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Abstract

We show a principled way of deriving online learning algorithms from a minimax
analysis. Various upper bounds on the minimax value, previously thought to be
non-constructive, are shown to yield algorithms. This allows us to seamlessly re-
cover known methods and to derive new ones, also capturing such “unorthodox”
methods as Follow the Perturbed Leader and the R2 forecaster. Understanding
the inherent complexity of the learning problem thus leads to the development of
algorithms. To illustrate our approach, we present several new algorithms, includ-
ing a family of randomized methods that use the idea of a “random playout”. New
versions of the Follow-the-Perturbed-Leader algorithms are presented, as well as
methods based on the Littlestone’s dimension, efficient methods for matrix com-
pletion with trace norm, and algorithms for the problems of transductive learning
and prediction with static experts.

1 Introduction

This paper studies the online learning framework, where the goal of the player is to incur small
regret while observing a sequence of data on which we place no distributional assumptions. Within
this framework, many algorithms have been developed over the past two decades [6]. More recently,
a non-algorithmic minimax approach has been developed to study the inherent complexities of se-
quential problems [2, 1, 14, 19]. It was shown that a theory in parallel to Statistical Learning can be
developed, with random averages, combinatorial parameters, covering numbers, and other measures
of complexity. Just as the classical learning theory is concerned with the study of the supremum of
empirical or Rademacher process, online learning is concerned with the study of the supremum of
martingale processes. While the tools introduced in [14, 16, 15] provide ways of studying the mini-
max value, no algorithms have been exhibited to achieve these non-constructive bounds in general.

In this paper, we show that algorithms can, in fact, be extracted from the minimax analysis. This
observation leads to a unifying view of many of the methods known in the literature, and also gives
a general recipe for developing new algorithms. We show that the potential method, which has
been studied in various forms, naturally arises from the study of the minimax value as a certain
relaxation. We further show that the sequential complexity tools introduced in [14] are, in fact,
relaxations and can be used for constructing algorithms that enjoy the corresponding bounds. By
choosing appropriate relaxations, we recover many known methods, improved variants of some
known methods, and new algorithms. One can view our framework as one for converting a non-
constructive proof of an upper bound on the value of the game into an algorithm. Surprisingly,
this allows us to also study such “unorthodox” methods as Follow the Perturbed Leader [9], and
the recent method of [7] under the same umbrella with others. We show that the idea of a random
playout has a solid theoretical basis, and that Follow the Perturbed Leader algorithm is an example
of such a method. Based on these developments, we exhibit an efficient method for the trace norm
matrix completion problem, novel Follow the Perturbed Leader algorithms, and efficient methods
for the problems of online transductive learning. The framework of this paper gives a recipe for
developing algorithms. Throughout the paper, we stress that the notion of a relaxation, introduced
below, is not appearing out of thin air but rather as an upper bound on the sequential Rademacher
complexity. The understanding of inherent complexity thus leads to the development of algorithms.
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Let us introduce some notation. The sequence x1, . . . , xt is often denoted by x1∶t , and the set of all
distributions on some set A by ∆(A). Unless specified otherwise, ε denotes a vector (ε1, . . . , εT )
of i.i.d. Rademacher random variables. An X -valued tree x of depth d is defined as a sequence
(x1, . . . ,xd) of mappings xt ∶ {±1}t−1 ↦ X (see [14]). We often write xt(ε) instead of xt(ε1∶t−1).

2 Value, The Minimax Algorithm, and Relaxations
Let F be the set of learner’s moves and X the set of moves of Nature. The online protocol dictates
that on every round t = 1, . . . , T the learner and Nature simultaneously choose ft ∈ F , xt ∈ X ,
and observe each other’s actions. The learner aims to minimize regret RegT ≜ ∑Tt=1 `(ft, xt) −
inff∈F ∑Tt=1 `(f, xt) where ` ∶ F × X → R is a known loss function. Our aim is to study this
online learning problem at an abstract level without assuming convexity or other such properties of
`, F and X . We do assume, however, that `, F , and X are such that the minimax theorem in the
space of distributions over F and X holds. By studying the abstract setting, we are able to develop
general algorithmic and non-algorithmic ideas that are common across various application areas.
The starting point of our development is the minimax value of the associated online learning game:

VT (F) = inf
q1∈∆(F)

sup
x1∈X

E
f1∼q1

. . . inf
qT ∈∆(F)

sup
xT ∈X

E
fT ∼qT

[
T

∑
t=1

`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt)] (1)

where ∆(F) is the set of distributions on F . The minimax formulation immediately gives rise to
the optimal algorithm that solves the minimax expression at every round t and returns :

argmin
q∈∆(F)

{sup
xt

E
ft∼q

[`(ft, xt) + inf
qt+1

sup
xt+1

E
ft+1

. . . inf
qT

sup
xT

E
fT

[
T

∑
i=t+1

`(fi, xi) − inf
f∈F

T

∑
i=1

`(f, xi)]]}

Henceforth, if the quantification in inf and sup is omitted, it will be understood that xt, ft, pt, qt
range over X , F , ∆(X ), ∆(F), respectively. Moreover, Ext is with respect to pt while Eft is with
respect to qt. We now notice a recursive form for the value of the game. Define for any t ∈ [T − 1]
and any given prefix x1, . . . , xt ∈ X the conditional value

VT (F ∣x1, . . . , xt) ≜ inf
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] + VT (F ∣x1, . . . , xt, x)}

with VT (F ∣x1, . . . , xT ) ≜ − inff∈F ∑Tt=1 `(f, xt) and VT (F) = VT (F ∣{}). The minimax optimal
algorithm specifying the mixed strategy of the player can be written succinctly as

qt = argmin
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] + VT (F ∣x1, . . . , xt−1, x)} . (2)

Similar recursive formulations have appeared in the literature [12, 18, 3], but now we have
tools to study the conditional value of the game. We will show that various upper bounds on
VT (F ∣x1, . . . , xt−1, x) yield an array of algorithms. In this way, the non-constructive approaches of
[14, 15, 16] to upper bound the value of the game directly translate into algorithms. We note that
the minimax algorithm in (2) can be interpreted as choosing the best decision that takes into account
the present loss and the worst-case future. The first step in our analysis is to appeal to the minimax
theorem and perform the same manipulation as in [1, 14], but only on the conditional values:

VT (F ∣x1, . . . , xt) = sup
pt+1

E
xt+1

. . . sup
pT

E
xT

[
T

∑
i=t+1

inf
fi∈F

E
xi∼pi

`(fi, xi) − inf
f∈F

T

∑
i=1

`(f, xi)] . (3)

The idea now is to come up with more manageable, yet tight, upper bounds on the conditional value.
A relaxation RelT is a sequence of real-valued functions RelT (F ∣x1, . . . , xt) for each t ∈ [T ]. A
relaxation is admissible if for any x1, . . . , xT ∈ X ,

RelT (F ∣x1, . . . , xt) ≥ inf
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] +RelT (F ∣x1, . . . , xt, x)} (4)

for all t ∈ [T − 1], and RelT (F ∣x1, . . . , xT ) ≥ − inff∈F ∑Tt=1 `(f, xt). We use the notation
RelT (F) for RelT (F ∣{}). A strategy q that minimizes the expression in (4) defines an optimal
Meta-Algorithm for an admissible relaxation RelT :

on round t, compute qt = arg min
q∈∆(F)

sup
x∈X

{ E
f∼q

[`(f, x)] +RelT (F ∣x1, . . . , xt−1, x)} , (5)
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play ft ∼ qt and receive xt from the opponent. Importantly, minimization need not be exact: any qt
that satisfies the admissibility condition (4) is a valid method, and we will say that such an algorithm
is admissible with respect to the relaxation RelT .
Proposition 1. Let RelT be an admissible relaxation. For any admissible algorithm with respect
to RelT , (including the Meta-Algorithm), irrespective of the strategy of the adversary,

T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤RelT (F) , (6)

and therefore, E[RegT ] ≤RelT (F) . If `(⋅, ⋅) is bounded, the Hoeffding-Azuma inequality yields a
high-probability bound on RegT . We also have that VT (F) ≤RelT (F) . Further, if for all t ∈ [T ],
the admissible strategies qt are deterministic, RegT ≤RelT (F) .

The reader might recognize RelT as a potential function. It is known that one can derive regret
bounds by coming up with a potential such that the current loss of the player is related to the differ-
ence in the potentials at successive steps, and that the regret can be extracted from the final potential.
The origin/recipe for “good” potential functions has always been a mystery (at least to the authors).
One of the key contributions of this paper is to show that they naturally arise as relaxations on the
conditional value, and the conditional value is itself the tightest possible relaxation. In particular,
for many problems a tight relaxation is achieved through symmetrization applied to the expression
in (3). Define the conditional Sequential Rademacher complexity

RT (F ∣x1, . . . , xt) = sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −
t

∑
s=1

`(f, xs)] . (7)

Here the supremum is over all X -valued binary trees of depth T − t. One may view this complexity
as a partially symmetrized version of the sequential Rademacher complexity

RT (F) ≜RT (F ∣ {}) = sup
x

Eε1∶T sup
f∈F

[2
T

∑
s=1

εs`(f,xs(ε1∶s−1))] (8)

defined in [14]. We shall refer to the term involving the tree x as the “future” and the term being
subtracted off – as the “past”. This indeed corresponds to the fact that the quantity is conditioned on
the already observed x1, . . . , xt, while for the future we have the worst possible binary tree.1

Proposition 2. The conditional Sequential Rademacher complexity is admissible.

We now show that several well-known methods arise as further relaxations on RT .

Exponential Weights [11, 20] Suppose F is a finite class and ∣`(f, x)∣ ≤ 1. In this case, a (tight)
upper bound on sequential Rademacher complexity leads to the following relaxation:

RelT (F ∣x1, . . . , xt) = inf
λ>0

⎧
⎪⎪
⎨
⎪⎪
⎩

1

λ
log

⎛

⎝
∑

f∈F
exp(−λ

t

∑

i=1

`(f, xi))
⎞

⎠

+ 2λ(T − t)

⎫
⎪⎪
⎬
⎪⎪
⎭

(9)

Proposition 3. The relaxation (9) is admissible and RT (F ∣x1, . . . , xt) ≤ RelT (F ∣x1, . . . , xt) .
Furthermore, it leads to a parameter-free version of the Exponential Weights algorithm, defined on
round t + 1 by the mixed strategy qt+1(f) ∝ exp (−λ∗t ∑ts=1 `(f, xs)) with λ∗t the optimal value in
(9). The algorithm’s regret is bounded by RelT (F) ≤ 2

√
2T log ∣F ∣ .

We point out that the exponential-weights algorithm arising from the relaxation (9) is a parameter-
free algorithm. The learning rate λ∗ can be optimized (via 1D line search) at each iteration.

Mirror Descent [4, 13] In the setting of online linear optimization [21], the loss is `(f, x) = ⟨f, x⟩.
Suppose F is a unit ball in some Banach space and X is the dual. Let ∥ ⋅ ∥ be some (2,C)-smooth
norm on X (in the Euclidean case, C = 2). Using the notation x̃t−1 = ∑t−1

s=1 xs, a straightforward
upper bound on sequential Rademacher complexity is the following relaxation:

RelT (F ∣x1, . . . , xt) =
√

∥x̃t−1∥
2
+ ⟨∇

1
2
∥x̃t−1∥

2 , xt⟩ +C(T − t + 1) (10)

1It is cumbersome to write out the indices on xs−t(εt+1∶s−1) in (7), so we will instead use xs(ε) whenever
this doesn’t cause confusion.
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Proposition 4. The relaxation (10) is admissible and RT (F ∣x1, . . . , xt) ≤ RelT (F ∣x1, . . . , xt) .

