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Abstract

We present a new online learning algorithm in the selective sampling framework, where labels must
be actively queried before they are revealed. We prove bounds on the regret of our algorithm and
on the number of labels it queries when faced with an adaptive adversarial strategy of generating
the instances. Our bounds both generalize and strictly improve over previous bounds in similar
settings. Using a simple online-to-batch conversion technique, our selective sampling algorithm can
be converted into a statistical (pool-based) active learning algorithm. We extend our algorithm and
analysis to the multiple-teacher setting, where the algorithm can choose which subset of teachers
to query for each label.

1 Introduction
A selective sampling algorithm (Cohn et al., 1990; Freund et al., 1997) is an online learning algorithm that
actively decides which labels to query. More precisely, learning takes place in a sequence of rounds. On
round t, the online learner receives an instance xt ∈ Rd and predicts a binary label ŷt ∈ {−1,+1}. Then, the
learner decides whether or not to query the true label yt associated with xt. If the label is queried, the learner
incurs a unit cost and uses the label to improve his future predictions. If the label is not queried, the learner
never knows whether his prediction was correct. Nevertheless, the accuracy of the learner is evaluated on
both queried and unqueried instances. We say that a selective sampling algorithm is robust if it works even
when the instance sequence x1,x2, ... is generated by an adaptive adversary. Robustness thereby implies a
high level of adaptation to the learning environment.

Inspired by known online ridge regression algorithms (e.g., (Hoerl & Kennard, 1970; Lai & Wei, 1982;
Vovk, 2001; Azoury & Warmuth, 2001; Cesa-Bianchi et al., 2003; Cesa-Bianchi et al., 2005; Li et al., 2008;
Strehl & Littman, 2008; Cavallanti et al., 2009; Cesa-Bianchi et al., 2009)), we begin by presenting a new
robust selective sampling algorithm within the label-noise setting considered in (Cavallanti et al., 2009; Cesa-
Bianchi et al., 2009; Strehl & Littman, 2008). We measure the predictive accuracy of our learner using the
game-theoretic notion of regret (formally defined below) and prove formal bounds on this quantity. We also
prove bounds on the number of queries issued by the learner. Our bounds are strictly better than the best
available bounds in the robust selective sampling setting, and can be shown to be optimal with respect to
certain parameters. A detailed comparison of our results with the results of the predominant previous papers
on this topic (Cesa-Bianchi et al., 2006; Strehl & Littman, 2008; Cesa-Bianchi et al., 2009) is given in
Section 2.5, after our results are presented.

Selective sampling can be viewed as an online-learning variant of active learning. The literature on active
learning is vast, and we can hardly do it justice here. Recent papers on active learning include (Balcan
et al., 2006; Balcan et al., 2007; Castro & Nowak, 2008; Dasgupta et al., 2008; Dasgupta et al., 2005;
Hanneke, 2007; Hanneke, 2009). All of these papers consider the case where instances are drawn i.i.d. from
a fixed distribution (either known or unknown). As a by-product of our adversarial analysis, we also obtain
a tight regret bound in the case where the instances xt are generated i.i.d. according to a fixed and unknown
distribution. Moreover, using an ad-hoc online-to-batch conversion technique, our online learner becomes a
randomized statistical pool-based active-learning algorithm, with a high-probability risk bound.

In the second part of this paper, we extend our algorithm and analysis to the case where the learner
has access to multiple teachers, each one with a different area of expertise and a different level of overall
competence. In other words, the learner is free to query any subset of teachers and each teacher is capable
of providing accurate labels only within some subset of the instance space. The learner is not given any
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information on the expertise region of each teacher, and must infer this information directly from the labels.
Roughly speaking, the goal of the learner is to perform as well as each teacher in their respective area of
expertise. We first present an online learner that either queries all of the teachers or does not query any
teacher. We then enhance this learner to query only those teachers it believes to be experts on xt.

The general aim of this line of research is to provide algorithms of practical utility for which we can
also provide formal performance guarantees. The motivation behind selective sampling is the same as the
motivation behind any active learning algorithm: human-generated labels are expensive and therefore we
only want labels that improve our ability to make accurate predictions. Our work within the multiple teacher
setting is motivated by an Internet search company that uses online learning techniques to determine the
results of its search engine. More concretely, the instance xt represents the pairing of a search-engine query
with a candidate web page; the goal of the online learner is to determine whether or not this pair constitutes a
good match. The company employs human teachers to provide the correct answer for any instance. Clearly,
there is no way to manually label the millions of daily search engine queries, and some intelligent mechanism
of choosing which instances to label is required. Each teacher provides labels of different quality in different
regions of the instance space. To make accurate predictions, the learner must figure out which teachers to
trust for each instance.

A learning framework sharing similar motivations to ours is the so-called “proactive learning” setting
proposed by (Donmez & Carbonell, 2008), where the learner has access to teachers of different quality,
with associated costs per label. However, no theoretical analysis is provided in that paper. To the best of
our knowledge, our paper is the first attempt to both formally model and analyze a multiple-teacher active
learning scenario.

2 The Single Teacher Case
In this section, we focus on the standard online selective sampling setting, where the learner has to learn an
accurate predictor while determining whether or not to query the label of each instance it observes. In this
setting, the learner has no control over where the label comes from. We formally define the problem setting
in Section 2.1 and introduce our algorithm in Section 2.2. We prove bounds on regret and on the number
of queries in Section 2.3. We briefly mention how to convert our online learning algorithm into a statistical
active learning algorithm in Section 2.4. Finally, we compare our algorithm to related work in Section 2.5.

2.1 Preliminaries and Notation
As mentioned above, on round t of the online learning process, the learner receives input xt ∈ Rd, predicts
ŷt ∈ {−1,+1}, and chooses whether or not to query the correct label yt ∈ {−1,+1}. We set Zt = 1 if
a query is issued and Zt = 0 otherwise. The only assumption we make on the process that generates xt is
that ‖xt‖ ≤ 1; for all we know instances may be generated by an adaptive adversary. Note that most of
the previous work on this topic makes stronger assumptions on the process that generates xt, leading to a
less general setting. As for the labels, we adopt the standard stochastic linear noise model for this problem
(Cesa-Bianchi et al., 2003; Cavallanti et al., 2009; Cesa-Bianchi et al., 2009; Strehl & Littman, 2008) and
assume that each yt ∈ {−1,+1} is sampled according to the law P (yt = 1 |xt ) = (1 + u>xt)/2, where
u ∈ Rd is a fixed but unknown vector with ‖u‖ ≤ 1. Note that under this setup, E [yt |xt ] = u>xt, and
we denote the latter by ∆t. The learner uses hyperplanes to predict the label on each round. That is, on
round t the learner predicts ŷt = sign(∆̂t) where ∆̂t = wt−1

>xt. Let Pt denote the conditional proba-
bility Pt(·) := P( ·|x1, . . . ,xt−1,xt, y1, . . . , yt−1), and Et [·] be a shorthand for the conditional expectation
E [ ·|x1, . . . ,xt−1,xt, y1, . . . , yt−1]. We evaluate the accuracy of the learner’s predictions using its cumula-
tive regret, defined as

RT =
∑T
t=1

(
Pt(yt∆̂t < 0)− Pt(yt∆t < 0)

)
.

Additionally, we are interested in the number of queries issued by the learner NT =
∑T
t=1 Zt. Our goal is

to simultaneously bound the cumulative regret RT and the number of queries NT with high probability over
the random draw of labels.

