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Abstract

We establish an excess risk bound of Õ
(
HR2

n +
√
HL∗Rn

)
for ERM with an H-smooth loss function

and a hypothesis class with Rademacher complexity Rn, where L∗ is the best risk achievable by the
hypothesis class. For typical hypothesis classes where Rn =

√
R/n, this translates to a learning rate of

Õ (RH/n) in the separable (L∗ = 0) case and Õ
(
RH/n+

√
L∗RH/n

)
more generally. We also provide

similar guarantees for online and stochastic convex optimization of a smooth non-negative objective.

1 Introduction

Consider empirical risk minimization for a hypothesis class H = {h : X → R} w.r.t. some non-negative loss
function φ(t, y). That is, we would like to learn a predictor h with small risk

L (h) = E [φ(h(X), Y )]

by minimizing the empirical risk

L̂(h) =
1

n

n∑
i=1

φ(h(xi), yi)

of an i.i.d. sample (x1, y1), . . . , (xn, yn).

Statistical guarantees on the excess risk are well understood for parametric (i.e. finite dimensional) hypothesis
classes. More formally, these are hypothesis classes with finite VC-subgraph dimension [24] (aka pseudo-
dimension). For such classes learning guarantees can be obtained for any bounded loss function (i.e. s.t. |φ| ≤
b <∞) and the relevant measure of complexity is the VC-subgraph dimension.

Alternatively, even for some non-parametric hypothesis classes (i.e. those with infinite VC-subgraph dimen-
sion), e.g. the class of low-norm linear predictors

HB = {hw : x 7→ 〈w,x〉|‖w‖ ≤ B} ,

guarantees can be obtained in terms of scale-sensitive measures of complexity such as fat-shattering di-
mensions [1], covering numbers [24] or Rademacher complexity [2]. The classical statistical learning theory
approach for obtaining learning guarantees for such scale-sensitive classes is to rely on the Lipschitz constant
D of φ(t, y) w.r.t. t (i.e. bound on its derivative w.r.t. t). The excess risk can then be bounded as (in
expectation over the sample):

L
(
ĥ
)
≤ L∗ + 2DRn(H) = L∗ + 2

√
D2

R

n
(1)
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where ĥ = arg min L̂(h) is the empirical risk minimizer (ERM), L∗ = infh L (h) is the approximation error,
and Rn(H) is the Rademacher complexity of the class, which typically scales as Rn(H) =

√
R/n. E.g. for

`2-bounded linear predictors, R = B2 sup ‖X‖22. The Rademacher complexity can be bounded by other
scale-sensitive complexity measures, such as the fat-shattering dimensions and covering numbers, yielding
similar guarantees in terms of these measures.

In this paper we address two deficiencies of the guarantee (1). First, the bound applies only to loss functions
with bounded derivative, like the hinge loss and logistic loss popular for classification, or the absolute-value
(`1) loss for regression. It is not directly applicable to the squared loss φ(t, y) = 1

2 (t − y)2, for which the
second derivative is bounded, but not the first. We could try to simply bound the derivative of the squared
loss in terms of a bound on the magnitude of h(x), but e.g. for norm-bounded linear predictors HB this
results in a very disappointing excess risk bound of the form O(

√
B4(max ‖X‖)4/n). One aim of this paper is

to provide clean bounds on the excess risk for smooth loss functions such as the squared loss with a bounded
second, rather then first, derivative.

The second deficiency of (1) is the dependence on 1/
√
n. The dependence on 1/

√
n might be unavoidable in

general. But at least for finite dimensional (parametric) classes, we know it can be improved to a 1/n rate
when the distribution is separable, i.e. when there exists h ∈ H with L (h) = 0 and so L∗ = 0. In particular,
if H is a class of bounded functions with VC-subgraph-dimension d (e.g. d-dimensional linear predictors),
then (in expectation over the sample) [23]:

L
(
ĥ
)
≤ L∗ +O

(
dD log n

n
+

√
dDL∗ log n

n

)
(2)

The 1/
√
n term disappears in the separable case, and we get a graceful degredation between the 1/

√
n

non-separable rate and the 1/n separable rate. Could we get a 1/n separable rate, and such a graceful
degradation, also in the non-parametric case?

As we will show, the two deficiencies are actually related. For non-parametric classes, and non-smooth
Lipschitz loss, such as the hinge-loss, the excess risk might scale as 1/

√
n and not 1/n, even in the separable

case. However, for H-smooth non-negative loss functions, where the second derivative of φ(t, y) w.r.t. t is
bounded by H, a 1/n separable rate is possible. In Section 2 we obtain the following bound on the excess
risk (up to logarithmic factors):

L
(
ĥ
)
≤ L∗ + Õ

(
HR2

n(H) +
√
HL∗Rn(H)

)
= L∗ + Õ

(
HR

n
+

√
HRL∗

n

)
≤ 2L∗ + Õ

(
HR

n

)
. (3)

In particular, for `2-norm-bounded linear predictors HB with sup ‖X‖22 ≤ 1, the excess risk is bounded by

Õ(HB2/n+
√
HB2L∗/n). Another interesting distinction between parametric and non-parametric classes,

is that even for the squared-loss, the bound (3) is tight and the non-separable rate of 1/
√
n is unavoidable.

This is in contrast to the parametric (fine dimensional) case, where a rate of 1/n is always possible for
the squared loss, regardless of the approximation error L∗ [16]. The differences between parametric and
scale-sensitive classes, and between non-smooth, smooth and strongly convex (e.g. squared) loss functions
are discussed in Section 4 and summarized in Table 1.

The guarantees discussed thus far are general learning guarantees for the stochastic setting that rely only on
the Rademacher complexity of the hypothesis class, and are phrased in terms of minimizing some scalar loss
function. In Section 3 we consider also the online setting, in addition to the stochastic setting, and present
similar guarantees for online and stochastic convex optimization [34, 25]. The guarantees of Section 3 match
equation (3) for the special case of a convex loss function and norm-bounded linear predictors, but Section 3
capture a more general setting of optimizing an arbitrary non-negative convex objective, which we require to
be smooth (there is no separate discussion of a “predictor” and a scalar loss function in Section 3). Results
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in Section 3 are expressed in terms of properties of the norm, rather then a measure of concentration like
the Radamacher complexity as in (3) and Section 2. However, the online and stochastic convex optimization
setting of Section 3 is also more restrictive, as we require the objective be convex (in Section 2 and for the
bound (3) we make no assumption about the convexity of the hypothesis class H nor the loss function φ).