It yields the update ft =
−∇

1
2
∥x̃t−1∥

2

2
√

∥x̃t−1∥
2+C(T−t+1)

with regret bound RelT (F) ≤
√

2CT .

Note that the algorithms proposed are parameter free as the step size is tuned automatically. We
chose Exponential Weights and Mirror Descent for illustration as these methods are well-known. In
the remainder of the paper, we develop new algorithms to show the universality of our approach.

3 Classification
We start by considering the problem of supervised learning, where X is the space of instances and
Y the space of responses (labels). There are two closely related protocols for the online interaction
between the learner and Nature, so let us outline them. The “proper” version of supervised learning
follows the protocol presented in Section 2: at time t, the learner selects ft ∈ F , Nature simultane-
ously selects (xt, yt) ∈ X ×Y , and the learner suffers the loss `(f(xt), yt). The “improper” version
is as follows: at time t, Nature chooses xt ∈ X and presents it to the learner as “side information”,
the learner then picks ŷt ∈ Y and Nature simultaneously chooses yt ∈ Y . In the improper version, the
loss of the learner is `(ŷt, yt), and it is easy to see that we may equivalently state this protocol as the
learner choosing any function ft ∈ YX (not necessarily in F), and Nature simultaneously choosing
(xt, yt). We mostly focus on the “improper” version of supervised learning in this section. For the
improper version of supervised learning, we may write the value in (1) as

VT (F) = sup
x1∈X

inf
q1∈∆(Y)

sup
y1∈X

E
ŷ1∼q1

. . . sup
xT ∈X

inf
qT ∈∆(Y)

sup
yT ∈X

E
ŷT ∼qT

[

T

∑

t=1

`(ŷt, yt) − inf
f∈F

T

∑

t=1

`(f(xt), yt)]

and a relaxation RelT is admissible if for any (x1, y1) . . . , (xT , yT ) ∈ X ×Y ,

sup
x∈X

inf
q∈∆(Y)

sup
y∈Y

{ Ê
y∼q
`(ŷ, y) +RelT (F ∣{(xi, yi)}

t
i=1, (x, y))} ≤RelT (F ∣{(xi, yi)}

t
i=1) (11)

Let us now focus on binary prediction, i.e. Y = {±1}. In this case, the supremum over y in (11)
becomes a maximum over two values. Let us now take the absolute loss `(ŷ, y) = ∣ŷ − y∣ = 1 − ŷy.
We can see2 that the optimal randomized strategy, given the side information x, is given by (11) as

qt = argmin
q∈∆(Y)

max{1 − q +RelT (F ∣{(xi, yi)}
t
i=1, (x,1)) ,1 + q +RelT (F ∣{(xi, yi)}

t
i=1, (x,−1))}

or equivalently as : qt =
1

2
{RelT (F ∣{(xi, yi)}

t
i=1, (x,1)) −RelT (F ∣{(xi, yi)}

t
i=1, (x,−1))} (12)

We now assume that F has a finite Littlestone’s dimension Ldim(F) [10, 5]. Suppose the loss
function is `(ŷ, y) = ∣ŷ − y∣, and consider the “mixed” conditional Rademacher complexity

sup
x

Eε sup
f∈F

{2
T−t
∑

i=1

εif(xi(ε)) −
t

∑

i=1

∣f(xi) − yi∣} (13)

as a possible relaxation. The admissibility condition (11) with the conditional sequential
Rademacher (13) as a relaxation would require us to upper bound

sup
xt

inf
qt∈[−1,1]

max
yt∈{±1}

{ E
ŷt∼qt

∣ŷt − yt∣ + sup
x

Eε sup
f∈F

{2
T−t
∑

i=1

εif(xi(ε)) −
t

∑

i=1

∣f(xi) − yi∣}} (14)

However, the supremum over x is preventing us from obtaining a concise algorithm. We need to
further “relax” this supremum, and the idea is to pass to a finite cover of F on the given tree x and
then proceed as in the Exponential Weights example for a finite collection of experts. This leads to
an upper bound on (13) and gives rise to algorithms similar in spirit to those developed in [5], but
with more attractive computational properties and defined more concisely.

Define the function g(d, t) = ∑di=0 (t
i
), which is shown in [14] to be the maximum size of

an exact (zero) cover for a function class with the Littlestone’s dimension Ldim = d. Given
{(x1, yt), . . . , (xt, yt)} and σ = (σ1, . . . , σt) ∈ {±1}t, let Ft(σ) = {f ∈ F ∶ f(xi) = σi ∀i ≤
t}, the subset of functions that agree with the signs given by σ on the “past” data and let
F ∣x1,...,xt ≜ F ∣xt ≜ {(f(x1), . . . , f(xt)) ∶ f ∈ F} be the projection of F onto x1, . . . , xt. De-
note Lt(f) = ∑ti=1 ∣f(xi) − yi∣ and Lt(σ) = ∑ti=1 ∣σi − yi∣ for σ ∈ {±1}t. The following proposition
gives a relaxation and an algorithm which achieves the O(

√
Ldim(F)T logT ) regret bound. Un-

like the algorithm of [5], we do not need to run an exponential number of experts in parallel and
only require access to an oracle that computes the Littlestone’s dimension.

2The extension to k-class prediction is immediate.
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Proposition 5. The relaxation

RelT (F ∣(xt, yt)) =
1

λ
log

⎛

⎝
∑

σ∈F ∣
xt

g(Ldim(Ft(σ)), T − t) exp{−λLt(σ)}
⎞

⎠

+ 2λ(T − t) .

is admissible and leads to an admissible algorithm which uses weights qt(−1) = 1 − qt(+1) and

qt(+1) =
∑(σ,+1)∈F ∣

xt
g(Ldim(Ft(σ,+1)), T − t) exp{−λLt−1(σ)}

∑(σ,σt)∈F ∣
xt
g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}

, (15)

There is a very close correspondence between the proof of Proposition 5 and the proof of the com-
binatorial lemma of [14], the analogue of the Vapnik-Chervonenkis-Sauer-Shelah result.

4 Randomized Algorithms and Follow the Perturbed Leader

We now develop a class of admissible randomized methods that arise through sampling. Consider
the objective (5) given by a relaxation RelT . If RelT is the sequential (or classical) Rademacher
complexity, it involves an expectation over sequences of coin flips, and this computation (coupled
with optimization for each sequence) can be prohibitively expensive. More generally, RelT might
involve an expectation over possible ways in which the future might be realized. In such cases,
we may consider a rather simple “random playout” strategy: draw the random sequence and solve
only one optimization problem for that random sequence. The ideas of random playout have been
discussed in previous literature for estimating the utility of a move in a game (see also [3]). We show
that random playout strategy has a solid basis: for the examples we consider, it satisfies admissibility.

In many learning problems the sequential and the classical Rademacher complexities are within a
constant factor of each other. This holds true, for instance, for linear functions in finite-dimensional
spaces. In such cases, the relaxation RelT does not involve the supremum over a tree, and the
randomized method only needs to draw a sequence of coin flips and compute a solution to an opti-
mization problem slightly more complicated than ERM. We show that Follow the Perturbed Leader
(FPL) algorithms [9] arise in this way. We note that FPL has been previously considered as a rather
unorthodox algorithm providing some kind of regularization via randomization. Our analysis shows
that it arises through a natural relaxation based on the sequential (and thus the classical) Rademacher
complexity, coupled with the random playout idea. As a new algorithmic contribution, we provide
a version of the FPL algorithm for the case of the decision sets being `2 balls, with a regret bound
that is independent of the dimension. We also provide an FPL-style method for the combination of
`1 and `∞ balls. To the best of our knowledge, these results are novel.

The assumption below implies that the sequential and classical Rademacher complexities are within
constant factor C of each other. We later verify that it holds in the examples we consider.
Assumption 1. There exists a distribution D ∈ ∆(X ) and constant C ≥ 2 such that for any t ∈ [T ]
and given any x1, . . . , xt−1, xt+1, . . . , xT ∈ X and any εt+1, . . . , εT ∈ {±1},

sup
p∈∆(X)

E
xt∼p

sup
f∈F

[ CAt+1(f) −Lt−1(f) + E
x∼p

[`(f, x)] − `(f, xt)] ≤ E
εt,xt∼D

sup
f∈F

[ CAt(f) −Lt−1(f)]

where εt’s are i.i.d. Rademacher, Lt−1(f) = ∑t−1
i=1 `(f, xi), and At(f) = ∑Ti=t εi`(f, xi).

Under the above assumption one can use the following relaxation

RelT (F ∣x1, . . . , xt) = E
xt+1,...xT ∼D

Eε sup
f∈F

[C
T

∑

i=t+1

εi`(f, xi) −
t

∑

i=1

`(f, xi)] (16)

which is a partially symmetrized version of the classical Rademacher averages.

The proof of admissibility for the randomized methods is quite curious – the forecaster can be seen as
mimicking the sequential Rademacher complexity by sampling from the “equivalently bad” classical
Rademacher complexity under the specific distribution D specified by the above assumption.
Lemma 6. Under Assumption 1, the relaxation in Eq. (16) is admissible and a randomized strategy
that ensures admissibility is given by: at time t, draw xt+1, . . . , xT ∼D and εt+1, . . . , εT and then:
(a) In the case the loss ` is convex in its first argument and set F is convex and compact, define
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ft = argmin
g∈F

sup
x∈X

{`(g, x) + sup
f∈F

{C
T

∑

i=t+1

εi`(f, xi) −
t−1

∑

i=1

`(f, xi) − `(f, x)}} (17)

(b) In the case of non-convex loss, sample ft from the distribution

q̂t = argmin
q̂∈∆(F)

sup
x∈X

{ E
f∼q̂

[`(f, x)] + sup
f∈F

{C
T

∑

i=t+1

εi`(f, xi) −
t−1

∑

i=1

`(f, xi) − `(f, x)}} (18)

The expected regret for the method is bounded by the classical Rademacher complexity:

E [RegT ] ≤ C Ex1∶T ∼D E
ε
[sup
f∈F

T

∑

t=1

εt`(f, xt)] ,

Of particular interest are the settings of static experts and transductive learning, which we consider
in Section 5. In the transductive case, the xt’s are pre-specified before the game, and in the static
expert case – effectively absent. In these cases, as we show below, there is no explicit distribution
D and we only need to sample the random signs ε’s. We easily see that in these cases, the expected
regret bound is simply two times the transductive Rademacher complexity.

The idea of sampling from a fixed distribution is particularly appealing in the case of linear loss,
`(f, x) = ⟨f, x⟩. Suppose X is a unit ball in some norm ∥ ⋅ ∥ in a vector space B, and F is a unit ball
in the dual norm ∥ ⋅ ∥∗. A sufficient condition implying Assumption 1 is then
Assumption 2. There exists a distribution D ∈ ∆(X ) and constant C ≥ 2 such that for any w ∈ B,

sup
x∈X

E
xt∼p

∥w + 2εtxt∥ ≤ E
xt∼D

E
εt

∥w +Cεtxt∥ (19)

At round t, the generic algorithm specified by Lemma 18 draws fresh Rademacher random variables
ε and xt+1, . . . , xT ∼D and picks

ft = argmin
f∈F

sup
x∈X

{⟨f, x⟩ + ∥C
T

∑

i=t+1

εixi −
t−1

∑

i=1

xi − x∥} (20)

We now look at `2/`2 and `1/`∞ cases and provide corresponding randomized algorithms.