2.2 Algorithm
The single teacher algorithm is a margin-based selective sampling procedure. The algorithm “Selective Sam-
pler” (Algorithm 1) depends on a confidence parameter δ ∈ (0, 1]. As in known online ridge regression-like
algorithms (e.g., (Hoerl & Kennard, 1970; Vovk, 2001; Azoury & Warmuth, 2001; Cesa-Bianchi et al., 2003;
Cesa-Bianchi et al., 2005; Li et al., 2008; Strehl & Littman, 2008; Cavallanti et al., 2009; Cesa-Bianchi et al.,
2009)), our algorithm maintains a weight vector wt (initialized as w0 = 0) and a correlation data matrix At
(initialized asA0 = I). After receiving xt and predicting ŷt = sign(∆̂t), the algorithm computes an adaptive
data-dependent threshold θt, defined as



θ2
t = x>t A

−1
t−1xt

(
1 + 4

∑t−1
i=1 Ziri + 36log(t/δ)

)
,

where rt = x>i A
−1
i xi. The definition of θt derives from our analysis below, and can be interpreted as the

algorithm’s uncertainty in its own predictions. More precisely, the learner believes that |∆̂t − ∆t| ≤ θt.
A query is issued only if1 |∆̂t| ≤ θt, or in other words, when the algorithm is unsure about the sign of
∆t. It is important to stress the qualitative behavior of θt as evinced by the three quantities

∑t−1
i=1 Ziri,

x>t A
−1
t−1xt, and log(t/δ). The first quantity grows mildly (logarithmically) with Nt (see Lemma 16 (iii)),

the second quantity tends to shrink as 1/Nt, provided that the current xt lies along the directions spanned by
the previously observed instances, and the third quantity obviously grows logarithmically with t. As a result,
when all of the instances lie along similar directions, the threshold θt is on the order of log(t/δ)/Nt. In this
case, the factor log(t/δ) ensures that the algorithm keeps querying labels at a slow logarithmic rate. On the
other hand, if the adversary chooses xt to lie along a previously unseen direction, then the term x>t A

−1
t−1xt

causes θ2
t to be large, and the algorithm is more likely to issue query. Overall, to ensure a small uncertainty

threshold θt over all input directions determined by the adversarial choice of xt’s, the algorithm must query
on the order of log(t) labels along each direction.

If the label is not queried, (Zt = 0) then the algorithm does not update its internal state. If the label
is queried (Zt = 1), then the algorithm computes the intermediate vector w′t−1 in such a way that ∆̂′t =
w′t−1

>xt is at most one in magnitude. Observe that ∆̂t and ∆̂′t have the same sign and only their magnitudes
can differ. In particular, it holds that

∆̂′t =

{
sgn(∆̂t) if |∆̂t| > 1
∆̂t otherwise .

Next, the algorithm defines the new vector wt so that Atwt undergoes an additive update, where At is a
rank-one adjustment of At−1.

It is not hard to show that the above algorithm has a quadratic running time per round, where quadratic
means O(d2) if it is run in primal form, and O(N2

t ) if it is run in dual form (i.e., in a reproducing kernel
Hilbert space). In the dual case, since the algorithm updates only when Zt = 1, the number of labels Nt
corresponds to the number of support vectors of the current hypothesis.

2.3 Analysis
Following (Cesa-Bianchi et al., 2009), the bounds we give depend on how many of the (adversarially chosen)
inputs xt are close to being complete noise. To capture this dependence, for any ε > 0, define

Tε =
T∑
t=1

11{|∆t| ≤ ε} .

Note that if |∆t| ≤ ε then Pt(yt = 1) ∈ [1/2 + ε, 1/2 − ε]. In short, Tε is a “hardness” parameter which is
essentially controlled by the adversary. This need not be the case when data are i.i.d.; see Section 2.4.

The following theorem is the main result of this section, and is stated so as to emphasize both the data-
dependent and the time-dependent aspects of our bounds.

Theorem 1 Assume that Selective Sampler is run with confidence parameter δ ∈ (0, 1]. Then with probabil-
ity ≥ 1− δ it holds that for all T > 0 that

RT ≤ inf
ε>0

{
ε Tε +

2 + 8 log|AT |+ 144 log(T/δ)
ε

}
= inf

ε>0

{
ε Tε +O

(d log T + log(T/δ)
ε

)}
NT ≤ inf

ε>0

{
Tε +O

( log |AT | log(T/δ) + log2 |AT |
ε2

)}
= inf

ε>0

{
Tε +O

(d2 log2(T/δ)
ε2

)}
,

where |AT | is the determinant of the matrix AT .

As in (Cesa-Bianchi et al., 2009) it is easy to see that the algorithm can also be run in an infinite dimen-
sional reproducing kernel Hilbert space. In this case, the dimension d in the bounds above is replaced by a
quantity that depends on the spectrum of the data’s Gram matrix.

The proof splits into a series of lemmas. For every T > 0 and ε > 0, we define

UT,ε =
T∑
t=1

Z̄t 11
{

∆t∆̂t < 0
}

and QT,ε =
T∑
t=1

Zt 11
{

∆t∆̂t < 0,∆2
t > ε2

}
|∆t| ,

1This is denoted by Zt = 11
˘
|∆̂t| ≤ θt} in the algorithm’s pseudocode. Here and throughout 11

˘
·

¯
denotes the

indicator function.



Algorithm 1: Selective Sampler
input confidence level δ ∈ (0, 1]
initialize w0 = 0, A0 = I
for t = 1, 2, . . .

receive xt ∈ Rd : ||xt|| ≤ 1, and set ∆̂t = wt−1
>xt

predict ŷt = sgn(∆̂t) ∈ {−1,+1}
θ2
t = x>t A

−1
t−1xt

(
1 + 4

∑t−1
i=1 Ziri + 36log(t/δ)

)
Zt = 11

{
∆̂2
t ≤ θ2

t

}
∈ {0, 1}

if Zt = 1
query yt ∈ {−1,+1}

w′t−1 =

{
wt−1 −

(
|∆̂t|−1

x>t A
−1
t−1xt

)
A−1
t−1xt if |∆̂t| > 1

wt−1 otherwise
At = At−1 + xtx>t , rt = x>t A

−1
t xt, wt = A−1

t (At−1w′t−1 + ytxt)
else

At = At−1, wt = wt−1, rt = 0

where Z̄t = 1− Zt. In the above, UT,ε deals with rounds where the algorithm does not make a query, while
QT,ε deals with rounds where the algorithm does make a query. The proof exploits the potential-based method
(e.g., (Cesa-Bianchi & Lugosi, 2006)) for online ridge regression-like algorithms introduced in (Azoury &
Warmuth, 2001). See also (Hazan et al., 2006; Dani et al., 2008) for a similar use in different contexts. The
potential function we use is the (quadratic) Bregman divergence dt(u,w) = 1

2 (u−w)>At(u−w), where
At is the matrix computed by Selective Sampler at time t. The proof structure is as follows. First, Lemma
2 below decomposes the regret RT into 3 parts: RT ≤ εTε + UT,ε + QT,ε. The bound on UT,ε is given
by Lemma 3. For the bound on QT,ε and the bound on number of queries NT , we use Lemmas 4 and 5,
respectively. However, both of these lemmas require that (∆t− ∆̂t)2 ≤ θ2

t for all t. This assumption is taken
care of by the subsequent Lemma 6. Since ε is a positive free parameter, we can take the infimum over ε > 0
to get the required results. Lemmas 3 through 6 are in turn dependent on further technical lemmas given in
Appendix A and Appendix B. Appendix A contains the martingale machinery we need for handling the high
probability statements in the adaptive adversarial environment. Appendix B is essentially taken from (Azoury
& Warmuth, 2001; Cesa-Bianchi et al., 2005), and contains the Bregman divergence machinery we need for
handling our potential-based proof.

Lemma 2 For any ε > 0 it holds that RT ≤ εTε + UT,ε + QT,ε .

Proof: We have

Pt(∆̂tyt < 0)− Pt(∆tyt < 0) ≤ 11
{

∆̂t∆t ≤ 0
}∣∣∣2Pt(yt = 1)− 1

∣∣∣ = 11
{

∆̂t∆t ≤ 0
}
|∆t|

= 11
{

∆t∆̂t < 0,∆2
t ≤ ε2

}
|∆t|+ 11

{
∆t∆̂t < 0,∆2

t > ε2
}
|∆t|

≤ ε 11
{

∆t∆̂t < 0,∆2
t ≤ ε2

}
+ 11

{
∆t∆̂t < 0,∆2

t > ε2
}
|∆t| (1)

≤ ε 11
{

∆t∆̂t < 0,∆2
t ≤ ε2

}
+ 11

{
∆t∆̂t < 0,∆2

t > ε2, Zt = 0
}
|∆t|

+ 11
{

∆t∆̂t < 0,∆2
t > ε2, Zt = 1

}
|∆t|

≤ ε 11
{

∆t∆̂t < 0,∆2
t ≤ ε2

}
+ Z̄t 11

{
∆t∆̂t < 0,∆2

t > ε2
}

+ Zt 11
{

∆t∆̂t < 0,∆2
t > ε2

}
|∆t|.