Specifically, for a non-negative H-smooth convex objective (see exact definition in Section 3), over a domain
bounded by B, we prove that the average online regret (and so also the excess risk of stochastic optimization)
is bounded by O(HB2/n+

√
HB2L∗/n). Comparing with the bound of O(

√
D2B2/n) when the loss is D-

Lipschitz rather then H-smooth [34, 22], we see the same relationship discussed above for ERM. Unlike
the bound (3) for the ERM, the convex optimization bound avoids polylogarithmic factors. The results in
Section 3 also generalize to smoothness and boundedness with respect to non-Euclidean norms.

Studying the online and stochastic convex optimization setting (Section 3), in addition to ERM (Section 2),
has several advantages. First, it allows us to obtain a learning guarantee for an efficient single-pass learning
methods, namely stochastic gradient descent (or mirror descent), as well as for the non-stochastic regret.
Second, the bound we obtain in the convex optimization setting (Section 3) is actually better then the bound
for the ERM (Section 2) as it avoids all polylogarithmic and large constant factors. Third, the bound is
applicable to other non-negative online or stochastic optimization problems beyond classification, including
problems for which ERM is not applicable (see, e.g., [25]).

2 Empirical Risk Minimization with Smooth Loss

Recall that the Rademacher complexity of H for any n ∈ N given by [2]:

Rn(H) = sup
x1,...,xn∈X

Eσ∼Unif({±1}n)

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

h(xi)σi

∣∣∣∣∣
]
. (4)

Throughout we shall consider the “worst case” Rademacher complexity.

Our starting point is the learning bound (1) that applies to D-Lipschitz loss functions, i.e. such that
|φ′(t, y)| ≤ D (we always take derivatives w.r.t. the first argument). What type of bound can we obtain if
we instead bound the second derivative φ′′(t, y)? We will actually avoid talking about the second derivative
explicitly, and instead say that a function is H-smooth iff its derivative is H-Lipschitz. For twice differentiable
φ, this just means that |φ′′| ≤ H. The central observation, which allows us to obtain guarantees for smooth
loss functions, is that for a smooth loss, the derivative can be bounded in terms of the function value:

Lemma 2.1. For an H-smooth non-negative function f : R 7→ R, we have: |f ′(t)| ≤
√

4Hf(t)

Proof. For any t, r, we have t < s < r for which f(r) = f(t) + f ′(s)(r − t). Now:

0 ≤ f(r) = f(t) + f ′(t)(r − t) + (f ′(s)− f ′(t))(r − t)
≤ f(t) + f ′(t)(r − t) +H |s− t| |r − t| ≤ f(t) + f ′(t)(r − t) +H(r − t)2

Setting r = t− f ′(t)
2H yields the desired bounds.

This Lemma allows us to argue that close to the optimum value, where the value of the loss is small,
then so is its derivative. Looking at the dependence of (1) on the derivative bound D, we are guided by
the following heuristic intuition: Since we should be concerned only with the behavior around the ERM,
perhaps it is enough to bound φ′(ŵ, x) at the ERM ŵ. Applying Lemma 2.1 to L(ĥ), we can bound

|E [φ′(ŵ, X)]| ≤
√

4HL(ĥ). What we would actually want is to bound each |φ′(ŵ, x)| separately, or at
least have the absolute value inside the expectation—this is where the non-negativity of the loss plays an
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important role. Ignoring this important issue for the moment and plugging this instead of D into (1) yields

L(ĥ) ≤ L∗ + 4

√
HL(ĥ)Rn(H). Solving for L(ĥ) yields the desired bound (3).

This rough intuition is captured by the following Theorem:

Theorem 1. For an H-smooth non-negative loss φ s.t.∀x,y,h |φ(h(x), y)| ≤ b, for any δ > 0 we have that
with probability at least 1− δ over a random sample of size n, for any h ∈ H,

L (h) ≤ L̂(h) +K

(√
L̂(h)

(
√
H log1.5n Rn(H) +

√
b log(1/δ)

n

)
+H log3n R2

n(H) +
b log(1/δ)

n

)
and so:

L
(
ĥ
)
≤ L∗ +K

(
√
L∗

(
√
H log1.5n Rn(H) +

√
b log(1/δ)

n

)
+H log3n R2

n(H) +
b log(1/δ)

n

)

where K < 105 is a numeric constant derived from [21] and [6].

Note that only the “confidence” terms depended on b = sup |φ|, and this is typically not the dominant
term—we believe it is possible to also obtain a bound that holds in expectation over the sample (rather than
with high probability) and that avoids a direct dependence on sup |φ|.

To prove Theorem 1 we use the notion of Local Rademacher Complexity [3], which allows us to focus on the
behavior close to the ERM. To this end, consider the following empirically restricted loss class

Lφ(r) :=
{

(x, y) 7→ φ(h(x), y) : h ∈ H, L̂(h) ≤ r
}

Lemma 2.2, presented below, solidifies the heuristic intuition discussed above, by showing that the Rademacher
complexity of Lφ(r) scales with

√
Hr. The Lemma can be seen as a higher-order version of the Lipschitz Com-

position Lemma [2], which states that the Rademacher complexity of the unrestricted loss class is bounded
by DRn(H). Here, we use the second, rather then first, derivative, and obtain a bound that depends on the
empirical restriction:

Lemma 2.2. For a non-negative H-smooth loss φ bounded by b and any function class H bounded by B:

Rn(Lφ(r)) ≤
√

12Hr Rn(H)

(
16 log3/2

(
nB

Rn(H)

)
− 14 log3/2

(
n
√

12HB√
b

))

Proof. In order to prove Lemma 2.2, we actually move from Rademacher complexity to covering numbers,
use smoothness and Lemma 2.1 to obtain an r-dependent cover of the empirically restricted class, and then
return to the Rademacher complexity. More specifically:
• We use a modified version of Dudley’s integral to bound the Rademacher complexity of the empirically

restricted class in terms of its L2-covering numbers.

• We use smoothness to get an r-dependent bound on the L2-covering numbers of the empirically re-
stricted loss class in terms of L∞-covering numbers of the unrestricted hypothesis class.