Example : `1/`∞ Follow the Perturbed Leader Here, we consider the setting similar to that
in [9]. Let F ⊂ RN be the `1 unit ball and X the (dual) `∞ unit ball in RN . In [9], F is the
probability simplex and X = [0,1]N but these are subsumed by the `1/`∞ case. Next we show that
any symmetric distribution satisfies Assumption 2.
Lemma 7. If D is any symmetric distribution over R, then Assumption 2 is satisfied by using the
product distribution DN and any C ≥ 6/Ex∼D ∣x∣. In particular, Assumption 2 is satisfied with a
distribution D that is uniform on the vertices of the cube {±1}N and C = 6.

The above lemma is especially attractive with Gaussian perturbations as sum of normal random
variables is again normal. Hence, instead of drawing xt+1, . . . , xT ∼ N(0,1) on round t, one can
simply draw one vector Xt ∼ N(0, T − t) as the perturbation. In this case, C ≤ 8.

The form of update in Equation (20), however, is not in a convenient form, and the following
lemma shows a simple Follow the Perturbed Leader type algorithm with the associated regret bound.

Lemma 8. Suppose F is the `N1 unit ball and X is the dual `N∞ unit ball, and let D be
any symmetric distribution. Consider the randomized algorithm that at each round t, freshly
draws Rademacher random variables εt+1, . . . , εT and xt+1, . . . , xT ∼ DN and picks ft =
argmin
f∈F

⟨f,∑t−1
i=1 xi −C∑Ti=t+1 εixi⟩ where C = 6/Ex∼D ∣x∣. The expected regret is bounded as :

E [RegT ] ≤ C E
x1∶T ∼DN

Eε ∥
T

∑

t=1

εtxt∥
∞
+ 4

T

∑

t=1

Pyt+1∶T ∼D (C ∣

T

∑

i=t+1

yi∣ ≤ 4)

For instance, for the case of coin flips (with C = 6) or the Gaussian distribution (with C = 3
√

2π)
the bound above is 4C

√
T logN , as the second term is bounded by a constant.

Example : `2/`2 Follow the Perturbed Leader We now consider the case when F and X
are both the unit `2 ball. We can use as perturbation the uniform distribution on the surface of unit
sphere, as the following lemma shows. This result was hinted at in [2], as in high dimensional case,
the random draw from the unit sphere is likely to produce orthogonal directions. However, we do
not require dimensionality to be high for our result.
Lemma 9. Let X and F be unit balls in Euclidean norm. Then Assumption 2 is satisfied with a
uniform distribution D on the surface of the unit sphere with constant C = 4

√
2.
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As in the previous example the update in (20) is not in a convenient form and this is addressed below.
Lemma 10. Let X and F be unit balls in Euclidean norm, and D be the uniform distribution on
the surface of the unit sphere. Consider the randomized algorithm that at each round (say round
t) freshly draws xt+1, . . . , xT ∼ D and picks ft = (−∑t−1

i=1 xi +C∑Ti=t+1 xi) /L where C = 4
√

2

and scaling factor L = (∥−∑t−1
i=1 xi +C∑Ti=t+1 εixi∥

2

2
+ 1)

1/2

. The randomized algorithm enjoys a

bound on the expected regret given by E [RegT ] ≤ C Ex1,...,xT ∼D ∥∑Tt=1 xt∥2
≤ 4

√
2T .

Importantly, the bound does not depend on the dimensionality of the space. To the best of our
knowledge, this is the first such result for Follow the Perturbed Leader style algorithms. Further,
unlike [9, 6], we directly deal with the adaptive adversary.

5 Static Experts with Convex Losses and Transductive Online Learning
We show how to recover a variant of the R2 forecaster of [7], for static experts and transductive
online learning. At each round, the learner makes a prediction qt ∈ [−1,1], observes the outcome
yt ∈ [−1,1], and suffers convex L-Lipschitz loss `(qt, yt). Regret is defined as the difference be-
tween learner’s cumulative loss and inff∈F ∑Tt=1 `(f[t], yt), where F ⊂ [−1,1]T can be seen as a
set of static experts. The transductive setting is equivalent to this: the sequence of xt’s is known
before the game starts, and hence the effective function class is once again a subset of [−1,1]T . It
turns out that in these cases, sequential Rademacher complexity becomes the classical Rademacher
complexity (see [16]), which can thus be taken as a relaxation. This is also the reason that an ef-
ficient implementation by sampling is possible. For general convex loss, one possible admissible
relaxation is just a conditional version of the classical Rademacher averages:

RelT (F ∣y1, . . . , yt) = Eεt+1∶T sup
f∈F

[2L
T

∑

s=t+1

εsf[s] −Lt(f)] (21)

where Lt(f) = ∑ts=1 `(f[s], ys). If (21) is used as a relaxation, the calculation of prediction ŷt
involves a supremum over f ∈ F with (potentially nonlinear) loss functions of instances seen so
far. In some cases this optimization might be hard and it might be preferable if the supremum only
involves terms linear in f . To this end we start by noting that by convexity

T

∑

t=1

`(ŷt, yt) − inf
f∈F

T

∑

t=1

`(f(xt), yt) ≤
T

∑

t=1

∂`(ŷt, yt) ⋅ ŷt − inf
f∈F

T

∑

t=1

∂`(ŷt, yt) ⋅ f[t] (22)

One can now consider an alternative online learning problem which, if we solve, also solves the
original problem. More precisely, the new loss is `′(ŷ, r) = r ⋅ ŷ; we first pick prediction ŷt (de-
terministically) and the adversary picks rt (corresponding to rt = ∂`(ŷt, yt) for choice of yt picked
by adversary). Now note that `′ is indeed convex in its first argument and is L Lipschitz because
∣∂`(ŷt, yt)∣ ≤ L. This is a one dimensional convex learning game where we pick ŷt and regret is
given by the right hand side of (22). Hence, we can consider the relaxation

RelT (F ∣∂`(ŷ1, y1), . . . , ∂`(ŷt, yt)) = Eεt+1∶T sup
f∈F

[2L
T

∑

i=t+1

εif[t] −
t

∑

i=1

∂`(ŷi, yi) ⋅ f[i]] (23)

as a linearized form of (21). At round t, the prediction of the algorithm is then

ŷt =E
ε
[sup
f∈F

{

T

∑

i=t+1

εif[i] −
1

2L

t−1

∑

i=1

∂`(ŷi, yi)f[i] +
1
2
f[t]}− sup

f∈F
{

T

∑

i=t+1

εif[i] −
1

2L

t−1

∑

i=1

∂`(ŷi, yi)f[i] −
1
2
f[t]}]

(24)

Lemma 11. The relaxation in Eq. (23) is admissible w.r.t. the prediction strategy specified in Equa-
tion (24). Further the regret of the strategy is bounded as RegT ≤ 2L Eε [supf∈F ∑Tt=1 εtf[t]] .

This algorithm is similar to R2, with the main difference that R2 computes the infima over a sum
of absolute losses, while here we have a more manageable linearized objective. While we need
to evaluate the expectation over ε’s on each round, we can estimate ŷt by sampling ε’s and using
McDiarmid’s inequality argue that the estimate is close to ŷt with high probability. The randomized
prediction is now given simply as: on round t, draw εt+1, . . . , εT and predict

ŷt(ε) = inf
f∈F

{−

T

∑

i=t+1

εif[i] +
1

2L

t−1

∑

i=1

`(f[i], yi) +
1
2
f[t]} − inf

f∈F
{−

T

∑

i=t+1

εif[i] +
1

2L

t−1

∑

i=1

`(f[i], yi) −
1
2
f[t]}

(25)

We now show that this predictor enjoys regret bound of the transductive Rademacher complexity :
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Lemma 12. The relaxation specified in Equation (21) is admissible w.r.t. the randomized prediction
strategy specified in Equation (25), and enjoys bound E [RegT ] ≤ 2L Eε [supf∈F ∑Tt=1 εtf[t]] .

6 Matrix Completion
Consider the problem of predicting unknown entries in a matrix, in an online fashion. At each round
t the adversary picks an entry in an m × n matrix and a value yt for that entry. The learner then
chooses a predicted value ŷt, and suffers loss `(yt, ŷt), assumed to be ρ-Lipschitz. We define our
regret with respect to the class F of all matrices whose trace-norm is at most B (namely, we can
use any such matrix to predict just by returning its relevant entry at each round). Usually, one has
B = Θ(√mn). Consider a transductive version, where we know in advance the location of all
entries we need to predict. We show how to develop an algorithm whose regret is bounded by the
(transductive) Rademacher complexity of F , which by Theorem 6 of [17], is O(B√

n) independent
of T . Moreover, in [7], it was shown how one can convert algorithms with such guarantees to obtain
the same regret even in a “fully” online case, where the set of entry locations is unknown in advance.
In this section we use the two alternatives provided for transductive learning problem in the previous
subsection, and provide two alternatives for the matrix completion problem. Both variants proposed
here improve on the one provided by the R2 forecaster in [7], since that algorithm competes against
the smaller class F ′ of matrices with bounded trace-norm and bounded individual entries, and our
variants are also computationally more efficient. Our first variant also improves on the recently
proposed method in [8] in terms of memory requirements, and each iteration is simpler: Whereas
that method requires storing and optimizing full m × n matrices every iteration, our algorithm only
requires computing spectral norms of sparse matrices (assuming T ≪ mn, which is usually the
case). This can be done very efficiently, e.g. with power iterations or the Lanczos method.

Our first algorithm follows from Eq. (24), which for our setting gives the following prediction rule:

ŷt = B E
ε
[(∥

T

∑

i=t+1

εixi −
1
2ρ

t−1

∑

i=1

∂`(ŷi, yi)xi +
1
2
xt∥

σ

− ∥

T

∑

i=t+1

εixi −
1
2ρ

t−1

∑

i=1

∂`(ŷi, yi)xi −
1
2
xt∥

σ

)] (26)

In the above ∥⋅∥σ stands for the spectral norm and each xi is a matrix with a 1 at some specific posi-
tion and 0 elsewhere. Notice that the algorithm only involves calculation of spectral norms on each
round, which can be done efficiently. As mentioned in previous subsection, one can approximately
evaluate the expectation by sampling several ε’s on each round and averaging. The second algorithm
follows (25), and is given by first drawing ε at random and then predicting

ŷt(ε)= sup
∥f∥Σ≤B

{

T

∑

i=t+1

εif[xi]−
1
2ρ

t−1

∑

i=1

`(f[xi], yi)+
1
2
f[xt]}− sup

∥f∥Σ≤B
{

T

∑

i=t+1

εif[xi]−
1
2ρ

t−1

∑

i=1

`(f[xi], yi)−
1
2
f[xt]}

where ∥f∥Σ is the trace norm of them×n f , and f[xi] is the entry of the matrix f at the position xi.
Notice that the above involves solving two trace norm constrained convex optimization problems per
round. As a simple corollary of Lemma 12, together with the bound on the Rademacher complexity
mentioned earlier, we get that the expected regret of either variant is O (B ρ (√m +√

n)).