Summing over t = 1 . . . T completes the proof.

Lemma 3 For any ε > 0 and T > 0, with probability at least 1− δ it holds that

QT,ε ≤
2 + 8 log|AT |+ 144 log(T/δ)

ε
= O

(
d log T + log(T/δ)

ε

)
.



Proof: We can write

QT,ε =
T∑
t=1

Zt 11
{

∆t∆̂t < 0
}

11
{

∆2
t > ε2

}
|∆t| ≤

1
ε

T∑
t=1

Zt 11
{

∆̂t∆t < 0
}

∆2
t =

1
ε

T∑
t=1

Zt 11
{

∆̂′t∆t < 0
}

∆2
t

≤ 1
ε

T∑
t=1

Zt(∆t − ∆̂′t)
2 (since ∆̂′t∆t < 0 implies ∆2

t ≤ (∆t − ∆̂′t)
2)

≤ 2
ε

T∑
t=1

Zt

(
(yt − ∆̂′t)

2 − (yt −∆t)2
)

+
144
ε

log(T/δ) (from Lemma 15 (i))

≤ 4
ε

T∑
t=1

Zt

(
dt−1(u,w′t−1)− dt(u,w′t) + 2 log

|At|
|At−1|

)
+

144
ε

log(T/δ) (from Lemma 17 (iv))

≤ 2 + 8 log|AT |+ 144 log(T/δ)
ε

(after telescoping, and using d0(u,w′0) = d0(u,w0) = ||u||2/2 ≤ 1/2, |A0| = 1)

= O

(
d log T + log(T/δ)

ε

)
,

as required.

Lemma 4 Assume that for any t, (∆t − ∆̂t)2 ≤ θ2
t holds. Then, for any ε > 0, we have UT,ε = 0

Proof: We rewrite our assumption (∆t− ∆̂t)2 ≤ θ2
t as ∆t∆̂t ≥ ∆̂2

t+∆2−θ2t
2 ≥ ∆̂2

t−θ
2
t

2 . However, if Z̄t = 1,
then ∆̂2

t > θ2
t and so ∆t∆̂t ≥ 0. Hence, under the above assumption, we can guarantee that for any t,

Z̄t 11
{

∆t∆̂t < 0
}

= 0, thereby implying UT,ε =
∑T
t=1 Z̄t 11

{
∆t∆̂t < 0,∆2

t > ε2
}

= 0.

Lemma 5 Assume that for any t, (∆t − ∆̂t)2 ≤ θ2
t holds. Then, for any ε > 0, we have

NT ≤ Tε +O

(
log |AT | log(T/δ) + log2 |AT |

ε2

)
= Tε +O

(
d2 log2(T/δ)

ε2

)
.

Proof: Let us rewrite our assumption (∆t − ∆̂t)2 ≤ θ2
t as |∆t − ∆̂t| ≤ θt. Then |∆̂t| ≤ θt implies

|∆t| ≤ 2θt. We can write

Zt = 11
{

∆̂2
t ≤ θ2

t

}
≤ 11

{
∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t

}
= 11

{
∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t , θ
2
t ≥

ε2 x>t A
−1
t−1xt

8 rt

}
+ 11

{
∆̂2
t ≤ θ2

t ,∆
2
t ≤ 4θ2

t , θ
2
t <

ε2 x>t A
−1
t−1xt

8 rt

}

≤ 11

{
∆̂2
t ≤ θ2

t , θ
2
t ≥

ε2 x>t A
−1
t−1xt

8 rt

}
+ 11

{
∆2
t ≤ 4θ2

t , θ
2
t <

ε2 x>t A
−1
t−1xt

8 rt

}
. (2)

By Lemma 16 (i) we have xTt A
−1
t−1xt ≤ 2 rt, hence 11

{
∆2
t ≤ 4θ2

t , θ
2
t <

ε2 x>t A
−1
t−1xt

8 rt

}
≤ 11

{
∆2
t ≤ ε2

}
.

Plugging back into (2) and summing over t shows that NT ≤ Tε +
∑T
t=1 11

{
∆̂2
t ≤ θ2

t , θ
2
t ≥

ε2 x>t A
−1
t−1xt

8 rt

}
,

for any ε > 0. Now observe that, by the definitions of Zt and θt,

T∑
t=1

{
∆̂2
t ≤ θ2

t ,θ
2
t ≥

ε2 x>t A
−1
t−1xt

8 rt

}
=

T∑
t=1

Zt 11
{

8 rt
(

1 + 4g(t− 1) + 36 log(t/δ)
)
≥ ε2

}
≤ 8
ε2

T∑
t=1

Zt rt

(
1 + 4g(t− 1) + 36 log(t/δ)

)
≤ 8
ε2

(1 + 36 log(T/δ)) log |AT |+
32
ε2

T∑
t=1

Ztrtg(t− 1) (from Lemma 16 (ii)) .



Then we have
8
ε2

(1 + 36 log(T/δ)) log |AT |+
32
ε2
∑T
t=1 Ztrtg(t− 1)

≤ 8
ε2

(1 + 36 log(T/δ)) log |AT |+
16
ε2
∑T
t=1

(
g2(t)− g2(t− 1)

)
≤ 8
ε2

(1 + 36 log(T/δ)) log |AT |+
16
ε2

log2 |AT | (again from Lemma 16 (ii))

= O

(
log |AT | log(T/δ) + log2 |AT |

ε2

)
= O

(
d2 log2(T/δ)

ε2

)
.

Since the above holds for any ε > 0, this concludes the proof.

Lemma 6 Assume that Selective Sampler is run with confidence parameter δ ∈ (0, 1]. Then with probability
≥ 1− δ it holds that for all t

(∆t − ∆̂t)2 ≤ θ2
t .

Proof: First note that by Hölder’s inequality,

(∆t − ∆̂t)2 = ((wt−1 − u)>xt)2 ≤ 2 xTt A
−1
t−1xt dt−1(wt−1,u) . (3)

Now let t′ := argmaxj≤t−1 :Zj=1j, that is, t′ is the last time step (up to time t − 1) on which the algorithm
issued a query. Then Lemma 16 (i), (ii), (iii), allows us to write

1
2

t′∑
i=1

Zi

(
(yi − ∆̂′i)

2 − (yi −∆i)2
)
≤
t′−1∑
i=1

Zi
(
di−1(u,w′i−1)− di(u,w′i) + 2Ziri

)
+ dt′−1(u,w′t′−1)− dt′(u,wt′) + 2rt′

≤ 1
2
− dt′(u,wt′) + 2g(t′) ,

where the last step comes from the telescoping sum and the fact that d0(u,w′0) = d0(u,w0) = 1
2‖u‖

2 ≤
1/2. Moreover, by definition of t′, we see that g(t′) = g(t− 1) and Zj = 0 for any j ∈ [t′+ 1, t− 1]. Hence
for any such j we have wj = wt′ . This yields

1
2

t−1∑
i=1

Zi

(
(yi − ∆̂′i)

2 − (yi −∆i)2
)
≤ 1

2
− dt−1(u,wt−1) + 2g(t− 1) .

Plugging back into (3) gives

(∆t − ∆̂t)2 ≤ 2 xTt A
−1
t−1xt

(
1/2 + 2 g(t− 1)− 1

2

t−1∑
i=1

Zi
(
(yi − ∆̂′i)

2 − (yi −∆i)2
))
. (4)

A direct application of Lemma 15 (ii) shows that for any given t > 1, with probability at least 1− δ/t2,

(∆t − ∆̂t)2 ≤ x>t A
−1
t−1xt (1 + 4 g(t− 1) + 36 log(t/δ)) = θ2

t .

Finally, a union bound allows us to conclude that (∆t − ∆̂t)2 ≤ θ2
t holds simultaneously for all t with

probability at least 1− δ.