• We bound the L∞-covering numbers of the unrestricted class in terms of its fat-shattering dimension,
which in turn can be bounded in terms of its Rademacher complexity.

Before we proceed, recall the following definitions of covering numbers and fat shattering dimension. For
any ε > 0 and function class F ⊂ RZ :

The L2 covering number N2 (F , ε, n) is the supremum over samples z1, . . . , zn of the size of a minimal cover

Cε such that ∀f ∈ F , ∃fε ∈ Cε s.t.
√

1
n

∑n
i=1(f(zi)− fε(zi))2 ≤ ε.
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The L∞ covering number N∞ (F , ε, n) is the supremum over samples z1, . . . , zn of the size of a minimal
cover Cε such that ∀f ∈ F , ∃fε ∈ Cε s.t. maxi∈[n] |f(zi)− fε(zi)| ≤ ε.

The fat-shattering dimension fatε(F) at scale ε is the maximum number of points ε-shattered by F (see
e.g. [21]).

Bounding Rn(Lφ(r)) in terms of N2(Lφ(r)) Dudley’s integral bound lets us bound the Rademacher
complexity of a class in terms of its empirical L2 covering number. Here we use a more refined version of
Dudley’s integral bound due to Mendelson [21] and more explicitly stated in [27] and included for complete-
ness as Lemma A.3 in the Appendix:

Rn(Lφ(r)) ≤ inf
α>0

{
4α+ 10

∫ √br
α

√
N2 (Lφ(r), ε, n)

n
dε

}
(5)

Bounding N2(Lφ(r)) in terms of N∞(H) In the Appendix we show that a corollary of Lemma 2.1 is

that for a non-negative H-smooth f(·) we have (f(t)− f(r))
2 ≤ 6H(f(t)+f(r))(t−r)2 (Lemma A.1). Using

this inequality, for any sample (x1, y1), . . . , (xn, yn):√√√√ 1

n

n∑
i=1

(φ(h(zi), zi)− φ(hε(zi), zi))2 ≤

√√√√6H

n

n∑
i=1

(φ(h(zi), zi) + φ(hε(zi), zi)) (h(zi)− hε(zi))2

≤

√√√√6H

n

n∑
i=1

(φ(h(zi), zi) + φ(hε(zi), zi))
√

max
i∈[n]

(h(zi)− hε(zi))2

≤
√

12Hr max
i∈[n]
|h(zi)− hε(zi)|

That is, an empirical L∞ cover of
{
h ∈ H : L̂(h) ≤ r

}
at radius ε/

√
12Hr is also an empirical L2 cover of

Lφ(r) at radius ε, and we can conclude that:

N2 (Lφ(r), ε, n) ≤ N∞
({

h ∈ H : L̂(h) ≤ r
}
,

ε√
12Hr

, n

)
≤ N∞

(
H, ε√

12Hr
, n

)
(6)

Bounding N∞(H) in terms of Rn(H) The L∞ covering number at scale ε/
√

12Hr can be bounded in
terms of the fat shattering dimension at that scale as [21]:

N∞
(
H, ε√

12Hr
, n

)
≤

(
n
√

12HrB

ε

)fat ε√
12Hr

(H)

. (7)

Hence by Equation (5) we have:

Rn(Lφ(r)) ≤ inf
α≥0

4α+ 10

∫ √br
α

√√√√ fat ε√
12Hr

(H) log
(
n
√
12HrB
ε

)
n

dε

 (8)

choosing α =
√

12HrRn(H):

≤ 4
√

12Hr Rn(H) + 10

∫ √br
√
12HrRn(H)

√√√√ fat ε√
12Hr

(H) log
(
n
√
12HrB
ε

)
n

dε (9)
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after a change of integration variable:

≤ 4
√

12Hr Rn(H) + 10
√

12Hr

∫ √ b
12H

Rn(H)

√
fatε(H) log

(
nB
ε

)
n

dε (10)

bounding the fat-shattering dimension in terms of the Rademacher complexity (Lemma A.2):

≤ 4
√

12Hr Rn(H) + 20
√

12Hr Rn(H)

∫ √ b
12H

Rn(H)

√
log
(
nB
ε

)
ε

dε (11)

≤
√

12Hr Rn(H)

4 + 20

[
−2

3
log3/2(nB/ε)

]√b/12H
Rn(H)


≤
√

12Hr Rn(H)

(
4 + 14

(
log3/2

(
nB

Rn(H)

)
− log3/2

(
nB
√

12H√
b

)))

≤
√

12Hr Rn(H)

(
18 log3/2

(
nB

Rn(H)

)
− 14 log3/2

(
n
√

12HB√
b

))

Proof of Theorem 1. Equipped with Lemma 2.2, the proof follows standard Local Rademacher arguments.
Applying Theorem 6.1 of [6] to ψn(r) = 56

√
Hr log1.5 nR̂n(H) we can show that:

L (h) ≤ L̂(h) + 106r∗n +
48b

n

(
log 1

δ + log log n
)

+

√
L̂(h)

(
8r∗n +

4b

n

(
log 1

δ + log log n
))

where r∗n = 562H log3nRn(H) is the solution to ψn(r) = r. Further details can be found in the Appendix.

2.1 Related Results

Rates faster than 1/
√
n have been previously explored under various conditions, including when L∗ is small.

The Finite Dimensional Case Lee et al [16] showed faster rates for squared loss, exploiting the strong
convexity of this loss function, even when L∗ > 0, but only with finite VC-subgraph-dimension. Panchenko
[23] provides fast rate results for general Lipschitz bounded loss functions, still in the finite VC-subgraph-
dimension case. Bousquet [6] provided similar guarantees for linear predictors in Hilbert spaces when the
spectrum of the kernel matrix (covariance of X) is exponentially decaying, making the situation almost
finite dimensional. All these methods rely on finiteness of effective dimension to provide fast rates. In this
case, smoothness is not necessary. Our method, on the other hand, establishes fast rates, when L∗ = 0, for
function classes that do not have finite VC-subgraph-dimension. We show how in this non-parametric case,
smoothness is necessary and plays an important role (see also Table 1).