7 Conclusion

In [2, 1, 14, 19] the minimax value of the online learning game has been analyzed and non-
constructive bounds on the value have been provided. In this paper, we provide a general con-
structive recipe for deriving new (and old) online learning algorithms, using techniques from the
apparently non-constructive minimax analysis. The recipe is rather simple: we start with the notion
of conditional sequential Rademacher complexity, and find an “admissible” relaxation which upper
bounds it. This relaxation immediately leads to an online learning algorithm, as well as to an as-
sociated regret guarantee. In addition to the development of a unified algorithmic framework, our
contributions include (1) a new algorithm for online binary classification whenever the Littlestone
dimension of the class is finite; (2) a family of randomized online learning algorithms based on the
idea of a random playout, with new Follow the Perturbed Leader style algorithms arising as special
cases; and (3) efficient algorithms for trace norm based online matrix completion problem which
improve over currently known methods.
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A PROOFS

Proof of Proposition 1. By definition,
T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤
T

∑
t=1

Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT ) .

Peeling off the T -th expected loss, we have
T

∑
t=1

Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT ) ≤
T−1

∑
t=1

Eft∼qt`(ft, xt) + {Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT )}

≤
T−1

∑
t=1

Eft∼qt`(ft, xt) +RelT (F ∣x1, . . . , xT−1)

where we used the fact that qT is an admissible algorithm for this relaxation, and thus the last
inequality holds for any choice xT of the opponent. Repeating the process, we obtain

T

∑
t=1

Eft∼qt`(ft, xt) − inf
f∈F

T

∑
t=1

`(f, xt) ≤RelT (F) .

We remark that the left-hand side of this inequality is random, while the right-hand side is not. Since
the inequality holds for any realization of the process, it also holds in expectation. The inequality

VT (F) ≤RelT (F)
holds by unwinding the value recursively and using admissibility of the relaxation. The high-
probability bound is an immediate consequences of (6) and the Hoeffding-Azuma inequality for
bounded martingales. The last statement is immediate.

Proof of Proposition 2. Denote Lt(f) = ∑ts=1 `(f, xs). The first step of the proof is an application
of the minimax theorem (we assume the necessary conditions hold):

inf
qt∈∆(F)

sup
xt∈X

{ E
ft∼qt

[`(ft, xt)] + sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt(f)]}

= sup
pt∈∆(X)

inf
ft∈F

{ E
xt∼pt

[`(ft, xt)] + E
xt∼pt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt(f)]}

For any pt ∈ ∆(X ), the infimum over ft of the above expression is equal to

E
xt∼pt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt−1(f) + inf
ft∈F

E
xt∼pt

[`(ft, xt)] − `(f, xt)]

≤ E
xt∼pt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt−1(f) + E
xt∼pt

[`(f, xt)] − `(f, xt)]

≤ E
xt,x′t∼pt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt−1(f) + `(f, x′t) − `(f, xt)]

We now argue that the independent xt and x′t have the same distribution pt, and thus we can intro-
duce a random sign εt. The above expression then equals to

E
xt,x′t∼pt

E
εt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt−1(f) + εt(`(f, x′t) − `(f, xt))]

≤ sup
xt,x′t∈X

E
εt

sup
x

Eεt+1∶T sup
f∈F

[2
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −Lt−1(f) + εt(`(f, x′t) − `(f, xt))]

where we upper bounded the expectation by the supremum. Splitting the resulting expression into
two parts, we arrive at the upper bound of

2 sup
xt∈X

E
εt

sup
x

Eεt+1∶T sup
f∈F

[
T

∑
s=t+1

εs`(f,xs−t(εt+1∶s−1)) −
1

2
Lt−1(f) + εt`(f, xt)] =RT (F ∣x1, . . . , xt−1) .
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The last equality is easy to verify, as we are effectively adding a root xt to the two subtrees, for
εt = +1 and εt = −1, respectively.

One can see that the proof of admissibility corresponds to one step minimax swap and symmetriza-
tion in the proof of [14]. In contrast, in the latter paper, all T minimax swaps are performed at once,
followed by T symmetrization steps.

Proof of Proposition 3. Let us first prove that the relaxation is admissible with the Exponential
Weights algorithm as an admissible algorithm. Let Lt(f) = ∑ti=1 `(f, xi). Let λ∗ be the optimal
value in the definition of RelT (F ∣x1, . . . , xt−1). Then

inf
qt∈∆(F)

sup
xt∈X

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)}

≤ inf
qt∈∆(F)

sup
xt∈X

⎧⎪⎪⎨⎪⎪⎩
E
f∼qt

[`(f, xt)] +
1

λ∗
log

⎛
⎝∑f∈F

exp (−λ∗Lt(f))
⎞
⎠
+ 2λ∗(T − t)

⎫⎪⎪⎬⎪⎪⎭
Let us upper bound the infimum by a particular choice of q which is the exponential weights distri-
bution

qt(f) = exp(−λ∗Lt−1(f))/Zt−1

where Zt−1 = ∑f∈F exp (−λ∗Lt−1(f)). By [6, Lemma A.1],

1

λ∗
log

⎛
⎝∑f∈F

exp (−λ∗Lt(f))
⎞
⎠
= 1

λ∗
log (Ef∼qt exp (−λ∗`(f, xt))) +

1

λ∗
logZt−1

≤ −Ef∼qt`(f, xt) +
λ∗

2
+ 1

λ∗
logZt−1

Hence,

inf
qt∈∆(F)

sup
xt∈X

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)}

≤ 1

λ∗
log

⎛
⎝∑f∈F

exp (−λ∗Lt−1(f))
⎞
⎠
+ 2λ∗(T − t + 1)

=RelT (F ∣x1, . . . , xt−1)

by the optimality of λ∗. The bound can be improved by a factor of 2 for some loss functions, since
it will disappear from the definition of sequential Rademacher complexity.

We conclude that the Exponential Weights algorithm is an admissible strategy for the relaxation (9).
The final regret bound follows immediately from the bound on sequential Rademacher complexity
(which, in this case, is simply the supremum of a martingale difference process indexed by N
elements – see e.g. [14]).

Arriving at the relaxation We now show that the Exponential Weights relaxation arises naturally
as an upper bound on sequential Rademacher complexity of a finite class. For any λ > 0,

E
ε
[sup
f∈F

{2
T−t

∑
i=1

εi`(f,xi(ε)) −Lt(f)}] ≤
1

λ
log(E

ε
[sup
f∈F

exp(2λ
T−t

∑
i=1

εi`(f,xi(ε)) − λLt(f))])

≤ 1

λ
log

⎛
⎝
E
ε

⎡⎢⎢⎢⎢⎣
∑
f∈F

exp(2λ
T−t

∑
i=1

εi`(f,xi(ε)) − λLt(f))
⎤⎥⎥⎥⎥⎦

⎞
⎠

= 1

λ
log

⎛
⎝∑f∈F

exp (−λLt(f))E
ε
[
T−t

∏
i=1

exp (2λεi`(f,xi(ε)))]
⎞
⎠

Since, conditioned on ε1, . . . , εi−1, the random variable εi`(f,xi(ε)) is subgaussian, we can upper
bound the expected value of the product, peeling one random variable at a time from the end (see
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[14] for the proof). We arrive at the upper bound

1

λ
log

⎛
⎝∑f∈F

exp (−λLt(f)) × exp(2λ2 max
ε1,...εT−t∈{±1}

T−t

∑
i=1

`(f,xi(ε))2)
⎞
⎠

≤ 1

λ
log

⎛
⎝∑f∈F

exp(−λLt(f) + 2λ2 max
ε1,...εT−t∈{±1}

T−t

∑
i=1

`(f,xi(ε))2)
⎞
⎠

≤ 1

λ
log

⎛
⎝∑f∈F

exp (−λLt(f))
⎞
⎠
+ 2λ sup

x
sup
f∈F

max
ε1,...εT−t∈{±1}

T−t

∑
i=1

`(f,xi(ε))2

The last term, representing the “worst future”, is upper bounded by 2λ(T − t), assuming that the
losses are bounded by 1. This removes the x tree and leads to the relaxation (9) and a computation-
ally tractable algorithm.

Proof of Proposition 4. The argument can be seen as a generalization of the Euclidean proof in [2]
to general smooth norms. Let x̃t−1 = ∑t−1

i=1 xi. The optimal algorithm for the relaxation (10) is

f∗t = argmin
f∈F

{ sup
xt∈X

{⟨f, xt⟩ +
√

∥x̃t−1∥2 + ⟨∇ 1
2
∥x̃t−1∥2

, xt⟩ +C(T − t + 1)}} (27)

Instead, let

ft = −
∇ 1

2
∥x̃t−1∥2

2
√

∥x̃t−1∥2 +C(T − t + 1)
. (28)

Plugging this choice into the admissibility condition (4), we get

sup
xt∈X

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⟨∇ 1

2
∥x̃t−1∥2

, xt⟩

2
√
A

+
√
A + ⟨∇ 1

2
∥x̃t−1∥2

, xt⟩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where A = ∥x̃t−1∥2+C(T − t+1). It can be easily verified that an expression of the form −x/(2y)+√
y + x is maximized at x = 0 for a positive y. With these values,

inf
ft∈F

{ sup
xt∈X

{⟨ft, xt⟩ + (∥x̃t−1∥2 + ⟨∇ 1
2
∥x̃t−1∥2, xt⟩ +C(T − t + 1))1/2}} = (∥x̃t−1∥2 +C(T − t + 1))1/2

≤ (∥x̄t−2∥2 + ⟨∇ 1
2
∥x̄t−2∥2, xt−1⟩ +C(T − t + 2))1/2 =RelT (F ∣x1, . . . , xt−1)

Hence, the choice (28) is an admissible algorithm for the relaxation (10).

Evidently, the above proof of admissibility is very simple, but it might seem that we pulled the
algorithm (28) out of a hat. We now show that in fact one can derive this algorithm as a solution f∗t
in (27). The proof below is not required for admissibility, and we only include it for completeness.
The proof uses the fact that for any norm ∥ ⋅ ∥,

⟨∇ 1
2
∥x∥2, x⟩ = ∥x∥2 . (29)

To prove this, observe that by convexity ∥0∥ ≥ ∥x∥+ ⟨∇∥x∥,0 − x⟩ and ∥2x∥ ≥ ∥x∥+ ⟨∇∥x∥,2x − x⟩
implying ⟨∇∥x∥, x⟩ = ∥x∥. On the other hand, by the chain rule, ∇ 1

2
∥x∥2 = ∥x∥⋅∇∥x∥, thus implying

(29).

Let

K ≜ Kernel(∇∥x̃t−1∥2) = {h ∶ ⟨∇ ∥x̃t−1∥2
, h⟩ = 0} , K ′ ≜ Kernel(x̃t−1) = {h ∶ ⟨h, x̃t−1⟩ = 0} .

We first claim that xt can always be written as xt = βx̃t−1 +γy for some y ∈K and for some scalars
β, γ. Indeed, suppose that xt = βx̃t−1 +γy+z for some y ∈K and z ∉K. Then we can rewrite xt as

xt = (β + δ) x̃t−1 + (γy − δx̃t−1 + z)

12



where δ =
⟨∇

1
2
∥x̃t−1∥

2,z⟩

∥x̃t−1∥
2 . It is enough to check that (γy − δx̃t−1 + z) ∈K. Indeed, using (29),

⟨∇ ∥x̃t−1∥2
,−δx̃t−1 + z⟩ = −δ ∥x̃t−1∥2 + ⟨∇ ∥x̃t−1∥2

, z⟩ = 0 .