Remark 1 Computing the intermediate vector w′t−1 from wt−1, as defined in the Selective Sampler pseu-
docode, corresponds to projecting wt−1 onto the convex set Ct = {w ∈ Rd : |w>xt| ≤ 1} w.r.t. Bregman
divergence dt−1, i.e., w′t−1 = argminu∈Ctdt−1(u,wt−1). Notice that Ct includes the unit ball since xt
is normalized. This projection step is needed for technical purposes during the construction of a suitable
(bounded variance) martingale difference sequence (see Lemma 15 in Appendix A). Unlike similar construc-
tions (e.g. (Hazan et al., 2006; Dani et al., 2008)), we do not project onto the unit ball, which would involve a
line search over matrices and would slow down the algorithm to a significant extent. On the other hand, it is
also interesting to observe that Selective Sampler performs the projection onto Ct only a logarithmic number
of times. This is because

T∑
t=1

11
{

∆̂2
t ≤ θ2

t , |∆̂t| > 1
}
≤

T∑
t=1

Zt∆̂2
t ≤

T∑
t=1

Ztθ
2
t ≤ 2

T∑
t=1

Zt rt

(
1 + 4 g(t− 1) + 36log(t/δ)

)
,

which is O
(
d2 log2(T/δ)

)
by Lemma 16 (iii).



2.4 An Online-to-Batch Conversion
It is instructive to see what the bound in Theorem 1 looks like when we assume that the instances xt are
drawn i.i.d. according to an unknown distribution over the Euclidean unit sphere, and to compare this bound
to standard statistical learning bounds. We model the distribution of the instances near the hyperplane {x :
u>x = 0} using the well-known Mammen-Tsybakov low noise condition (Tsybakov, 2004) :

There exist c > 0 and α ≥ 0 such that P
(
|u>x| < ε

)
≤ c εα for all ε > 0.

We now describe a simple randomized algorithm which, with high probability over the sampling of the data,
returns a linear predictor with a small expected risk (expectation is taken over the randomization of the
algorithm). The algorithm is as follows:

1. Run Algorithm 1 with confidence level δ on the data (x1, y1), ..., (xT , yT ), and obtain the sequence of
predictors w0,w1, . . . ,wT−1

2. Pick r ∈ {0, 1, . . . , T − 1} uniformly at random and return wr.

The following theorem (whose proof is sketched in Appendix C) is the outcome of our online-to-batch con-
version. It is important to stress that, due to the unavailability of all labels, standard conversion techniques
(e.g., (Cesa-Bianchi & Gentile, 2008)), where a single deterministic hypothesis is returned, do not readily
apply here.

Theorem 7 Let wr be the linear hypothesis returned by the above algorithm. Then with probability ≥ 1− δ
we have

Er
[
P ′r(y w>r x < 0)

]
≤ P (y u>x < 0) +O

(
(d log(T/δ))

α+1
α+2 T−

α+1
α+2 + log

(
log T

δ

)
/T

)
,

NT = O
(

(d2 log2(T/δ))
α
α+2 T

2
α+2 + log(1/δ)

)
,

where Er is the expectation over the randomization in the algorithm, and P ′r(·) denotes the conditional
probability2 P (· |x1, . . . ,xr−1, y1, . . . , yr−1).

As α goes from 0 (no assumptions on the noise) to∞ (hard separation assumption), the above bound on the
average regret roughly interpolates between 1/

√
T and 1/T . Correspondingly, the bound on the number of

labelsNT goes from T to log2 T . In particular, observe that, viewed as a function ofNT (and disregarding log

factors), the instantaneous regret is of the form N
−α+1

2
T . These bounds are sharper than those in (Cavallanti

et al., 2009) and, in fact, no further improvement is generally possible (see Castro and Nowak (2008)). The
same rates are obtained by (Hanneke, 2009) under much more general conditions, for less efficient algorithms
that are based on empirical risk minimization.

One might wonder whether an adaptively adversarial model of learning might somehow be overkill for
obtaining i.i.d. results. As a matter of fact, the way our algorithm works makes the adaptively adversarial
analysis strictly necessary even for deriving the above i.i.d. results.

2.5 Related Work
Selective sampling is an online learning framework lying between passive learning (where the algorithm has
no control over the learning sequence) and fully active learning (where the learning algorithm is allowed to
select the instances xt). Recent papers on active learning include (Balcan et al., 2006; Bach, 2006; Balcan
et al., 2007; Castro & Nowak, 2008; Dasgupta et al., 2008; Dasgupta et al., 2005; Hanneke, 2007; Hanneke,
2009). All of these papers consider the case when instances are drawn i.i.d. from a fixed distribution (either
known or unknown). In particular, (Dasgupta et al., 2005) gives an efficient Perceptron-like algorithm for
learning within accuracy ε the class of homogeneous d-dimensional half-spaces under the uniform distribution
over the unit ball, with label complexity of the form d log 1

ε . Still in the i.i.d. setting, more general results
are given in (Balcan et al., 2007). A neat analysis of previously proposed general active learning schemes
(Balcan et al., 2006; Dasgupta et al., 2008) is provided by the aforementioned paper (Hanneke, 2009). Due to
their generality, many of the above results rely on schemes that are computationally prohibitive (exceptions
being the results in (Dasgupta et al., 2005) and the realizable cases analyzed in (Balcan et al., 2007)). Finally,
pool-based active learning scenarios are considered in (Bach, 2006, and the references therein), though the
analysis is only asymptotic in nature and no quantification is given of the trade-off between risk and number
of labels.

2Notice the difference with the conditional probability Pr(·) defined in Section 2.1.



The results of Theorem 1 are more in line with the worst-case analyses in (Cesa-Bianchi et al., 2006;
Strehl & Littman, 2008; Cesa-Bianchi et al., 2009). These papers present variants of Recursive Least Squares
algorithms that operate on arbitrary instance sequences. The analysis in (Cesa-Bianchi et al., 2006) is com-
pletely worst case: the authors make no assumptions whatsoever on the mechanism generating instances or
labels; however, they are unable to prove bounds on the label query rate. The setups in (Strehl & Littman,
2008; Cesa-Bianchi et al., 2009) are closest to ours in that they assume the same linear stochastic noise-model
used in our analysis. The algorithm presented in (Strehl & Littman, 2008) approximates the Bayes margin
to within a given accuracy ε, and queries Õ(d3/ε4) labels; this bound is significantly inferior to our bound,
and it seems to hold only in the finite-dimensional case. The bounds presented in (Cesa-Bianchi et al., 2009)
apply only to oblivious adversaries (which do not adapt to the predictions of the learner) and yet we obtain
sharper bounds on both the cumulative regret and the number of queried labels.

3 The Multiple Teacher Case
The problem is still online binary classification, where at each time step t = 1, 2, . . . the learner receives
an input xt ∈ Rd, with ‖xt‖ ≤ 1, and outputs a binary prediction ŷt. However, there are now K available
teachers, each with his own area of expertise. If xt falls within the expertise region of teacher j, then that
teacher can provide an accurate label. After making each binary prediction, the learner chooses if to issue a
query to one or more of the K teachers. The learner is free to query any subset of teachers, but each teacher
charges a unit cost per label. The expertise region of each teacher is unknown to the learner, and can only be
inferred indirectly from the binary labels purchased from that teacher.

Formally, we assume that teacher j is associated with a weight vector uj ∈ Rd, where ‖uj‖ ≤ 1.
If teacher j is queried on round t, he stochastically generates the binary label yj,t according to the law
Pt(yj,t = 1|xt) = (1 + ∆j,t)/2, where ∆j,t = uj>xt and, as in Section 2, xt can be chosen adversarially
depending on previous x’s and yj’s. We consider |∆j,t| to be the confidence of teacher j in its label for xt.
When the learner issues a query, he receives nothing other than the binary label itself, and the confidence is
only part of our theoretical model of the teacher. If xt is almost orthogonal to uj then teacher j has a very
low confidence in its label, and we say that xt lies outside the expertise region of teacher j.