Aggregation Tsybakov [31] studied learning rates for aggregation, where a predictor is chosen from the
convex hull of a finite set of base predictors. This is equivalent to an `1 constraint where each base predictor
is viewed as a “feature”. As with `1-based analysis, since the bounds depend only logarithmically on the
number of base predictors (i.e. dimensionality), and rely on the scale of change of the loss function, they are
of “scale sensitive” nature. For such an aggregate classifier, Tsybakov obtained a rate of 1/n when zero (or
small) risk is achieve by one of the base classifiers. Using Tsybakov’s result, it is not enough for zero risk to
be achieved by an aggregate (i.e. bounded ell1) classifier in order to obtain the faster rate. Tsybakov’s core
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result is thus in a sense more similar to the finite dimensional results, since it allows for a rate of 1/n when
zero error is achieved by a finite cardinality (and hence finite dimension) class.

Tsybakov then used the approximation error of a small class of base predictors w.r.t. a large hypothesis class
(i.e. a covering) to obtain learning rates for the large hypothesis class by considering aggregation within
the small class. However these results only imply fast learning rates for hypothesis classes with very low
complexity. Specifically to get learning rates better than 1/

√
n using these results, the covering number

of the hypothesis class at scale ε needs to behave as 1/εp for some p < 2. But typical classes, including
the class of linear predictors with bounded norm, have covering numbers that scale as 1/ε2 and so these
methods do not imply fast rates for such function classes. In fact, to get rates of 1/n with these techniques,
even when L∗ = 0, requires covering numbers that do not increase with ε at all, and so actually finite
VC-subgraph-dimension.

Chesneau et al [10] extend Tsybakov’s work also to general losses, deriving similar results for Lipschitz loss
function. The same caveats hold: even when L∗ = 0, rates faster when 1/

√
n require covering numbers that

grow slower than 1/ε2, and rates of 1/n essentially require finite VC-subgraph-dimension. Our work, on
the other hand, is applicable whenever the Rademacher complexity (equivalently covering numbers) can be
controlled. Although it uses some similar techniques, it is also rather different from the work of Tsybakov
and Chesneau et al, in that it points out the importance of smoothness for obtaining fast rates in the non-
parametric case: Chesneau et al relied only on the Lipschitz constant, which we show, in Section 4, is not
enough for obtaining fast rates in the non-parametric case, even when L∗ = 0.

Local Rademacher Complexities Bartlett et al [3] developed a general machinery for proving possible
fast rates based on local Rademacher complexities. However, it is important to note that the localized
complexity term typically dominates the rate and still needs to be controlled. For example, Steinwart [29]
used Local Rademacher Complexity to provide fast rate on the 0/1 loss of Support Vector Machines (SVMs)
(`2-regularized hinge-loss minimization) based on the so called “geometric margin condition” and Tsybakov’s
margin condition. Steinwart’s analysis is specific to SVMs. We also use Local Rademacher Complexities in
order to obtain fast rates, but do so for general hypothesis classes, based only on the standard Rademacher
complexity Rn(H) of the hypothesis classes, as well as the smoothness of the loss function and the magnitude
of L∗, but without any further assumptions on the hypothesis classes itself.

Non-Lipschitz Loss Beyond the strong connections between smoothness and fast rates which we highlight,
we are also not aware of prior work providing an explicit and easy-to-use result for controlling a generic non-
Lipschitz loss (such as the squared loss) solely in terms of the Rademacher complexity.

3 Online and Stochastic Optimization of Smooth Convex Objec-
tives

We now turn to online and stochastic convex optimization. In these settings a learner chooses w ∈W, where
W is a closed convex set in a normed vector space, attempting to minimize an objective (loss) `(w, z) on
instances z ∈ Z, where ` : W×Z → R is an objective function which is convex in w. This captures learning
linear predictors w.r.t. a convex loss function φ(t, z), where Z = X × Y and `(w, (x, y)) = φ(〈w, x〉, y), and
extends well beyond supervised learning.

We consider the case where the objective `(w, z) is H-smooth w.r.t. some norm ‖w‖ (the reader may choose
to think of W as a subset of a Euclidean or Hilbert space, and ‖w‖ as the `2-norm): By this we mean that
for any z ∈ Z, and all w,w′ ∈W

‖∇`(w, z)−∇`(w′, z)‖∗ ≤ H ‖w −w′‖

7



where ‖ · ‖∗ is the dual norm. The key here is to generalize Lemma 2.1 to smoothness w.r.t. a vector w,
rather then scalar smoothness:

Lemma 3.1. For an H-smooth non-negative f : W→ R, for all w ∈W: ‖∇f(w)‖∗ ≤
√

4Hf(w)

Proof. For any w0 such that ‖w −w0‖ ≤ 1, let g(t) = g(w0 + t(w −w0)). For any t, s ∈ R,

|g′(t)− g′(s)| = |〈∇f(w0 + t(w −w0))−∇f(w0 + s(w −w0)),w −w0〉|
≤ ‖∇f(w0 + t(w −w0))−∇f(w0 + s(w −w0))‖∗ ‖w −w0‖
≤ H|t− s|‖w −w0‖2

≤ H|t− s|

Hence g is H-smooth and so by Lemma 2.1 |g′(t)| ≤
√

4Hg(t). Setting t = 1 we have, 〈∇f(w),w −w0〉 ≤√
4Hf(w). Taking supremum over w0 such that ‖w0 −w‖ ≤ 1 we conclude that

‖∇f(w)‖∗ = sup
w0:‖w−w0‖≤1

〈∇f(w),w −w0〉 ≤
√

4Hf(w)

In order to consider general norms, we will also need to rely on a non-negative regularizer F : W 7→ R that
is a 1-strongly convex (see Definition in e.g. [33]) w.r.t. to the norm ‖w‖ for all w ∈W. For the Euclidean

norm we can use the squared Euclidean norm regularizer: F (w) = 1
2 ‖w‖

2
.

3.1 Online Optimization Setting

In the online convex optimization setting we consider an n round game played between a learner and an
adversary (Nature) where at each round i, the player chooses a wi ∈ W and then the adversary picks a
zi ∈ Z. The player’s choice wi may only depend on the adversary’s choices in previous rounds. The goal of
the player is to have low average objective value 1

n

∑n
i=1 `(wi, zi) compared to the best single choice in hind

sight [9].

