ ε
γ
)-optimal solution in the multiplicative sense which concludes the proof.

Proof of Corollary 9. As mentioned, for both players, the time to perform each step of the opti-
mistic mirror descent in the max-flow problem is O(d). Now further note that max-flow is a linear
programming problem and so we are ready tp apply Lemma 8. Specifically for f0 we use the 0 flow
which is in G (though not in F) and note that for f0 we have that γ = 1. Applying Lemma 8 we get
that number of iterations T we need to reach an ε approximate solution is given by

T ≤
4H ∥f∗ − g0∥2

√
log d

ε

Now we can use g0 = argmin
g∈F

∥g∥
2 which can be computed in O(d) time. Now note that

∥f∗ − g0∥2 ≤ ∥f∗∥2 + ∥g0∥2 ≤ 2
√
d. Hence number of iterations is at most

T ≤
8H

√
d log d

ε
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Since each iteration has time complexity O(d), the overall complexity of the algorithm is given by

O (
d3/2√log d

ε
)

this concludes the proof.
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