It is no longer clear how we should evaluate the performance of the learner, since the K teachers will
often give inconsistent labels on the given xt, and we do not have a well defined ground truth to compare
against. Intuitively, we would like the learner to predict the label of xt as accurately as the teachers who are
experts on xt. To formalize this intuition, define the average margin of a generic subset of teachers3 C ⊆ [K]
as ∆C,t = 1

|C|
∑
i∈C ∆i,t. Now choose a parameter τ > 0 and define

j?t = argmaxj |∆j,t| and Ct = {i : |∆i,t| ≥ |∆j?t ,t
| − τ} . (5)

In words, j?t is the most confident teacher at time t, and Ct is the set of confident teachers at time t. This
means that τ is a tolerance parameter that defines how confident a teacher must be, compared to the most
confident teacher, to be considered a confident teacher. Although τ does not appear explicitly in the notation
Ct, the reader should keep in mind thatCt and other sets defined later on in this section all depend on τ . Using
the definitions above, ∆Ct,t is the average margin of the confident teachers, and we abbreviate ∆t = ∆Ct,t.

Now, let yt be the random variable that takes values in {−1, 1}, with Pt(yt = 1|xt) = (1 + ∆t)/2. In
words, yt is the binary label generated according to the average margin of the confident teachers. We consider
the sequence y1, . . . , yT to be our ad-hoc ground-truth, and the goal of our algorithm is to accurately predict
this sequence. Note that an equivalent way of generating yt is by picking a confident teacher j uniformly
at random from Ct and setting yt = yj,t. Indeed there are other reasonable ways to define the ground-truth
for this problem, however, we feel that our definition coincides with our intuitions on learning from teachers
with different areas of expertise. If τ is set to be 1, the learner is compared against the average margin of all
K teachers, while if τ = 0, the learner is compared against the single most confident teacher.

We now describe and analyze two algorithms working in within the multiple teacher setting. We call
these algorithms ”first version” and ”second version”. In the first version, the algorithm queries all teachers
or none. The second version is more refined in that the algorithm only queries subsets of teachers.

3.1 Algorithm, First Version
The learner attempts to model each weight vector uj with a sequence of weight vectors (wj,t)Tt=1. As in the
single teacher case, the learner maintains a variable threshold θt, which can be interpreted as the learner’s
confidence in its current set of weight vectors. The learner attempts to mimic the process of generating yt by
choosing its own set of confident teachers at each time step. Denoting ∆̂j,t = wj,t

>xt, the learner defines

ĵt = argmaxj |∆̂j,t| and Ĉt = {i : |∆̂i,t| ≥ |∆̂ĵt,t
| − τ − 2θt} ,

3Here and throughout, [K] = {1, 2, . . . ,K}.



Algorithm 2: Multiple Teacher Selective Sampler – first version

input confidence level δ ∈ (0, 1], tolerance parameter τ ≥ 0
initialize A0 = I , ∀j ∈ [K] wj,0 = 0
for t = 1, 2, . . .

receive xt ∈ Rd : ||xt|| ≤ 1

θ2
t = x>t A

−1
t−1xt

(
1 + 4

∑t−1
i=1 Ziri + 36log(Kt/δ)

)
∀j ∈ [K] ∆̂j,t = wj,t−1

>xt and ĵt = argmaxj |∆̂j,t|

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{
1 if ∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0 or |∆̂S∪Ĥt, t| ≤ θt
0 otherwise

if Zt = 1
query y1,t, . . . , yK,t

At = At−1 + xtx>t , rt = x>t A
−1
t xt

for j = 1, . . . ,K

w′j,t−1 =

{
wj,t−1 −

(
|∆̂j,t|−1

x>t A
−1
t−1xt

)
A−1
t−1xt if |∆̂j,t| > 1,

wj,t−1 otherwise

wj,t = A−1
t (At−1w′j,t−1 + yj,txt)

else
At = At−1, rt = 0 and ∀j ∈ [K] wj,t = wj,t−1

where ĵt is the learner’s estimate of the most confident teacher, and Ĉt is the learner’s estimate of the set of
confident teachers. Note that the definition of Ĉt is more inclusive than the definition of Ct in Eq. (5), in that
it also includes teachers whose confidence falls below |∆̂ĵt,t

|−τ . This accounts for the uncertainty regarding
the learner’s set of weight vectors.

As above, we define the notation ∆̂C,t = 1
|C|
∑
i∈C ∆̂i,t, and abbreviate ∆̂t = ∆̂Ĉt,t

. The

learner predicts the binary label ŷt = sgn(∆̂t). Let Pt denote the conditional probability Pt(·) =
P( ·|x1, y1,1 . . . , yK,1,x2, y1,2 . . . , yK,2, . . .xt−1, y1,t−1, . . . yK,t−1,xt), and define the regret of the learner
as

RT =
T∑
t=1

(
Pt(yt∆̂t < 0)− Pt(yt∆t < 0)

)
. (6)

Next, we proceed to describe our criterion for querying teachers. We present a simple criterion that either sets
Zt = 1 and queries all of the teachers or sets Zt = 0 and queries none of them. Therefore, the learner either
incurs a cost of K or a cost of 0 on each round. Although this criterion never queries subsets of teachers, it
uses the multiple labels to make less queries overall. We partition the set of confident teachers Ĉt into two
sets,

Ĥt = {i : |∆̂i,t| ≥ |∆̂ĵt,t
| − τ + 2θt}

B̂t = {i : |∆̂ĵt,t
| − τ − 2θt ≤ |∆̂i,t| < |∆̂ĵt,t

| − τ + 2θt} .

Ĥt is the set of teachers with especially high confidence, while B̂t is the set of teachers with borderline
confidence. Intuitively, the learner is unsure whether the teachers in B̂t should or should not be included in
Ĉt. The learner issues a query (to allK teachers) if there exists a set S ⊆ B̂t such that either ∆̂t∆̂Ĥt∪S, t < 0
or |∆̂Ĥt∪S, t| ≤ θt. In other words, the learner searches for a subset of B̂t such that replacing B̂t with that
subset would either flip the sign of ∆̂t or make it too small. If a query is issued, each weight vector wj,t is
updated as in the single teacher case. Pseudocode of this learner is given in Algorithm 2.

3.2 Analysis, First Version
Our learning algorithm relies on labels it receives from a set of teachers, and therefore our bounds should nat-
urally depend on the ability of those teachers to provide accurate labels for the concrete sequence x1, . . . ,xT .



For example, if an input xt lies outside the expertise regions of all teachers, we cannot hope to learn anything
from the labels provided by the teachers for this input. Similarly, there is nothing we can do on rounds where
the set of confident teachers is split between two equally confident but conflicting opinions. We count these
difficult rounds by defining, for any ε > 0,

Tε =
T∑
t=1

11{|∆t| ≤ ε} . (7)

The above is just a multiple teacher counterpart to (2.3). However it is interesting to note that even in a
case where most teachers have low confidence in their prediction on any given round, Tε can still be small
provided that the experts in the field have a confident opinion.

A more subtle difficulty presents itself when the collective opinion expressed by the set of confident
teachers changes qualitatively with a small perturbation of the input xt or one of the weight vectors uj . To
state this formally, define for any ε > 0

Hε,t = {i : |∆i,t| ≥ |∆j?t ,t
| − τ + ε}

Bε,t = {i : |∆j?t ,t
| − τ − ε ≤ |∆i,t| < |∆j?t ,t

| − τ + ε} .

The set Hε,t is the subset of teachers in Ct with especially high confidence, ε higher than the minimal confi-
dence required for inclusion in Ct. In contrast, the set Bε,t is the set of teachers with borderline confidence:
either teachers in Ct that would be excluded if their margin were smaller by ε, or teachers that are not in
Ct that would be included if their margin were larger by ε. We say that the average margin of the confident
teachers is unstable with respect to τ and ε if |∆t| > ε but we can find a subset S ⊆ Bε,t such that either
∆t∆S∪Hε,t, t < 0 or |∆S∪Hε,t, t| < ε. In other words, we are dealing with the situation where ∆t is suffi-
ciently confident, but a small ε-perturbation to the margins of the individual teachers can cause its sign to flip,
or its confidence to fall below ε. We count the unstable rounds by defining, for any4 ε > 0,

T ′ε =
T∑
t=1

11
{
|∆t| > ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t, t < 0 ∨ |∆S∪Hε,t, t| ≤ ε

}
. (8)

Intuitively T ′ε counts the number of rounds on which an ε-perturbation of the ∆t,j of the teachers either
changes the sign of the average margin or results an average margin close to zero. Like Tε, this quantity
measures an inherent hardness of the multiple teacher problem.