A classic algorithm for this setting is Mirror Descent [4], which starts at some arbitrary w1 ∈W and updates
wi+1 according to zi and a stepsize η (to be discussed later) as follows:

wi+1 ← arg min
w∈W

〈η∇`(wi, zi)−∇F (wi),w〉+ F (w) (12)

For the Euclidean norm with F (w) = 1
2‖w‖

2
, the update (12) becomes projected online gradient descent

[34]:
wi+1 ← ΠW(wi − η∇`(wi, zi)) (13)

where ΠW(w) = arg minw′∈W ‖w −w′‖ is the projection onto W.

Theorem 2. For any B ∈ R and L∗ if we use stepsize η = 1

HB2+
√
H2B4+HB2nL∗

for the Mirror Descent

algorithm then for any instance sequence z1, . . . , zn ∈ Z, the average regret w.r.t. any w∗ ∈W s.t. F (w∗) ≤
B2 and 1

n

∑n
j=1 `(w

∗, zi) ≤ L∗ is bounded by:

1

n

n∑
i=1

`(wi, zi)−
1

n

n∑
i=1

`(w∗, zi) ≤
4HB2

n
+ 2

√
HB2L∗

n

Note that the stepsize depends on the bound L∗ on the loss in hindsight.

Proof. The proof follows from Lemma 3.1 and Theorem 1 of [28], using U1 = B2 and U2 = nL∗ in the
Theorem.
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3.2 Stochastic Optimization I: Stochastic Mirror Descent

An online algorithm can also serve as an efficient one-pass learning algorithm in the stochastic setting. Here,
we again consider an i.i.d. sample z1, . . . , zn from some unknown distribution (as in Section 2), and we would
like to find w with low risk L(w) = E [`(w, Z)]. When z = (x, y) and `(w, z) = φ(〈w,x〉, y) this agrees with
the supervised learning risk discussed in the Introduction and analyzed in Section 2. But instead of focusing
on the ERM, we run Mirror Descent (or Projected Online Gradient Descent in case of a Euclidean norm)
on the sample, and then take w̃ = 1

n

∑n
i=1 wi. Standard arguments [8] allow us to convert the online regret

bound of Theorem 2 to a bound on the excess risk:

Corollary 3. For any B ∈ R and L∗ if we run Mirror Descent on a random sample with stepsize η =
1

HB2+
√
H2B4+HB2nL∗

, then for any w∗ ∈W with F (w∗) ≤ B2 and L(w∗) ≤ L∗, with expectation over the

sample:

L (w̃n)− L (w?) ≤ 4HB2

n
+ 2

√
HB2L∗

n
.

Again, one must know a bound L∗ on the risk in order to choose the stepsize.

It is instructive to contrast this guarantee with similar looking guarantees derived recently in the stochastic
convex optimization literature [14]. There, the model is stochastic first-order optimization, i.e. the learner
gets to see an unbiased estimate ∇l(w, zi) of the gradient of L(w). The variance of the estimate is assumed to
be bounded by σ2. The expected accuracy after n gradient evaluations then has two terms: a “accelerated”
term that is O(H/n2) and a slow O(σ/

√
n) term. While this result is applicable more generally (since it

doesn’t require non-negativity of `), it is not immediately clear if our guarantees can be derived using it.
The main difficulty is that σ depends on the norm of the gradient estimates. Thus, it cannot be bounded
in advance even if we know that L(w?) is small. That said, it is intuitively clear that towards the end of
the optimization process, the gradient norms will typically be small if L(w?) is small because of the self
bounding property (Lemma 3.1). Exploring this connection can be fruitful direction for further research.

3.3 Stochastic Optimization II: Regularized Batch Optimization

It is interesting to note that using stability arguments, a guarantee very similar to Corollary 3, avoiding the
polylogarithmic factors of Theorem 1 as well as the dependence on the bound on the loss (b in Theorem 1), can
be obtained also for a “batch” learning rule similar to ERM, but incorporating penalty-type regularization.
For a given regularization parameter λ > 0 define the regularized empirical loss as

L̂λ(w) := L̂(w) + λF (w)

and consider the Regularized Empirical Risk Minimizer

ŵλ = arg min
w∈W

L̂λ(w) (14)

The following theorem provides a bound on excess risk similar to Corollary 3:

Theorem 4. For any B ∈ R and L∗ if we set λ = 128H
n +

√
1282H2

n2 + 128HL∗

nB2 then for all w? ∈ W with

F (w?) ≤ B2 and L(w?) ≤ L∗, we have that in expectation over sample of size n:

L (ŵλ)− L (w?) ≤ 256HB2

n
+

√
2048HB2L∗

n
.
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To prove Theorem 4 we use stability arguments similar to the ones used by Shalev-Shwartz et al [25], which
are in turn based on Bousquet and Elisseeff [7]. However, while Shalev-Shwartz et al [25] use the notion
of uniform stability, here it is necessary to look at stability in expectation to get the faster rates (uniform
stability does not hold with the desired rate).

To use stability based arguments, for each i ∈ [n] we consider a perturbed sample where instance zi is replaced
by instance z′i drawn independently from same distribution as zi. Let L̂(i)(w) = 1

n (
∑
j 6=i `(w, zj) + `(w, z′i))

be the empirical risk over the perturbed sample, and consider the corresponding regularized empirical risk

minimizer ŵ
(i)
λ = arg minw L̂

(i)
λ (w), where L̂

(i)
λ (w) = L̂(i)(w) + λF (w). We first prove the following Lemma

on the expected stability of the regularized minimizer:

Lemma 3.2. For any i ∈ [n] we have that

Ez1,...,zn,z′i
[
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

]
≤ 32H

λn
Ez1,...,zn [L(ŵλ)]

Proof.

L̂λ(ŵ
(i)
λ )− L̂λ(ŵλ) =

`(ŵ
(i)
λ , zi)− `(ŵλ, zi)

n
+
`(ŵλ, z

′
i)− `(ŵ

(i)
λ , z′i)

n
+ L̂

(i)
λ (ŵ

(i)
λ )− L̂(i)

λ (ŵλ)

≤
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

n
+
`(ŵλ, z

′
i)− `(ŵ

(i)
λ , z′i)

n

≤ 1

n
‖ŵ(i)

λ − ŵλ‖
(
‖∇`(ŵ(i)

λ , zi)‖∗ + ‖∇`(ŵλ, z
′
i)‖∗

)
≤ 2
√
H

n
‖ŵ(i)

λ − ŵλ‖
(√

`(ŵ
(i)
λ , zi) +

√
`(ŵλ, z′i)

)
where the last inequality follows from Lemma 3.1. By λ-strong convexity of L̂λ we have that

L̂λ(ŵ
(i)
λ )− L̂λ(ŵλ) ≥ λ

2
‖ŵ(i)

λ − ŵλ‖2.