An analogous proof shows that we may always decompose any ft as ft = −α∇ 1
2
∥x̃t−1∥2 + g for

some g ∈K ′ and a scalar α. Hence,

⟨ft, xt⟩ + (∥x̃t−1∥2 + ⟨∇ 1
2
∥x̃t−1∥2, xt⟩ +C(T − t + 1))1/2

= −αβ∥x̃t−1∥2 + γ ⟨g, y⟩ + (∥x̃t−1∥2 + β∥x̃t−1∥2 +C(T − t + 1))1/2
(30)

Given any ft = −α∇ 1
2
∥x̃t−1∥2 + g, xt can be picked with y ∈ K that satisfies ⟨g, y⟩ ≥ 0. One can

always do this because if for some y′, ⟨g, y′⟩ < 0 by picking y = −y′ we can ensure that ⟨g, y⟩ ≥ 0.
Hence the minimizer ft must be once such that ft = −α∇ 1

2
∥x̃t−1∥2 and thus ⟨g, y⟩ = 0. Now, it

must be that α ≥ 0 so that xt either increases the first term or second term but not both. Hence we
conclude that ft = −α∇ 1

2
∥x̃t−1∥2 for some α ≥ 0. It remains to determine the optimal α. Given

such an ft, the sup over xt can be written as supremum over β of a concave function, which gives
rise to the derivative condition

−α ∥x̃t−1∥2 + ∥x̃t−1∥2

2
√

∥x̃t−1∥2 + β ∥x̃t−1∥2 +C(T − t + 1)
= 0

At this point it is clear that the value of

α = 1

2
√

∥x̃t−1∥2 +C(T − t + 1)
(31)

forces β = 0. Let us in fact show that this value is optimal. We have

1

4α2
= ∥x̃t−1∥2 + β ∥x̃t−1∥2 +C(T − t + 1)

Plugging this value of β back, we optimize

1

4α
+ α ∥x̃t−1∥2 + αC(T − t + 1)

over α and obtain the value given in (31). With this value, we have the familiar update (28). Plugging
back the value of α, we find that β = 0. We conclude that ft defined in (28) in fact coincides with
the optimal solution (27).

Arriving at the Relaxation The derivation of the relaxation is immediate:

RT (F ∣x1, . . . , xt) = sup
x

Eεt+1∶T ∥
T

∑
s=t+1

εsxs−t(εt+1∶s−1) −
t

∑
s=1

xs∥ (32)

≤ sup
x

¿
ÁÁÁÀEεt+1∶T ∥

T

∑
s=t+1

εsxs−t(εt+1∶s−1) −
t

∑
s=1

xs∥
2

(33)

≤ sup
x

¿
ÁÁÁÀ∥

t

∑
s=1

xs∥
2

+CEεt+1∶T

T

∑
s=t+1

∥εsxs−t(εt+1∶s−1)∥2 (34)

where the last step is due to the smoothness of the norm and the fact that the first-order terms
disappear under the expectation. The sum of norms is now upper bounded by T − t, thus removing
the dependence on the “future”, and we arrive at

¿
ÁÁÁÀ∥

t

∑
s=1

xs∥
2

+C(T − t) ≤

¿
ÁÁÁÀ∥

t−1

∑
s=1

xs∥
2

+ ⟨∇ 1
2
∥
t−1

∑
s=1

xs∥
2

, xt⟩ +C(T − t + 1)

as a relaxation on the sequential Rademacher complexity.
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Proof of Proposition 5. We would like to show that, with the distribution q∗t defined in (15),

max
yt∈{±1}

{ E
ŷt∼q

∗
t

∣ŷt − yt∣ +RelT (F ∣(xt, yt))} ≤RelT (F ∣(xt−1, yt−1))

for any xt ∈ X . Let σ ∈ {±1}t−1 and σt ∈ {±1}. We have

RelT (F ∣(xt, yt)) − 2λ(T − t)

= 1

λ
log

⎛
⎝ ∑
(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ∣σt − yt∣}
⎞
⎠

≤ 1

λ
log

⎛
⎝ ∑
σt∈{±1}

exp{−λ∣σt − yt∣} ∑
σ∶(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}
⎞
⎠

Just as in the proof of Proposition 3, we may think of the two choices σt as the two experts whose
weighting q∗t is given by the sum involving the Littlestone’s dimension of subsets of F . Introducing
the normalization term, we arrive at the upper bound

1

λ
log (Eσt∼q∗t exp{−λ∣σt − yt∣}) +

1

λ
log

⎛
⎝ ∑
σt∈{±1}

∑
σ∶(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}
⎞
⎠

≤ −Eσt∼q∗t ∣σt − yt∣ + 2λ + 1

λ
log

⎛
⎝ ∑
σt∈{±1}

∑
σ∶(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}
⎞
⎠

The last step is due to Lemma A.1 in [6]. It remains to show that the log normalization term is upper
bounded by the relaxation at the previous step:

1

λ
log

⎛
⎝ ∑
σt∈{±1}

∑
σ∶(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}
⎞
⎠

≤ 1

λ
log

⎛
⎝ ∑
σ∈F ∣xt−1

exp{−λLt−1(σ)} ∑
σt∈{±1}

g(Ldim(Ft(σ,σt)), T − t)
⎞
⎠

≤ 1

λ
log

⎛
⎝ ∑
σ∈F ∣xt−1

exp{−λLt−1(σ)} g(Ldim(Ft−1(σ)), T − t + 1)
⎞
⎠

=RelT (F ∣(xt−1, yt−1))
To justify the last inequality, note thatFt−1(σ) = Ft(σ,+1)∪Ft(σ,−1) and at most one ofFt(σ,+1)
or Ft(σ,−1) can have Littlestone’s dimension Ldim(Ft−1(σ)). We now appeal to the recursion

g(d, T − t) + g(d − 1, T − t) ≤ g(d, T − t + 1)
where g(d, T − t) is the size of the zero cover for a class with Littlestone’s dimension d on the
worst-case tree of depth T − t (see [14]). This completes the proof of admissibility.

Alternative Method Let us now derive the algorithm. Once again, consider the optimization
problem

max
yt∈{±1}

{ E
ŷt∼q

∗
t

∣ŷt − yt∣ +RelT (F ∣(xt, yt))}

with the relaxation

RelT (F ∣(xt, yt)) = 1

λ
log

⎛
⎝ ∑σ∈F ∣xt

g(Ldim(Ft(σ)), T − t) exp{−λLt(σ)}
⎞
⎠
+ λ

2
(T − t)

The maximum can be written explicitly, as in Section 3:

max

⎧⎪⎪⎨⎪⎪⎩
1 − q∗t +

1

λ
log

⎛
⎝ ∑
(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 − σt)}
⎞
⎠
,

1 + q∗t +
1

λ
log

⎛
⎝ ∑
(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 + σt)}
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
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where we have dropped the λ
2
(T − t) term from both sides. Equating the two values, we obtain

2q∗t =
1

λ
log
∑(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 − σt)}
∑(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 + σt)}
The resulting value becomes

1 + λ
2
(T − t) + 1

2λ
log

⎧⎪⎪⎨⎪⎪⎩
∑

(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 − σt)}
⎫⎪⎪⎬⎪⎪⎭

+ 1

2λ
log

⎧⎪⎪⎨⎪⎪⎩
∑

(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 + σt)}
⎫⎪⎪⎬⎪⎪⎭

= 1 + λ
2
(T − t) + 1

λ
Eε log

⎧⎪⎪⎨⎪⎪⎩
∑

(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)} exp{−λ(1 − εσt)}
⎫⎪⎪⎬⎪⎪⎭

≤ 1 + λ
2
(T − t) + 1

λ
log

⎧⎪⎪⎨⎪⎪⎩
∑

(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}Eε exp{−λ(1 − εσt)}
⎫⎪⎪⎬⎪⎪⎭

for a Rademacher random variable ε ∈ {±1}. Now,

Eε exp{−λ(1 − εσt)} = e−λEεeλεσt ≤ e−λeλ
2
/2

Substituting this into the above expression, we obtain an upper bound of

λ

2
(T − t + 1) + 1

λ
log

⎧⎪⎪⎨⎪⎪⎩
∑

(σ,σt)∈F ∣xt

g(Ldim(Ft(σ,σt)), T − t) exp{−λLt−1(σ)}
⎫⎪⎪⎬⎪⎪⎭

which completes the proof of admissibility using the same combinatorial argument as in the earlier
part of the proof.

Arriving at the Relaxation Finally, we show that the relaxation we use arises naturally as an
upper bound on the sequential Rademacher complexity. Fix a tree x. Let σ ∈ {±1}t−1 be a sequence
of signs. Observe that given history xt = (x1, . . . , xt), the signs ε ∈ {±1}T−t, and a tree x, the
function class F takes on only a finite number of possible values (σ,σt, ω) on (xt,x(ε)). Here,
x(ε) denotes the sequences of values along the path ε. We have,

sup
x

Eε sup
f∈F

{2
T−t

∑
i=1

εif(xi(ε)) −
t

∑
i=1

∣f(xi) − yi∣}

= sup
x

Eε max
σt∈{±1}

max
(σ,ω)∶(σ,σt,ω)∈F ∣(xt,x(ε))

{2
T−t

∑
i=1

εiωi −
t

∑
i=1

∣σi − yi∣}

≤ sup
x

Eε max
σt∈{±1}

max
σ∶(σ,σt)∈F ∣xt

max
v∈V (F(σ,σt),x)

{2
T−t

∑
i=1

εivi(ε) −
t

∑
i=1

∣σi − yi∣}

where F ∣(xt,x(ε)) is the projection of F onto (xt,x(ε)), F(σ,σt) = {f ∈ F ∶ f(xt) = (σ,σt)},
and V (F(σ,σt),x) is the zero-cover of the set F(σ,σt) on the tree x. We then have the following
relaxation:

1

λ
log

⎛
⎝

sup
x

Eε ∑
σt∈{±1}

∑
σ∶(σ,σt)∈F ∣xt

∑
v∈V (F(σ,σt),x)

exp{2λ
T−t

∑
i=1

εivi(ε) − λLt(σ,σt)}
⎞
⎠

where Lt(σ,σt) = ∑ti=1 ∣σi − yi∣. The latter quantity can be factorized:

1

λ
log

⎛
⎝

sup
x
∑

σt∈{±1}

∑
σ∶(σ,σt)∈F ∣xt

exp{−λLt(σ,σt)}Eε ∑
v∈V (F(σ,σt),x)

exp{2λ
T−t

∑
i=1

εivi(ε)}
⎞
⎠

≤ 1

λ
log

⎛
⎝

sup
x
∑

σt∈{±1}

∑
σ∶(σ,σt)∈F ∣xt

exp{−λLt(σ,σt)} card(V (F(σ,σt),x)) exp{2λ2(T − t)}
⎞
⎠

≤ 1

λ
log

⎛
⎝ ∑
σt∈{±1}

exp{−λ∣σt − yt∣} ∑
σ∶(σ,σt)∈F ∣xt

g(Ldim(F(σ,σt)), T − t) exp{−λLt−1(σ)}
⎞
⎠
+ 2λ(T − t) .
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This concludes the derivation of the relaxation.