The following theorem is the main theoretical result of this section. It provides an upper bound on the
regret of the learner, as defined in Eq. (6), and on the total cost of queries, NT = K

∑T
t=1 Zt. Again, we

stress both the data and the time-dependent aspects of the bound.

Theorem 8 Assume Algorithm 2 is run with a confidence parameter δ > 0. Then with probability at least
1− δ it holds for all T > 0 that

RT ≤ inf
ε>0

{
εTε + T ′ε +O

(
log |AT | log(KT/δ) + log2 |AT |

ε2

)}
= inf

ε>0

{
εTε + T ′ε +O

(
d2 log2(KT/δ)

ε2

)}
,

NT ≤ K inf
ε>0

{
Tε + T ′ε +O

(
log |AT | log(KT/δ) + log2 |AT |

ε2

)}
= K inf

ε>0

{
Tε + T ′ε +O

(
d2 log2(KT/δ)

ε2

)}
.

As in the proof of Theorem 1, we begin by decomposing the regret. For any ε > 0, Lemma 9 states that
RT ≤ εTε + T ′ε + UT,ε +QT,ε, where Tε is defined in Eq. (7), T ′ε is defined in Eq. (8), and

UT,ε =
∑T
t=1 Z̄t 11

{
∆t∆̂t < 0

}
, QT,ε =

∑T
t=1 Zt 11

{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t | > ε

}
.

Tε and T ′ε deal with time steps on which the ground truth itself is unreliable, UT,ε sums over rounds
where the learner does not make a query, and QT,ε sums over rounds where a query is issued. Simi-
larly, for any ε > 0, Lemma 10 upper bounds the number of time steps on which a query is issued by

4Notice that, up to degenerate cases, both Tε and T ′ε tend to vanish as ε→ 0. Hence, as in the single teacher case, the
free parameter ε trades-off hardness terms against regret terms.



Algorithm 3: Multiple Teacher Selective Sampler – second version

input confidence level δ ∈ (0, 1], tolerance parameter τ ≥ 0
initialize Aj,0 = I, wj,0 = 0, ∀j ∈ [K]
for t = 1, 2, . . .

receive xt ∈ Rd : ||xt|| ≤ 1

∀j ∈ [K], θ2
j,t = x>t A

−1
j,t−1xt

(
1 + 4

∑t−1
i=1 Zirj,i + 36log(Kt/δ)

)
∀j ∈ [K], ∆̂j,t = wj,t−1

>xt and ĵt = argmaxj |∆̂j,t|

predict ŷt = sgn(∆̂t) ∈ {−1,+1}

Zt =

{
1 if ∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0 or |∆̂S∪Ĥt, t| ≤ θS∪Ĥt, t
0 otherwise

if Zt = 1 and j ∈ Ĉt
query yj,t

Aj,t = Aj,t−1 + xtx>t , rj,t = x>t A
−1
j,t xt

w′j,t−1 =

{
wj,t−1 −

(
|∆̂j,t|−1

x>t A
−1
j,t−1xt

)
A−1
j,t−1xt if |∆̂j,t| > 1,

wj,t−1 otherwise

wj,t = A−1
j,t (Aj,t−1w′j,t−1 + yj,txt)

else
Aj,t = Aj,t−1, rj,t = 0 and wj,t = wj,t−1

Tε + T ′ε + QT,ε . Lemma 11 upper bounds QT,ε and Lemma 12 upper bounds UT,ε. Both lemmas rely on
the assumption that |∆j,t− ∆̂j,t| ≤ θt for all t ∈ [T ] and j ∈ [K]. A straightforward stratification of Lemma
6 in Section 2 over the K teachers verifies that this condition holds with high probability. The mentioned
lemmas are proven in Appendix C.

Lemma 9 For any ε > 0 it holds that RT ≤ εTε + T ′ε + UT,ε +QT,ε.

Lemma 10 For any ε > 0, it holds that
∑T
t=1 Zt ≤ Tε + T ′ε +QT,ε.

Lemma 11 If |∆j,t − ∆̂j,t| ≤ θt holds for all j ∈ [K] and t ∈ [T ], then

QT,ε = O
(

log |AT | log(KT/δ) + log2 |AT |
ε2

)
= O

(
d2 log2(KT/δ)

ε2

)
.

Lemma 12 If |∆j,t − ∆̂j,t| ≤ θt for all j ∈ [K] and t ∈ [T ], then UT,ε = 0 for all ε > 0.

3.3 Algorithm, Second Version

The second version differs from the first one in that now each teacher j has its own threshold θj,t, and also
its own matrix Aj,t. As a consequence, the set of confident teachers Ĉt and the partition of Ĉt into highly
confident (Ĥt) and borderline (B̂t) teachers have to be redefined as follows:

Ĉt = {j : |∆̂j,t| ≥ |∆̂ĵt,t
| − τ − θj,t − θĵt,t}, where ĵt = argmaxj |∆̂j,t|,

Ĥt = {i : |∆̂i,t| ≥ |∆̂ĵt,t
| − τ + θj,t + maxj∈Ĉtθj,t},

B̂t =
{
i : |∆̂ĵt,t

| − τ − θj,t − θĵt,t ≤ |∆̂i,t| < |∆̂ĵt,t
| − τ + θj,t + maxj∈Ĉtθj,t

}
.

The pseudocode is given in Algorithm 3. Notice that the query condition defining Zt now depends on an
average threshold θS∪Ĥt, t = 1

|S∪Ĥt|

∑
j∈S∪Ĥt θj,t .



3.4 Analysis, Second Version
The following theorem bounds the cumulative regret and the total number of queries with high probability.
The proof is omitted since it is similar to the proof of Theorem 8. We keep the definitions of the sets Hε,t

and Bε,t as given in Section 3.2, but in the bound on NT in Theorem 13, we replace T ′ε with the more refined
quantity T ′′ε , where

T ′′ε =
T∑
t=1

|Hε,t ∪Bε,t|
K

11
{
|∆t| > ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t, t < 0 ∨ |∆S∪Hε,t, t| ≤ ε

}
.

Note that T ′′ε is similar to T ′ε except that while T ′ε only counts the number of times that perturbations to the
∆j,t’s lead to conflict or low confidence predictions, T ′′ε counts the fraction of confident teachers involved in
the conflict. If for most xt only a few of the K teachers are experts (highly confident), then one would expect
T ′′ε to be much smaller than T ′ε and thus we expect the number of queries to be small.

Theorem 13 Assume Algorithm 3 is run with a confidence parameter δ > 0. Then with probability at least
1− δ it holds for all T > 0 that

RT ≤ inf
ε>0

{
εTε + T ′ε +O

(
K log |AT | log(KT/δ) +K log2 |AT |

ε2

)}
= inf
ε>0

{
εTε + T ′ε +O

(
K d2 log2(KT/δ)

ε2

)}
,

NT ≤ K inf
ε>0

{
Tε + T ′′ε +O

(
K log |AT | log(KT/δ) +K log2 |AT |

ε2

)}
= K inf

ε>0

{
Tε + T ′′ε +O

(
K d2 log2(KT/δ)

ε2

)}
.

Note that the above theorem holds at the cost of losing a factor K elsewhere in the regret terms, thereby
making Theorem 8 and Theorem 13 incomparable.

4 Conclusions and Ongoing Research
We introduced a new Ridge-Regression-like algorithm operating in a robust selecting sampling environment,
where the adversary can adapt on the fly to the algorithm’s choices. We gave sharp bounds on the cumulative
regret and the number of queries made by this algorithm, solving questions left open in previous investiga-
tions. We then lifted this machinery to solving the more involved problem where multiple unreliable teachers
are available. We gave two algorithms and corresponding analyses.

We are currently running experiments on real-world data (the experimental setting is somewhat similar to
the one described in (Donmez & Carbonell, 2008)) to see the performance of the multiple teacher algorithms
compared to the simple baseline where K independent instances of the single teacher algorithm (Algorithm
1) are run in parallel. An implementation issue of the multiple teacher algorithms we have presented is the
exponential explosion that seemingly arises when computing Zt, due to the need to check all possible subsets
S ⊆ B̂t. As a matter of fact, this check can be computed efficiently by sorting the teachers according to their
estimated confidence |∆̂j,t|. Though preliminary, our experiments suggest that the multiple teacher algorithm
largely outperforms the baseline, both in terms of accuracy and total number of requested labels.