We can conclude that

‖ŵ(i)
λ − ŵλ‖ ≤

4
√
H

λn

(√
`(ŵ

(i)
λ , zi) +

√
`(ŵλ, z′i)

)
This gives us:

`(ŵ
(i)
λ , zi)− `(ŵλ, zi) ≤ ‖∇`(ŵ(i)

λ , zi)‖∗‖ŵ(i)
λ − ŵλ‖

≤
√

4H`(ŵ
(i)
λ , zi)

(
4
√
H

λ

(√
`(ŵ

(i)
λ , zi) +

√
`(ŵλ, z′i)

))

≤ 16H

λn

(
`(ŵ

(i)
λ , zi) + `(ŵλ, z

′
i)
)

Taking expectation:

Ez1,...,zn,z′i
[
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

]
≤ 16H

λn
Ez1,...,zn,z′i

[
`(ŵ

(i)
λ , zi) + `(ŵλ, z

′
i)
]

=
16H

λn
Ez1,...,zn,z′i

[
L
(
ŵ

(i)
λ

)
+ L (ŵλ)

]
=

32H

λn
Ez1,...,zn [L (ŵλ)]

Proof of Theorem 4. By Lemma 3.2 we have :

Ez1,...,zn [Lλ(ŵλ)− Lλ(w?
λ)] ≤ Ez1,...,zn

[
Lλ(ŵλ)− L̂λ(ŵλ)

]
= Ez1,...,zn

[
L(ŵλ)− L̂(ŵλ)

]
=

1

n

n∑
i=1

Ez1,...,zn,z′i
[
`(ŵ

(i)
λ , zi)− `(ŵλ, zi)

]
≤ 32H

λn
Ez1,...,zn [L(ŵλ)]

10



Noting the definition of L̂λ(w) and rearranging we get

Ez1,...,zn [L(ŵλ)− L(w?)] ≤ 32H

λn
Ez1,...,zn [L(ŵλ)] + λF (w?)− λF (ŵλ) ≤ 32H

λn
Ez1,...,zn [L(ŵλ)] + λF (w?)

Rearranging further we get

Ez1,...,zn [L (ŵλ)]− L (w?) ≤

(
1

1− 32H
λn

− 1

)
L (w?) +

λ

1− 32H
λn

F (w?)

plugging in the value of λ gives the result.

4 Tightness

In this Section we return to the learning rates for the ERM for parametric and for scale-sensitive hypothesis
classes (i.e. in terms of the dimensionality and in terms of scale sensitive complexity measures), discussed in
the Introduction and analyzed in Section 2. We compare the guarantees on the learning rates in different
situations, identify differences between the parametric and scale-sensitive cases and between the smooth and
non-smooth cases, and argue that these differences are real by showing that the corresponding guarantees
are tight. Although we discuss the tightness of the learning guarantees for ERM in the stochastic setting,
similar arguments can also be made for online learning.

Table 1 summarizes the bounds on the excess risk of the ERM implied by Theorem 1 as well previous bounds
for Lipschitz loss on finite-dimensional [23] and scale-sensitive [2] classes, and a bound for squared-loss on
finite-dimensional classes [9, Theorem 11.7] that can be generalized to any smooth strongly convex loss.

Parametric Scale-Sensitive

Loss function is: dim(H) ≤ d , |h| ≤ 1 Rn(H) ≤
√
R/n

D-Lipschitz dD
n +

√
dDL∗

n

√
D2R
n

H-smooth dH
n +

√
dHL∗

n
HR
n +

√
HRL∗

n

H-smooth and λ-strongly Convex H
λ
dH
n

HR
n +

√
HRL∗

n

Table 1: Bounds on the excess risk, up to polylogarithmic factors.

We shall now show that the 1/
√
n dependencies in Table 1 are unavoidable. To do so, we will consider the

class H = {x 7→ 〈w,x〉 : ‖w‖ ≤ 1} of `2-bounded linear predictors (all norms in this Section are Euclidean),
with different loss functions, and various specific distributions over X × Y, where X =

{
x ∈ Rd : ‖x‖ ≤ 1

}
and Y = [0, 1]. For the non-parametric lower-bounds, we will allow the dimensionality d to grow with the
sample size n.

Infinite dimensional, Lipschitz (non-smooth), separable
Consider the absolute difference loss φ(h(x), y) = |h(x)− y|, take d = 2n and consider the following distri-
bution: X is uniformly distributed over the d standard basis vectors ei and if X = ei, then Y = 1√

n
ri, where

r1, . . . , rd ∈ {±1} is an arbitrary sequence of signs unknown to the learner (say drawn randomly beforehand).
Taking w? = 1√

n

∑n
i=1 riei, ‖w?‖ = 1 and L∗ = L (w?) = 0. However any sample (x1, y1), . . . , (xn, yn) re-

veals at most n of 2n signs ri, and no information on the remaining ≥ n signs. This means that for any
algorithm used by the learner, there exists a choice of ri’s such that on at least n of the remaining points
not seen by the learner the learner has to suffer a loss of at least 1/

√
n, yielding an overall risk of at least

1/(2
√
n).

Infinite dimensional, smooth, non-separable, even if strongly convex
Consider the squared loss φ(h(x), y) = (h(x)− y)2 which is 2-smooth and 2-strongly convex. For any σ ≥ 0
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let d =
√
n/σ and consider the following distribution: X is uniform over ei as before, but this time Y |X is

random, with Y |(X = ei) ∼ N ( ri
2
√
d
, σ), where again ri are pre-determined, unknown to the learner, random

signs. The minimizer of the expected risk is w? =
∑d
i=1

ri
2
√
d
ei, with ‖w?‖ = 1

2 and L∗ = L(w?) = σ2.
Furthermore, for any w ∈W,

L (w)− L (w?) = E [〈w −w?,x〉]2 =
1

d

d∑
i=1

(w[i]−w?[i])2 =
1

d
‖w −w?‖2

If the norm constraint becomes tight, i.e. ‖ŵ‖ = 1, then L(ŵ)−L(w?) ≥ 1/(4d) = σ/(4
√
n) =

√
L∗/(4

√
n).