Proof of Lemma 6. We first exhibit the proof for the convex loss case. To show admissibility using
the particular randomized strategy qt given in the lemma, we need to show that

sup
xt

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)} ≤RelT (F ∣x1, . . . , xt−1)

The strategy qt proposed by the lemma is such that we first draw xt+1, . . . , xT ∼ D and εt+1, . . . εT
Rademacher random variables, and then based on this sample pick ft = ft(xt+1∶T , εt+1∶T ) as in (17).
Hence,

sup
xt

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)}

= sup
xt

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

εt+1∶T
xt+1∶T

`(ft, x) + E
εt+1∶T
xt+1∶T

sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ E
εt+1∶T
xt+1∶T

sup
xt

{`(ft, x) + sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]}

where Lt(f) = ∑ti=1 `(f, xi). Observe that our strategy “matched the randomness” arising from the
relaxation! Now, with ft defined as

ft = argmin
g∈F

sup
xt∈X

{`(g, xt) + sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]}

for any given xt+1∶T , εt+1∶T , we have

sup
xt

{`(ft, xt) + sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]} = inf
g∈F

sup
xt

{`(g, xt) + sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]}

We can conclude that for this choice of qt,

sup
xt

{ E
f∼qt

[`(f, xt)] +RelT (F ∣x1, . . . , xt)} ≤ E
εt+1∶T
xt+1∶T

inf
g∈F

sup
xt

{`(g, xt) + sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]}

= E
εt+1∶T
xt+1∶T

inf
g∈F

sup
pt∈∆(X)

E
xt∼pt

[`(g, xt) + sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]]

= E
εt+1∶T
xt+1∶T

sup
p∈∆(X)

inf
g∈F

{ E
xt∼p

[`(g, xt)] + E
xt∼p

[sup
f∈F

C
T

∑
i=t+1

εi`(f, xi) −Lt(f)]}

In the last step we appealed to the minimax theorem which holds as loss is convex in g and F is a
compact convex set and the term in the expectation is linear in pt, as it is an expectation. The last
expression can be written as

E
εt+1∶T
xt+1∶T

sup
p∈∆(X)

Ext∼p sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt−1(f) + inf
g∈F

E
xt∼p

[`(g, xt)] − `(f, xt)]

≤ E
εt+1∶T
xt+1∶T

sup
p∈∆(X)

Ext∼p sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt−1(f) + E
xt∼p

[`(f, xt)] − `(f, xt)]

≤ E
εt+1∶T
xt+1∶T

Ext∼DEεt sup
f∈F

[C
T

∑
i=t+1

εi`(f, xi) −Lt−1(f) +Cεt`(f, xt)]

=RelT (F ∣x1, . . . , xt−1)
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Last inequality is by Assumption 1, using which we can replace a draw from supremum over distri-
butions by a draw from the “equivalently bad” fixed distribution D by suffering an extra factor of C
multiplied to that random instance.

The key step where we needed convexity was to use minimax theorem to swap infimum and supre-
mum inside the expectation. In general the minimax theorem need not hold. In the non-convex
scenario this is the reason we add the extra randomization through q̂t. The non-convex case has
a similar proof except that we have expectation w.r.t. q̂t extra on each round which essentially
convexifies our loss and thus allows us to appeal to the minimax theorem.

Proof of Lemma 7. Let w ∈ RN be arbitrary. We need to show

max
x∈{±1}N

Eε max
i∈[N]

∣wi + 2εxi∣ ≤ E
x∼D

E
ε

max
i∈[N]

∣wi +Cεxi∣ (35)

Let i∗ = argmax
i

∣wi∣ and j∗ = argmax
i≠i∗

∣wi∣ be the coordinates with largest and second-largest

magnitude. If ∣wi∗ ∣ − ∣wj∗ ∣ ≥ 4, the statement is immediate as the top coordinate stays at the top. It
remains to consider the case when ∣wi∗ ∣ − ∣wj∗ ∣ < 4. In this case first note that,

max
x∈{±1}N

Eε max
i∈[N]

∣wi + 2εxi∣ ≤ ∣wi∗ ∣ + 2

On the other hand, since the distribution we consider is symmetric, with probability 1/2 its sign
is negative and with remaining probability positive. Define σi∗ = sign(xi∗), σj∗ = sign(xj∗),
τi∗ = sign(wi∗), and τj∗ = sign(wj∗). Since each coordinate is drawn i.i.d., using conditional
expectations we have,

Ex,εmax
i

∣wi +Cεxi∣ = Exmax
i

∣wi +Cxi∣

≥ Ex [∣wi∗ +Cxi∗ ∣ ∣ σi∗ = τi∗]
2

+ Ex [∣wj∗ +Cxj∗ ∣ ∣ σi∗ ≠ τi∗ , σj∗ = τj∗]
4

+ E [∣wi∗ +Cxi∗ ∣ ∣ σi∗ ≠ τi∗ , σj∗ ≠ τj∗]
4

≥ Ex [∣wi∗ ∣ +C ∣xi∗ ∣ ∣ σi∗ = τi∗]
2

+ Ex [∣wj∗ ∣ +C ∣xj∗ ∣ ∣ σi∗ ≠ τi∗ , σj∗ = τj∗]
4

+ E [∣wi∗ ∣ −C ∣xi∗ ∣ ∣ σi∗ ≠ τi∗ , σj∗ ≠ τj∗]
4

= E [∣wi∗ ∣ +C ∣xi∗ ∣ ∣ σi∗ = τi∗]
2

+ E [∣wj∗ ∣ +C ∣xj∗ ∣ ∣ σj∗ = τj∗]
4

+ E [∣wi∗ ∣ −C ∣xi∗ ∣ ∣ σi∗ ≠ τi∗]
4

= ∣wi∗ ∣ +CE [∣xi∗ ∣ ∣ σi∗ = τi∗]
2

+ ∣wj∗ ∣ +CE [∣xj∗ ∣ ∣ σj∗ = τj∗]
4

+ ∣wi∗ ∣ −CE [∣xi∗ ∣ ∣ σi∗ ≠ τi∗]
4

= 2∣wi∗ ∣ + ∣wj∗ ∣ + 3CE [∣xi∗ ∣ ∣ σi∗ = τi∗]
4

+ ∣wi∗ ∣ −CE [∣xi∗ ∣ ∣ σi∗ ≠ τi∗]
4

= 3∣wi∗ ∣ + ∣wj∗ ∣ + 2CE [∣xi∗ ∣ ∣ σi∗ = τi∗]
4

Now since we are in the case when ∣wi∗ ∣ − ∣wj∗ ∣ < 4 we see that

Ex,εmax
i

∣wi+Cεxi∣ ≥
3∣wi∗ ∣ + ∣wj∗ ∣ + 2CE [∣xi∗ ∣ ∣ σi∗ = τi∗]

4
≥ 4∣wi∗ ∣ + 2CE [∣xi∗ ∣ ∣ σi∗ = τi∗] − 4

4
On the other hand, as we already argued,

max
x∈{±1}N

Eε max
i∈[N]

∣wi + 2εxi∣ ≤ ∣wi∗ ∣ + 2

Hence, as long as

C E [∣xi∗ ∣ ∣ σi∗ = τi∗] − 2

2
≥ 2

or, in other words, as long as

C ≥ 6/E [∣xi∣ ∣ sign(xi) = sign(wi)] = 6/E
x
[∣x∣] ,

we have that
max

x∈{±1}N
Eε max

i∈[N]
∣wi + 2εxi∣ ≤ Ex,εmax

i
∣wi +Cεxi∣ .

This concludes the proof.
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Lemma 13. Consider the case when X is the `N∞ ball and F is the `N1 unit ball. Let f∗ =
argmin
f∈F

⟨f,R⟩, then for any random vector R,

E
R
[sup
x∈X

{⟨f∗, x⟩ + ∥R + x∥∞}] ≤ E
R
[ inf
f∈F

sup
x

{⟨f, x⟩ + ∥R + x∥∞}] + 4 P (∥R∥∞ ≤ 4)

Proof. Let f∗ = argmin
f∈F

⟨f,R⟩. We start by noting that for any f ′ ∈ F ,

sup
x∈X

{⟨f ′, x⟩ + ∥R + x∥∞} = sup
x∈X

{⟨f ′, x⟩ + sup
f∈F

⟨f,R + x⟩}

= sup
f∈F

sup
x∈X

{⟨f ′, x⟩ + ⟨f,R + x⟩}

= sup
f∈F

{sup
x∈X

⟨f ′ + f, x⟩ + ⟨f,R⟩}

= sup
f∈F

{∥f ′ + f∥1 + ⟨f,R⟩}

Hence note that

inf
f ′∈F

sup
x∈X

{⟨f ′, x⟩ + ∥R + x∥∞} = inf
f ′∈F

sup
f∈F

{∥f ′ + f∥1 + ⟨f,R⟩} (36)

≥ inf
f ′∈F

{∥f ′ − f∗∥1 − ⟨f∗,R⟩} ≥ inf
f ′∈F

{∥f ′ − f∗∥1 + ∥R∥∞} = ∥R∥∞
(37)

On the other hand note that, f∗ is the vertex of the `1 ball (any one which given by argmin
i∈[d]

∣R[i]∣

with sign opposite as sign of R[i] on that vertex). Since the `1 ball is the convex hull of the 2d
vertices, any vector f ∈ F can be written as f = αh − βf∗ some h ∈ F such that ∥h∥1 = 1 and
⟨h,R⟩ = 0 (which means that h is 0 on the maximal co-ordinate of R specified by f∗) and for some
β ∈ [−1,1], α ∈ [0,1] s.t. ∥αh − βf∗∥1 ≤ 1. Further note that the constraint on α,β imposed by
requiring that ∥αh − βf∗∥1 ≤ 1 can be written as α + ∣β∣ ≤ 1. Hence,

sup
x∈X

{⟨f∗, x⟩ + ∥R + x∥∞} = sup
f∈F

{∥f∗ + f∥1 + ⟨f,R⟩}

= sup
α∈[0,1]

sup
h⊥f∗,∥h∥1=1

sup
β∈[−1,1],∥αh−βf∗∥1≤1

{∥(1 − β)f∗ + αh∥1 + β ⟨f∗,R⟩ + α ⟨h,R⟩}

= sup
α∈[0,1]

sup
h⊥f∗,∥h∥1=1

sup
β∈[−1,1],∥αh−βf∗∥1≤1

{∣1 − β∣ ∥f∗∥1 + α ∥h∥1 + β ∥R∥∞}

= sup
α∈[0,1]

sup
β∈[−1,1]∶∣β∣+α≤1

{∣1 − β∣ + α + β ∥R∥∞}

≤ sup
β∈[−1,1]

{∣1 − β∣ + 1 − ∣β∣ + β ∥R∥∞}

≤ sup
β∈[−1,1]

{2∣1 − β∣ + β ∥R∥∞}

= sup
β∈{−1,1}

{2∣1 − β∣ + β ∥R∥∞}

= max{∥R∥∞ ,4 − ∥R∥∞}
≤ ∥R∥∞ + 4 1{∥R∥∞ ≤ 4}

Hence combining with equation 36 we can conclude that

E
R
[sup
x

{⟨f∗, x⟩ + ∥R + x∥∞}] ≤ E
R
[ inf
f∈F

sup
x

{⟨f, x⟩ + ∥R + x∥∞}] + 4 E
R
[1{∥R∥∞ ≤ 4}]