On the theoretical side, a couple of points we are at present investigating are the following: i) The bound
on NT in Theorem 1 is tight w.r.t. ε (see the lower bound in (Cesa-Bianchi et al., 2009)), but need not be
tight w.r.t. d. This might be due to the way we constructed our martingale difference sequence in Lemma 6.
ii) The bounds for the multiple teacher algorithms in Theorems 8 and 13 are likely to be suboptimal, and we
are currently trying to better exploit the interaction structure among teachers.
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A Appendix
Lemma 14 ((Kakade & Tewari, 2008)) Suppose X1, X2, ..., XT is a martingale difference sequence with
|Xt| ≤ b. Let Vart(Xt) = Var(Xt|X1, ..., Xt−1), and V =

∑T
t=1 Vart(Xt). Then for any δ < 1/e and

T ≥ 3, we have

P
( T∑
t=1

Xt > max
{√

4V log
4 log T
δ

, 3b log
4 log T
δ

})
≤ δ.

Lemma 15 With the notation introduced in Section 2, define

µt =
t∑
i=1

Zi(∆i − ∆̂′i)
2, Σt =

t∑
i=1

Zi

(
(yi − ∆̂′i)

2 − (yi −∆i)2
)
.

Assume that Selective Sampler in Section 2 is run with confidence parameter δ ∈ (0, 1], and let t ≥ 3. Then

(i) with probability at least 1− δ/t2 we have µt ≤ 2 Σt + 144 log(t/δ);
(ii) with probability at least 1− δ/t2 we have − 1

2 Σt ≤ 36 log(t/δ).

Proof: Set Mi = Zi (∆i − yi)(∆i − ∆̂′i), and observe that Mi can be rewritten as

Mi =
1
2
Zi

(
(∆i − ∆̂′i)

2 −
(

(yi − ∆̂′i)
2 − (yi −∆i)2

))
,

which implies 1
2 (µt − Σt) =

∑t
t=1Mi. Now, M1, ...,Mt is a martingale difference sequence w.r.t. history

and current xi. This is because Ei [Mi] = Zi (∆i − Ei [yi])(∆i − ∆̂′i) = 0 . Since |∆t|, |∆̂t| ≤ 1, we
also have that |Mi| ≤ 4. Let Vari(·) denote the conditional variance Var(· |x1, . . . ,xi−1,xi, y1, . . . , yi−1).
Observing that Vari(Mi) = Zi (∆i − ∆̂′i)

2Vari
(
(∆i − yi)2

)
≤ 4

3 Zi(∆i − ∆̂′i)
2 holds, an application of

Lemma 14 yields

1
2

(µt − Σt) ≤ max

{√
6 µt log

(
4t2 log t

δ

)
, 12 log

(
4t2 log t

δ

)}
. (9)

We now use the inequality
√
ab ≤ a+b

2 to (9) with a = µt/2 and b = 12 log
(

4t2 log t
δ

)
. This implies

1
2

(µt − Σt) ≤ µt/4 + 12 log
(

4t2 log t
δ

)
which in turn implies (i). To prove (ii), we again apply

√
ab ≤ a+b

2 to (9), this time with a = µt and

b = 6 log
(

4t2 log t
δ

)
.

B Appendix
Most of the steps in the proofs of these lemmas appear in (Azoury & Warmuth, 2001; Cesa-Bianchi et al.,
2005). Hence we feel authorized to omit details.

Lemma 16 With the notation introduced in Section 2, we have that for each t = 1, 2, . . . the following
inequalities hold :

(i) x>At−1xt ≤ 2rt;

(ii) Ztrt ≤ log |At|
|At−1| ;

(iii)
∑t
i=1 Ziri ≤ log |At| ≤ d log(1 +Nt) = O(d log t).

Lemma 17 With the notation introduced in Section 2, the following holds for any u : ||u|| ≤ 1:

(i) If t is such that Zt = 1 we have
1
2

(
(yt −w′t−1

>xt)2 − (yt − u>xt)2
)

= dt−1(u,w′t−1)− dt(u,wt) + dt(w′t−1,wt) ;

(ii) If t is such that Zt = 1 we have dt(w′t−1,wt) ≤ 2 rt ;
(iii) If t is such that Zt = 1 we have dt(u,w′t) ≤ dt(u,wt) ;
(iv) For any t = 1, 2, ..., we have

1
2
Zt

(
(yt −w′t−1

>xt)2 − (yt − u>xt)2
)
≤ Zt

(
dt−1(u,w′t−1)− dt(u,w′t)

)
+ 2 log

|At|
|At−1|

.



C Appendix
Proof sketch of Theorem 7. We rely on Theorem 1, where the role of Tε is neatly handled by the low-noise
assumption combined with a standard Chernoff bound. In particular, since E [Tε] ≤ cT εα, we can easily
conclude that for any δ > 0, with probability at least 1 − δ over sample x1, . . . ,xT , Tε ≤ 3c

2 Tε
α +

O(log(1/δ)) holds. We optimize over ε the bounds on RT and NT contained in Theorem 1. We obtain that,
with the same probability,

RT = O
(

(d log(T/δ))
α+1
α+2 T

1
α+2 + log(1/δ)

)
(10)

NT = O
(

(d2 log2(T/δ))
α
α+2 T

2
α+2 + log(1/δ)

)
.

Now define

Kt =
(
P ′t (yt ∆̂t < 0)− P ′t (yt ∆t < 0)

)
−
(
Pt(yt ∆̂t < 0)− Pt(yt ∆t < 0)

)
,

and note that K1, ...,KT forms a martingale difference sequence. Let5 E’t [·] denote the
conditional expectation E[· |x1, . . . ,xt−1, y1, . . . , yt−1] and Var′t(·) be the conditional variance
Var(· |x1, . . . ,xt−1, y1, . . . , yt−1). We have

Var′t[Kt] = E’t
[
K2
t

]
≤ 2

((
P ′t (yt ∆̂t < 0)− P ′t (yt ∆t < 0)

))2

+ 2 E’t
[(
Pt(yt ∆̂t < 0)− Pt(yt ∆t < 0)

)2
]

(using (a− b)2 ≤ 2a2 + 2b2)

≤ 2
(
P ′t (yt ∆̂t < 0)− P ′t (yt ∆t < 0)

)
+ 2 E’t

[
Pt(yt ∆̂t < 0)− Pt(yt ∆t < 0)

]
(using the fact that P ′t (yt ∆̂t < 0) ≥ P ′t (yt ∆t < 0) and Pt(yt ∆̂t < 0) ≥ Pt(yt ∆t < 0) )

= 4
(
P ′t (yt ∆̂t < 0)− P ′t (yt ∆t < 0)

)
.

Following Lemma 14 and overapproximating we have that, with probability at least 1− δ,

T∑
t=1

(
P ′t (yt ∆̂t < 0)− P ′t (yt ∆t < 0)

)
≤ 2 RT +O

(
log(

log(T )
δ

)
)

= O
(

(d log(T/δ))
α+1
α+2 T

1
α+2 + log(

log(T )
δ

)
,

the last equality deriving from (10). Dividing by T concludes the proof.

Proof of Lemma 9. We upper bound each of the summands in Eq. (6) individually. We begin as in Eq. (1),
in the proof of Lemma 2. This gives us

Pt(y∆̂t < 0)− Pt(y∆t < 0) ≤ ε 11
{

∆t∆̂t < 0, |∆t| ≤ ε
}

+ 11
{

∆t∆̂t < 0, |∆t| > ε
}
|∆t| . (11)

The first term on the right-hand side above is simply upper bounded by ε 11
{
|∆t| ≤ ε

}
. To upper bound the

second term, we recall that |∆t| ≤ 1 and upper-bound 11
{

∆t∆̂t < 0, |∆t| > ε
}

by

11
{

∆t∆̂t < 0, |∆t| > ε
}

11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}
+ 11

{
∆t∆̂t < 0, |∆t| > ε

}
11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t | > ε

}
≤ 11

{
|∆t| > ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}
+ 11

{
∆t∆̂t < 0

}
11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t | > ε

}
≤ 11

{
|∆t| > ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}
+ Z̄t 11

{
∆t∆̂t < 0

}
+ Zt 11

{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t | > ε

}
. (12)

5Notice the difference between the conditional expectation and conditional variance used here and those used in the
proof of Lemma 15.