Otherwise, each coordinate is a separate mean estimation problem, with ni samples, where ni is the number
of appearances of ei in the sample. We have E

[
(ŵ[i]−w?[i])2

]
= σ2/ni and so

L(ŵ)− L∗ =
1

d
‖ŵ −w?‖2 =

1

d

d∑
i=1

σ2

ni
≥ σ2

d

d2∑
i ni

=
σ2d

n
=

σ√
n

=

√
L∗

n

Finite dimensional, smooth, not strongly convex, non-separable:
Take d = 1, with X = 1 with probability q and X = 0 with probability 1 − q. Conditioned X = 0 let
Y = 0 deterministically, while conditioned on X = 1 let Y = +1 with probability p = 1

2 + 0.2√
qn and Y = −1

with probability 1− p. Consider the following 1-smooth loss function, which is quadratic around the correct
prediction, but linear away from it:

φ(h(x), y) =

{
(h(x)− y)2 if |h(x)− y| ≤ 1/2

|h(x)− y| − 1/4 if |h(x)− y| ≥ 1/2

First note that irrespective of choice of w, when x = 0 and so y = 0 we always have h(x) = 0 and so
suffer no loss. This happens with probability 1− q. Next observe that for p > 1/2, the optimal predictor is
w? ≥ 1/2. However, for n > 20, with probability at least 0.25,

∑n
i=1 yi < 0, and so the empirical minimizer

is ŵ ≤ −1/2. We can now calculate

L(ŵ)− L∗ > L(−1/2)− L(1/2) = q(2p− 1) + (1− q)0 =
0.4 q
√
qn

=
0.4
√
q

√
n

.

However note that for p > 1/2, w∗ = 3
2 −

1
2p and so for n > 20:

L∗ >
q

2

Hence we conclude that with probability 0.25 over the sample,

L(ŵ)− L∗ >
√

0.32L∗

n
.

5 Implications

We demonstrate the implications of our results in several settings.

5.1 Improved Margin Bounds

“Margin bounds” provide a bound on the expected zero-one loss of a classifiers based on the margin zero-one
error on the training sample. Koltchinskii and Panchenko [13] provides margin bounds for a generic class

12



H based on the Rademacher complexity of the class. This is done by using a non-smooth Lipschitz “ramp”
loss that upper bounds the zero-one loss and is upper-bounded by the margin zero-one loss. However, such
an analysis unavoidably leads to a 1/

√
n rate even in the separable case, since as we discuss in Section 4,

it is not possible to get a faster rate for a non-smooth loss. Following the same idea we use the following
smooth “ramp”:

φ(t) =


1 t ≤ 0
1+cos(πt/γ)

2
0 < t < γ

0 t ≥ γ

This loss function is π2

4γ2 -smooth and is lower bounded by the zero-one loss and upper bounded by the γ
margin loss. Using Theorem 1 we can now provide improved margin bounds for the zero-one loss of any
classifier based on empirical margin error. Denote err(h) = E

[
11{h(x)6=y}

]
the zero-one risk and for any γ > 0

and sample (x1, y1), . . . , (xn, yn) ∈ X × {±1} define the γ-margin empirical zero one loss as

êrrγ(h) :=
1

n

n∑
i=1

11{yih(xi)<γ}

Theorem 5. For any hypothesis class H, with |h| ≤ b, and any δ > 0, with probability at least 1 − δ,
simultaneously for all margins γ > 0 and all h ∈ H:

err(h) ≤ êrrγ(h) +K

(√
êrrγ(h)

(
log1.5 n

γ Rn(H) +

√
log(log( 4b

γ )/δ)

n

)
+ log3 n

γ2 R2
n(H) +

log(log( 4b
γ )/δ)

n

)
where K is a numeric constant from Theorem 1

In particular, the above bound implies:

err(h) ≤ 1.01êrrγ(h) +K

(
2 log3 n

γ2
R2
n(H) +

2 log(log( 4b
γ )/δ)

n

)
where K is an appropriate numeric constant.

Improved margin bounds of the above form have been previously shown specifically for linear prediction
in a Hilbert space (as in Support Vector Machines) based on the PAC Bayes theorem [20, 15]. However
these PAC-Bayes based results are specific to the linear function class. Theorem 5 is, in contrast, a generic
concentration-based result that can be applied to any function class with and yields rates dominated by
R2(H).

5.2 Interaction of Norm and Dimension

Consider the problem of learning a low-norm linear predictor with respect to the squared loss φ(t, z) = (t−z)2,
where X ∈ Rd, for finite but very large d, and where the expected norm of X is low. Specifically, let X

be Gaussian with E
[
‖X‖2

]
= B, Y = 〈w∗, X〉 + N (0, σ2) with ‖w∗‖ = 1, and consider learning a linear

predictor using `2 regularization. What determines the sample complexity? How does the error decrease as
the sample size increases?

From a scale-sensitive statistical learning perspective, we expect that the sample complexity, and the decrease
of the error, should depend on the norm B, especially if d � B2. However, for any fixed d and B, even if
d � B2, asymptotically as the number of samples increase, the excess risk of norm-constrained or norm-
regularized regression actually behaves as L(ŵ) − L∗ ≈ d

nσ
2, and depends (to first order) only on the

dimensionality d and not at all on B [17]. How does the scale sensitive complexity come into play?

The asymptotic dependence on the dimensionality alone can be understood through Table 1. In this non-
separable situation, parametric complexity controls can lead to a 1/n rate, ultimately dominating the 1/

√
n
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rate resulting from L∗ > 0 when considering the scale-sensitive, non-parametric complexity control B. (The
dimension-dependent behavior here is actually a bit better then in the generic situation—the well-posed
Gaussian model allows the bound to depend on σ2 = L∗ rather then on sup(w′x− y)2 ≈ B2 + σ2).