= E
R
[ inf
f∈F

sup
x

{⟨f, x⟩ + ∥R + x∥∞}] + 4 P (∥R∥∞ ≤ 4)
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Proof of Lemma 8. On any round t, the algorithm draws εt+1, . . . , εT and xt+1, . . . , xT ∼ DN and
plays

ft = argmin
f∈F

⟨f,
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi⟩

We shall show that this randomized algorithm is (almost) admissible w.r.t. the relaxation (with some
small additional term at each step). We define the relaxation as

RelT (F ∣x1, . . . , xt) = E
xt+1,...xT ∼D

[∥
t

∑
i=1

xi −C
T

∑
i=t+1

xi∥
∞

]

Proceeding just as in the proof of Lemma 6 note that, for our randomized strategy,

sup
x

{ E
f∼qt

[⟨f, x⟩] +RelT (F ∣x1, . . . , xt)}

= sup
x

{ E
xt+1∶T ∼DN

[⟨ft, x⟩] + E
xt+1∶T ∼DN

[∥
t−1

∑
i=1

xi + x −C
T

∑
i=t+1

xi∥
∞

]}

≤ E
xt+1∶T ∼DN

[sup
x

{⟨ft, x⟩ + ∥
t−1

∑
i=1

xi + x −C
T

∑
i=t+1

xi∥
∞

}] (38)

In view of Lemma 13 (with R = ∑t−1
i=1 xi −C∑Ti=t+1 εixi) we conclude that

E
xt+1,...,xT

[sup
x∈X

{⟨ft, x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}]

≤ E
xt+1,...,xT

[ inf
f∈F

sup
x

{⟨f, x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}] + 4 P(∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi∥
∞

≤ 4)

= E
xt+1,...,xT

[sup
x

{⟨f∗t , x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}] + 4 P(∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi∥
∞

≤ 4)

where

f∗t = argmin
f∈F

sup
x

{⟨f, x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}

Combining with Equation (38) we conclude that

sup
x

{ E
f∼qt

[⟨f, x⟩] +RelT (F ∣x1, . . . , xt)}

≤ E
xt+1,...,xT

[sup
x

{⟨f∗t , x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}] + 4 P(∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi∥
∞

≤ 4)

Now, since

4 P(∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi∥
∞

≤ 4) ≤ 4 P(C ∥
T

∑
i=t+1

xi∥
∞

≤ 4) ≤ 4 Pyt+1,...,yT ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

we have

sup
x

{ E
f∼qt

[⟨f, x⟩] +RelT (F ∣x1, . . . , xt)} (39)

≤ E
xt+1,...,xT

[sup
x

{⟨f∗t , x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}] + 4 Pyt+1,...,yT ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

(40)

In view of Lemma 7, Assumption 2 is satisfied by DN with constant C. Further in the proof of
Lemma 6 we already showed that whenever Assumption 2 is satisfied, the randomized strategy
specified by f∗t is admissible. More specifically we showed that

E
xt+1,...,xT

[sup
x

{⟨f∗t , x⟩ + ∥
t−1

∑
i=1

xi −C
T

∑
i=t+1

xi + x∥
∞

}] ≤RelT (F ∣x1, . . . , xt−1)
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and so using this in Equation (39) we conclude that for the randomized strategy in the statement of
the lemma,

sup
x

{ E
f∼qt

[⟨f, x⟩] +RelT (F ∣x1, . . . , xt)}

≤RelT (F ∣x1, . . . , xt−1) + 4 Pyt+1,...,yT ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

Or in other words the randomized strategy proposed is admissible with an additional additive factor
of 4 Pyt+1,...,yT ∼D (C ∣∑Ti=t+1 yi∣ ≤ 4) at each time step t. Hence by Proposition 1 we have that for
the randomized algorithm specified in the lemma,

E [RegT ] ≤RelT (F ) + 4
T

∑
t=1

Pyt+1,...,yT ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

= C E
x1,...,xT ∼DN

[∥
T

∑
t=1

xt∥
∞

] + 4
T

∑
t=1

Pyt+1,...,yT ∼D (C ∣
T

∑
i=t+1

yi∣ ≤ 4)

This concludes the proof.

Proof of Lemma 9. Instead of using C = 4
√

2 and drawing uniformly from surface of unit sphere
we can equivalently think of the constant as being 1 and drawing uniformly from surface of sphere
of radius 4

√
2. Let ∥⋅∥ stand for the Euclidean norm. To prove (19), first observe that

sup
p∈∆(X)

E
xt∼p

∥w + E
x∼p

[x] − xt∥ ≤ sup
x∈X

E
ε
∥w + 2εx∥ (41)

for any w ∈ B. Further, using Jensen’s inequality

sup
x∈X

E
ε
∥w + 2εx∥ ≤ sup

x∈X

√
E
ε
∥w + 2εx∥2 ≤ sup

x∈X

√
∥w∥2 +E

ε
∥2εx∥2 =

√
∥w∥2 + 4

To prove the lemma, it is then enough to show that for r = 4
√

2

Ex∼D ∥w + rx∥ ≥
√

∥w∥2 + 4 (42)

for any w, where we omitted ε since D is symmetric. This fact can be proved with the following
geometric argument.

We define quadruplets (w + z1,w + z2,w − z1,w − z2) of points on the sphere of radius r. Each
quadruplets will have the property that

∥w + z1∥ + ∥w + z2∥ + ∥w − z1∥ + ∥w − z2∥
4

≥
√

∥w∥2 + 4 (43)

for any w. We then argue that the uniform distribution can be decomposed into these quadruplets
such that each point on the sphere occurs in only one quadruplet (except for a measure zero set when
z1 is aligned with −w), thus concluding that (42) holds true.

✓

z2z1

w

Figure 1: The two-dimensional construction for the proof of Lemma 9.
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Pick any direction w⊥ perpendicular to w. A quadruplet is defined by perpendicular vectors z1 and
z2 which have length r and which lie in the plane spanned by w,w⊥. Let θ be the angle between
−w and z1. Since we are now dealing with a two dimensional plane spanned by w and w⊥, we may
as well assume that w is aligned with the positive x-axis, as in Figure 1. We write w for ∥w∥. The
coordinates of the quadruplet are

(w−r cos(θ), r sin(θ)), (w+r cos(θ),−r sin(θ)), (w+r sin(θ), r cos(θ)), (w−r sin(θ),−r cos(θ))
For brevity, let s = sin(θ), c = cos(θ). The desired inequality (43) then reads

√
w2 − 8wc + r2 +

√
w2 + 8wc + r2 +

√
w2 + 8ws + r2 +

√
w2 − 8ws + r2 ≥ 4

√
w2 + 4

To prove that this inequality holds, we square both sides, keeping in mind that the terms are non-
negative. The sum of four squares on the left hand side gives 4w2 + 4r2. For the six cross terms, we
can pass to a lower bound by replacing r2 in each square root by r2c2 or r2s2, whichever completes
the square. Then observe that

∣w + rs∣ ⋅ ∣w − rs∣ + ∣w + rc∣ ⋅ ∣w − rc∣ = 2w2 − r2

while the other four cross terms

(∣w + rs∣ ⋅ ∣w − rc∣ + ∣w + rs∣ ⋅ ∣w + rc∣) + (∣w − rs∣ ⋅ ∣w + rc∣ + ∣w − rs∣ ⋅ ∣w − rc∣) ≥ ∣w + rs∣ ⋅ 2w + ∣w − rs∣ ⋅ 2w ≥ 4w2

Doubling the cross terms gives a contribution of 2(6w2 − r2), while the sum of squares yielded
4w2 + 4r2. The desired inequality is satisfied as long as 16w2 + 2r2 ≥ 16(w2 + 4), or r ≥ 4

√
2.

Proof of Lemma 10. By Lemma 9, Assumption 2 is satisfied by distribution D with constant C =
4
√

2. Hence by Lemma 7 we can conclude that for the randomized algorithm which at round t
freshly draws xt+1, . . . , xT ∼D and picks

f∗t = argmin
f∈F

sup
x∈X

{⟨f, x⟩ + ∥−
t−1

∑
i=1

xi + 4
√

2
T

∑
i=t+1

xi − x∥
2

}

(we dropped the ε’s as the distribution is symmetric to start with) the expected regret is bounded as

E [RegT ] ≤ 4
√

2 E
x1,...,xT ∼D

[∥
T

∑
t=1

xt∥
2

] ≤ 4
√

2T

We claim that the strategy specified in the lemma that chooses

ft =
−∑t−1

i=1 xi + 4
√

2∑Ti=t+1 xi√
∥−∑t−1

i=1 xi + 4
√

2∑Ti=t+1 εixi∥
2

2
+ 1

is the same as choosing f∗t . To see this let us start by defining

x̄t = −
t−1

∑
i=1

xi + 4
√

2
T

∑
i=t+1

xi

Now note that

f∗t = argmin
f∈F

sup
x∈X

{⟨f, x⟩ + ∥−
t−1

∑
i=1

xi + 4
√

2
T

∑
i=t+1

xi − x∥
2

}

= argmin
f∈F

sup
x∈X

{⟨f, x⟩ + ∥x̄t − x∥2}

= argmin
f∈F

sup
x∈X

{⟨f, x⟩ +
√

∥x̄t − x∥2
2}

= argmin
f∈F

sup
x∶∥x∥2≤1

{⟨f, x⟩ +
√

∥x̄t∥2 − 2 ⟨x̄t, x⟩ + ∥x∥2
2}

= argmin
f∈F

sup
x∶∥x∥2=1

{⟨f, x⟩ +
√

∥x̄t∥2 − 2 ⟨x̄t, x⟩ + 1}
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However this argmin calculation is identical to the one in the proof of Proposition 4 (with C = 1 and
T − t = 0) and the solution is given by

f∗t = ft =
−∑t−1

i=1 xi + 4
√

2∑Ti=t+1 xi√
∥−∑t−1

i=1 xi + 4
√

2∑Ti=t+1 εixi∥
2

2
+ 1

Thus we conclude the proof.