We plug Eq. (12) into the right-hand side of Eq. (11) to obtain the desired upper-bound on Pt(y∆̂t < 0) −
Pt(y∆t < 0). Summing over t completes the proof.

Proof of Lemma 10. It is straightforward to verify that

Zt = Zt 11
{
|∆t| ≤ ε

}
+ Zt 11

{
|∆t| > ε

}
≤ Zt 11

{
|∆t| ≤ ε

}
+ Zt 11

{
|∆t| > ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}
+ Zt 11

{
|∆t| > ε

}
11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t | > ε

}
≤ 11

{
|∆t| ≤ ε

}
+ 11

{
|∆t| > ε

}
11
{
∃S ⊆ Bε,t : ∆t∆S∪Hε,t < 0 ∨ |∆S∪Hε,t | ≤ ε

}
+ Zt 11

{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t ≥ 0, |∆S∪Hε,t | > ε

}
.

Summing over t proves the bound.

Proof of Lemma 11. First, note that, by the way Algorithm 2 is defined,

Zt = 11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0 ∨ |∆̂S∪Ĥt, t| ≤ θt

}
= 11

{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t| ≤ θt

}
+ 11

{
∀S ⊆ B̂t : |∆̂S∪Ĥt, t| > θt

}
11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0

}
≤ 11

{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t| ≤ θt

}
+ 11

{
|∆̂t| > θt

}
11
{
∃S ⊆ B̂t : ∆̂t∆̂S∪Ĥt, t < 0, |∆̂S∪Ĥt, t| > θt

}
.

We focus on the second term on the right-hand side above. Using the assumption that |∆j,t − ∆̂j,t| ≤ θt
for all j ∈ [K] together with Jensen’s inequality, we have that |∆̂t − ∆Ĉt, t

| ≤ θt and |∆̂S∪Ĥt, t −
∆S∪Ĥt, t| ≤ θt for any S. Now, if S is such that ∆̂t∆̂S∪Ĥt, t < 0, |∆̂S∪Ĥt, t| > θt, and
|∆̂t| > θt, then it also holds that ∆Ĉt, t

∆S∪Ĥt, t < 0. Moreover, if there exists S ⊆ B̂t such that
∆Ĉt, t

∆S∪Ĥt, t < 0 then either ∆t∆S∪Ĥt, t < 0 or ∆t∆Ĉt, t
< 0. Since Ĉt = Ĥt ∪ B̂t we have that

11
{
∃S ⊆ B̂t : ∆Ĉt, t

∆S∪Ĥt, t < 0
}
≤ 11

{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t < 0

}
. Putting together, we can write

Zt ≤ 11
{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t| ≤ θt

}
+ 11

{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t < 0

}
.

Using the above, we can decompose Zt as follows

Zt = Zt 11
{

4θt > ε
}

+ Zt 11
{

4θt ≤ ε
}
≤ Zt 11

{
4θt > ε

}
+ 11

{
∃S ⊆ B̂t : |∆̂S∪Ĥt, t| ≤ θt

}
11
{

4θt ≤ ε
}

+ 11
{
∃S ⊆ B̂t : ∆t∆S∪Ĥt, t < 0

}
11
{

4θt ≤ ε
}
. (13)

Next, we show that B̂t can be replaced withBt in the equation above. To do so, we use the fact that B̂t appears
only in terms that are multiplied by 11

{
4θt ≤ ε

}
. Using the definition of B̂t, the fact that |∆̂j?t ,t

| ≤ |∆̂ĵt,t
|

and |∆ĵt,t
| ≤ |∆j?t ,t

|, together with the assumption |∆j,t − ∆̂j,t| ≤ θ for all j ∈ [K] we get

B̂t ⊆ {i : |∆j?t ,t
| − τ − 4θt ≤ |∆i,t| ≤ |∆j?t ,t

| − τ + 4θt} .

If 4θt ≤ ε then the right-hand side above is a subset of Bε,t, and therefore, under this condition, B̂t ⊆ Bε,t.
We conclude that B̂t can be replaced by Bt in Eq. (13), and

Zt ≤ Zt 11
{

4θt > ε
}

+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt, t| ≤ θt

}
11
{

4θt ≤ ε
}

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt, t < 0

}
11
{

4θt ≤ ε
}

≤ Zt 11
{

4θt > ε
}

+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt, t| ≤ ε/4

}
+ 11

{
∃S ⊆ Bt : ∆t∆S∪Ĥt, t < 0

}
.



With the inequality above handy, we are now ready to upper-bound QT,ε. We have

QT,ε =
T∑
t=1

Zt 11
{
∀S ⊆ Bε,t : ∆t∆S∪Hε,t,t ≥ 0, |∆S∪Hε,t,t| > ε

}
≤

T∑
t=1

Zt 11
{

4θt > ε
}

+ 11
{
∃S ⊆ Bt : |∆̂S∪Ĥt, t| ≤ ε/4

}
11
{
∀S ⊂ Bε,t : |∆S∪Hε,t,t| > ε

}︸ ︷︷ ︸
=0

+ 11
{
∃S ⊆ Bt : ∆t∆S∪Ĥt, t < 0

}
11
{
∀S ⊂ Bε,t : ∆t∆S∪Hε,t,t ≥ 0

}︸ ︷︷ ︸
=0

≤ 16
ε2

T∑
t=1

Ztθ
2
t .

Recall that θ2
t = x>t A

−1
t−1xt

(
1 + 4

∑t−1
i=1 Ziri + 36log(Kt/δ)

)
. Using Lemma 16 (i), we obtain

QT,ε ≤ 32
ε2

∑T
t=1 Ztrt

(
1 + 4

∑t−1
i=1 Ziri + 36log(Kt/δ)

)
. The conclusion of the proof follows along

the lines of the proof of Lemma 5.

Proof of Lemma 12. We first prove that Ĥt ⊆ Ct ⊆ Ĉt. If j ∈ Ct, then |∆j,t| ≥ |∆j?t ,t
| − τ ≥ |∆ĵt,t

| − τ .
Using the assumption that |∆j,t−∆̂j,t| ≤ θt and |∆ĵt,t

−∆̂ĵt,t
| ≤ θt, we have that |∆̂j,t| ≥ |∆̂ĵt,t

|−τ−2θt,
and therefore j ∈ Ĉt. Similarly, if j ∈ Ĥt, then |∆̂j,t| ≥ |∆̂ĵt,t

| − τ + 2θt ≥ |∆̂j?t ,t
| − τ + 2θt. Using

the assumption that |∆j,t − ∆̂j,t| ≤ θt and |∆j?t ,t
− ∆̂j?t ,t

| ≤ θt, we get |∆j,t| ≥ |∆j?t ,t
| − τ , and therefore

j ∈ Ct.
Now assume that Zt = 0. By definition, ∆̂t∆̂S∪Ĥt,t ≥ 0 and |∆̂S∪Ĥt,t| > θ for all S ⊆ B̂t, and

particularly for S = Ct \ Ĥt. Namely, ∆̂t∆̂Ct,t ≥ 0 and |∆̂Ct,t| > θt. Once again using the assumption
of the lemma, this time in conjunction with Jensen’s inequality, we get that (∆t − ∆̂Ct,t)

2 ≤ θ2
t , which

implies ∆t∆̂Ct,t ≥ 1
2

(
∆̂2
Ct,t
− θ2

t

)
. Plugging in |∆̂Ct,t| > θt gives ∆t∆̂Ct,t > 0 which, combined

with ∆̂t∆̂Ct,t ≥ 0 gives ∆t∆̂t ≥ 0. Overall we have shown that Zt = 0 implies that ∆t∆̂t ≥ 0. Therefore,

UT,ε =
∑T
t=1 Z̄t 11

{
∆t∆̂t < 0

}
= 0 .