Proof of Lemma 11. We shall start by showing that the relaxation is admissible for the game where
we pick prediction ŷt and the adversary then directly picks the gradient ∂`(ŷt, yt). To this end note
that

inf
ŷt

sup
∂`(ŷt,yt)

{∂`(ŷt, yt) ⋅ ŷt +RelT (F ∣∂`(ŷ1, y1), . . . , ∂`(ŷt, yt))}

= inf
ŷt

sup
∂`(ŷt,yt)

{∂`(ŷt, yt) ⋅ ŷt +E
ε
[sup
f∈F

2L
T

∑
i=t+1

εif[t] −
t

∑
i=1

∂`(ŷi, yi) ⋅ f[i]]}

≤ inf
ŷt

sup
rt∈[−L,L]

{rt ⋅ ŷt +E
ε
[sup
f∈F

2L
T

∑
i=t+1

εif[t] −Lt−1(f) − rt ⋅ f[t]]}

Let us use the notation Lt−1(f) = ∑t−1
i=1 ∂`(ŷi, yi) ⋅ f[i] for the present proof. The supremum over

rt ∈ [−L,L] is achieved at the endpoints since the expression is convex in rt. Therefore, the last
expression is equal to

inf
ŷt

sup
rt∈{−L,L}

{rt ⋅ ŷt +Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) − rt ⋅ f[t]]}

= inf
ŷt

sup
pt∈∆({−L,L})

E
rt∼pt

[rt ⋅ ŷt +Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) − rt ⋅ f[t]]]

= sup
pt∈∆({−L,L})

inf
ŷt

E
rt∼pt

[rt ⋅ ŷt +Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) − rt ⋅ f[t]]]

where the last step is due to the minimax theorem. The last quantity is equal to

sup
pt∈∆({−L,L})

E
ε
[ E
rt∼pt

[inf
ŷt

E
rt∼pt

[rt] ⋅ ŷt + sup
f∈F

(2L
T

∑
i=t+1

εif[t] −Lt−1(f) − rt ⋅ f[t])]]

≤ sup
pt∈∆({−L,L})

E
ε
[ E
rt∼pt

[sup
f∈F

(2L
T

∑
i=t+1

εif[t] −Lt−1(f) + ( E
rt∼pt

[rt] − rt) ⋅ f[t])]]

≤ sup
pt∈∆({−L,L})

E
rt,r′t∼pt

[Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) + (r′t − rt) ⋅ f[t]]]

= sup
pt∈∆({−L,L})

E
rt,r′t∼pt

[Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) + εt(r′t − rt) ⋅ f[t]]]

By passing to the worst-case choice of rt, r′t (which is achieved at the endpoints because of convex-
ity), we obtain a further upper bound

sup
rt,r′t∈{L,−L}

Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) + εt(r′t − rt) ⋅ f[t]]

≤ sup
rt∈{L,−L}

Eε sup
f∈F

[2L
T

∑
i=t+1

εif[t] −Lt−1(f) + 2εtrt ⋅ f[t]]

= sup
rt∈{L,−L}

Eε sup
f∈F

[2L
T

∑
i=t

εif[t] −Lt−1(f)]

=RelT (F ∣∂`(ŷ1, y1), . . . , ∂`(ŷt−1, yt−1))
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Thus we see that the relaxation is admissible. Now the corresponding prediction is given by

ŷt = argmin
ŷ

sup
rt∈[−L,L]

{rtŷ +E
ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −
t−1

∑
i=1

∂`(ŷi, yi)f[i] − rtf[t]}]}

= argmin
ŷ

sup
rt∈[−L,L]

{rtŷ +E
ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −
t−1

∑
i=1

∂`(ŷi, yi)f[i] − rtf[t]}]}

= argmin
ŷ

sup
rt∈{−L,L}

{rtŷ +E
ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −
t−1

∑
i=1

∂`(ŷi, yi)f[i] − rtf[t]}]}

The last step holds because of convexity of the term inside the supremum over rt is convex in rt and
so the suprema is attained at the endpoints of the interval. The ŷt above is attained when both terms
of the supremum are equalized, that is for ŷt is the prediction that satisfies :

ŷt = E
ε
[sup
f∈F

{
T

∑
i=t+1

εif[i] −
1

2L

t−1

∑
i=1

∂`(ŷi, yi)f[i] +
1

2
f[t]} − sup

f∈F
{

T

∑
i=t+1

εif[i] −
1

2L

t−1

∑
i=1

∂`(ŷi, yi)f[i] −
1

2
f[t]}]

Finally since the relaxation is admissible we can conclude that the regret of the algorithm is bounded
as

RegT ≤RelT (F) = 2 L E
ε
[sup
f∈F

T

∑
t=1

εtf[t]] .

This concludes the proof.

Proof of Lemma 12. The proof is similar to that of Lemma 11, with a few more twists. We want to
establish admissibility of the relaxation given in (21) w.r.t. the randomized strategy qt we provided.
To this end note that

sup
yt

{ E
ŷt∼qt

[`(ŷt, yt)] +E
ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt(f)}]}

= sup
yt

{E
ε
[`(ŷt(ε), yt)] +E

ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt(f)}]}

≤ E
ε
[sup
yt

{`(ŷt(ε), yt) + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt(f)}}]

by Jensen’s inequality, with the usual notation Lt(f) = ∑ti=1 `(f[i], yi). Further, by convexity of
the loss, we may pass to the upper bound

E
ε
[sup
yt

{∂`(ŷt(ε), yt)ŷt(ε) + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − ∂`(ŷt(ε), yt)f[t]}}]

≤ E
ε
[sup
yt

{E
rt

[rt ⋅ ŷt(ε)] + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − E
rt

[rt ⋅ f[t]]}}]

where rt is a {±L}-valued random variable with the mean ∂`(ŷt(ε), yt). With the help of Jensen’s
inequality, and passing to the worst-case rt (observe that this is legal for any given ε), we have an
upper bound

E
ε

⎡⎢⎢⎢⎢⎣
sup
yt

⎧⎪⎪⎨⎪⎪⎩
E

rt∼∂`(ŷt(ε),yt)

[rt ⋅ ŷt(ε)] + E
rt∼∂`(ŷt(ε),yt)

[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ E
ε

⎡⎢⎢⎢⎣
sup

rt∈{±L}

{rt ⋅ ŷt(ε) + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}}
⎤⎥⎥⎥⎦

(44)

Now the strategy we defined is

ŷt(ε) = argmin
ŷt

sup
rt∈{±L}

{rt ⋅ ŷt(ε) + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −
t−1

∑
i=1

`(f[i], yi) − rt ⋅ f[t]}}
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which can be re-written as

ŷt(ε) = (sup
f∈F

{
T

∑
i=t+1

εif[i] −
1

2L
Lt−1(f) +

1

2
f[t]} − sup

f∈F
{

T

∑
i=t+1

εif[i] −
1

2L
Lt−1(f) −

1

2
f[t]})

By this choice of ŷt(ε), plugging back in Equation (44) we see that

sup
yt

{ E
ŷt∼qt

[`(ŷt, yt)] +E
ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt(f)}]}

≤ E
ε

⎡⎢⎢⎢⎣
sup

rt∈{±L}

{rt ⋅ ŷt(ε) + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}}
⎤⎥⎥⎥⎦

= E
ε

⎡⎢⎢⎢⎣
inf
ŷt

sup
rt∈{±L}

{rt ⋅ ŷt + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}}
⎤⎥⎥⎥⎦

= E
ε

⎡⎢⎢⎢⎣
inf
ŷt

sup
pt∈∆({±L})

Ert∼pt {rt ⋅ ŷt + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}}
⎤⎥⎥⎥⎦

The expression inside the supremum is linear in pt, as it is an expectation. Also note that the term
is convex in ŷt, and the domain ŷt ∈ [− supf∈F ∣f[t]∣, supf∈F ∣f[t]∣] is a bounded interval (hence,
compact). We conclude that we can use the minimax theorem, yielding

E
ε

⎡⎢⎢⎢⎣
sup

pt∈∆({±L})

inf
ŷt

E
rt∼pt

[rt ⋅ ŷt + sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}]
⎤⎥⎥⎥⎦

= E
ε

⎡⎢⎢⎢⎣
sup

pt∈∆({±L})

{inf
ŷt

E
rt∼pt

[rt ⋅ ŷt] + E
rt∼pt

[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}]}
⎤⎥⎥⎥⎦

= E
ε

⎡⎢⎢⎢⎣
sup

pt∈∆({±L})

{ E
rt∼pt

[sup
f∈F

{inf
ŷt

E
rt∼pt

[rt ⋅ ŷt] + 2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}]}
⎤⎥⎥⎥⎦

≤ E
ε

⎡⎢⎢⎢⎣
sup

pt∈∆({±L})

{ E
rt∼pt

[sup
f∈F

{ E
rt∼pt

[rt ⋅ f[t]] + 2L
T

∑
i=t+1

εif[i] −Lt−1(f) − rt ⋅ f[t]}]}
⎤⎥⎥⎥⎦

In the last step, we replaced the infimum over ŷt with f[t], only increasing the quantity. Introducing
an i.i.d. copy r′t of rt,

= E
ε

⎡⎢⎢⎢⎣
sup

pt∈∆({±L})

{ E
rt∼pt

[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) + ( E
rt∼pt

[rt] − rt) ⋅ f[t]}]}
⎤⎥⎥⎥⎦

≤ E
ε

⎡⎢⎢⎢⎢⎣
sup

pt∈∆({±L})

⎧⎪⎪⎨⎪⎪⎩
E

rt,r′t∼pt
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) + (r′t − rt) ⋅ f[t]}]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
Introducing the random sign εt and passing to the supremum over rt, r′t, yields the upper bound

E
ε

⎡⎢⎢⎢⎣
sup

pt∈∆({±L})

{Ert,r′t∼pt E
εt

[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) + (r′t − rt) ⋅ f[t]}]}
⎤⎥⎥⎥⎦

≤ E
ε

⎡⎢⎢⎢⎢⎣
sup

rt,r′t∈{±L}

{E
εt

[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) + εt (r′t − rt) ⋅ f[t]}]}
⎤⎥⎥⎥⎥⎦

≤ E
ε

⎡⎢⎢⎢⎢⎣
sup

rt,r′t∈{±L}

{E
εt

[sup
f∈F

{L
T

∑
i=t+1

εif[i] −
1

2
Lt−1(f) + εtr′t ⋅ f[t]}]}

⎤⎥⎥⎥⎥⎦

+E
ε

⎡⎢⎢⎢⎢⎣
sup

rt,r′t∈{±L}

{E
εt

[sup
f∈F

{L
T

∑
i=t+1

εif[i] −
1

2
Lt−1(f) − εtrt ⋅ f[t]}]}

⎤⎥⎥⎥⎥⎦
In the above we split the term in the supremum as the sum of two terms one involving rt and other
r′t (other terms are equally split by dividing by 2), yielding

E
ε

⎡⎢⎢⎢⎣
sup

rt∈{±L}

{E
εt

[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt−1(f) + 2 εt rt ⋅ f[t]}]}
⎤⎥⎥⎥⎦
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The above step used the fact that the first term only involved r′t and second only rt and further εt
and −εt have the same distribution. Now finally noting that irrespective of whether rt in the above
supremum is L or −L, since it is multiplied by εt we obtain an upper bound

E
ε
[sup
f∈F

{2L
T

∑
i=t

εif[i] −Lt−1(f)}]

We conclude that the relaxation

RelT (F ∣y1, . . . , yt) = E
ε
[sup
f∈F

{2L
T

∑
i=t+1

εif[i] −Lt(f)}]

is admissible and further the randomized strategy where on each round we first draw ε’s and then set

ŷt(ε) = (sup
f∈F

{
T

∑
i=t+1

εif[i] −
1

2L
Lt−1(f) +

1

2
f[t]} − sup

f∈F
{

T

∑
i=t+1

εif[i] −
1

2L
Lt−1(f) −

1

2
f[t]})

= ( inf
f∈F

{−
T

∑
i=t+1

εif[i] +
1

2L
Lt−1(f) +

1

2
f[t]} − inf

f∈F
{−

T

∑
i=t+1

εif[i] +
1

2L
Lt−1(f) −

1

2
f[t]})

is an admissible strategy. Hence, the expected regret under the strategy is bounded as

E [RegT ] ≤RelT (F) = 2L E
ε
[sup
f∈F

T

∑
i=1

εif[i]]

which concludes the proof.
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