Combining Theorem 4 with the asymptotic d
nσ

2 behavior, and noting that at the worst case we can predict
using a zero vector, yields the following overall picture on the expected excess risk of ridge regression with
an optimally chosen λ:

L(ŵλ)− L∗ ≤ O
(

min

(
B2,

B2

n
+
Bσ√
n
,
dσ2

n

))
Roughly speaking, each term above describes the behavior in a different regime of the sample size:

• The first (“random”) regime until n = Θ(B2) where the excess is is B2.

• The second (“low-noise”) regime, where the excess risk is dominated by the norm and behaves as B2/n,
until n = Θ(B2/σ2) and L(ŵ) = Θ(L∗).

• The third (“slow”) regime, where the excess risk is controlled by the norm and the approximation error
and behaves as Bσ/

√
n, until n = Θ(d2σ2/B2) and L(ŵ) = L∗ + Θ(B2/d).

• the fourth (“asymptotic”) regimes, where the excess risk is dominated by the dimensionality and
behaves as d/n.

This sheds further light on recent work on this phenomena by Liang and Srebro based on exact asymptotics
of simplified situations [18].

5.3 Sparse Prediction

The use of the `1 norm has become very popular for learning sparse predictors in high dimensions, as in the
LASSO. The LASSO estimator [30] ŵ is obtained by considering the squared loss φ(z, y) = (z − y)2 and
minimizing L̂(w) subject to ‖w‖1 ≤ B. Let us assume there is some (unknown) sparse reference predictor
w0 that has low expected loss and sparsity (number of non-zeros)

∥∥w0
∥∥
0

= k, and that ‖x‖∞ ≤ 1, y ≤ 1. In

order to choose B and apply Theorem 1 in this setting, we need to bound
∥∥w0

∥∥
1
. This can be done by, e.g.,

assuming that the features x[i] in the support of w0 are mutually uncorrelated. Under such an assumption,

we have:
∥∥w0

∥∥2
1
≤ kE

[〈
w0, x

〉2] ≤ 2k(L(w0) + E
[
y2
]
) ≤ 4k. Thus, Theorem 1 along with Rademacher

complexity bounds from [11] gives us,

L(ŵ) ≤ L(w0) + Õ

(
k log(d)

n
+

√
k L(w0) log(d)

n

)
. (15)

It is possible to relax the no-correlation assumption to a bound on the correlations, as in mutual incoherence,
or to other weaker conditions [26]. But in any case, unlike typical analysis for compressed sensing, where
the goal is recovering w0 itself, here we are only concerned with correlations inside the support of w0.
Furthermore, we do not need to require that the optimal predictor is sparse or close to being sparse, or that
the model is well specified: only that there exists a good (low risk) predictor using a small number of fairly
uncorrelated features.

Bounds similar to (15) have been derived using specialized arguments [12, 32, 5]—here we demonstrate that
a simple form of these bounds can be obtained under very simple conditions, using the generic framework
we suggest.
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It is also interesting to note that the methods and results of Section 3 can also be applied to this setting.
But since ‖w‖21 is not strongly convex with respect to ‖w‖1, we must instead use the entropy regularizer

F (w) = B
∑
i

x[i] log

(
x[i]

1/d

)
+
B2

e
(16)

which is non-negative and 1-strongly convex with respect to ‖w‖1 on W =
{
w ∈ Rd

∣∣w[i] ≥ 0, ‖w‖1 ≤ B
}

,
with F (w) ≤ B2(1 + log d) (we consider here only non-negative weights—in order to allow w[i] < 0 we can
include also each features negation, doubling the dimensionality). Recalling that

∥∥w0
∥∥
1
≤ 2
√
k and using

B = 2
√
k in (16), we have from Theorem 4 we that:

L(ŵλ) ≤ L(w0) +O

(
k log(d)

n
+

√
k L(w0) log(d)

n

)
. (17)

where ŵλ is the regularized empirical minimizer (14) using the entropy regularizer (16) with λ as in Theorem
4. The advantage here is that using Theorem 4 instead of Theorem 1 avoids the extra logarithmic factors
(yielding a clean big-O dependence in (17) as opposed to big-Õ in (15)).

More interestingly, following Corollary 3, one can use stochastic mirror descent, taking steps of the form
(12) with the entropy regularizer (16), to obtain the same performance guarantee as in (17). This provides
an efficient, single-pass optimization approach to sparse prediction as an alternative to batch optimization
with an `1-norm constraint, and yielding the same (if not somewhat better) guarantees.
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A Technical proofs

Lemma A.1. For any H-smooth non-negative function f : R 7→ R and any t, r ∈ R we have that

(f(t)− f(r))
2 ≤ 6H(f(t) + f(r))(t− r)2

Proof. We start by noting that by the mean value theorem for any t, r ∈ R there exists s between t and r
such that

f(t)− f(r) = f ′(s)(t− r) (18)

By smoothness we have that
|f ′(s)− f ′(t)| ≤ H |t− s| ≤ H |t− r| .

Hence we see that
|f ′(s)| ≤ |f ′(t)|+H |t− r| (19)

We now consider two cases:

Case I: If |t− r| ≤ |f
′(t)|
5H then by Equation (19), |f ′(s)| ≤ 6/5 |f ′(t)|, and combining this with Equation

(18) we have:

(f(t)− f(r))2 ≤ f ′(s)2(t− r)2 ≤ 36

25
f ′(t)2(t− r)2

But Lemma 2.1 ensures f ′(t)2 ≤ 4Hf(t) yielding:

≤ 144

25
Hf(t)(t− r)2 < 6Hf(t)(t− r)2 (20)

Case II: On the other hand, when |t− r| > |f
′(t)|
5H , we have from Equation (19) that |f ′(s)| ≤ 6H |t− r|.

Plugging this into Equation (18) yields:

(f(t)− f(r))2 = |f(t)− f(t)| · |f(t)− f(r)| ≤ |f(t)− f(r)| (|f ′(s)| |t− r|)
≤ |f(t)− f(r)| (6H |t− r| · |t− r|) = 6H |f(t)− f(r)| (t− r)2

≤ 6H max{f(t), f(r)}(t− r)2 (21)

Combining the two cases, we have from Equations (20) and (21)) and the non-negativity of f(·), that in
either case:

(f(t)− f(r))2 ≤ 6H (f(t) + f(r)) (t− r)2

Relating Fat-shattering Dimension and Rademacher complexity :

The following lemma upper bounds the fat-shattering dimension at scale ε ≥ Rn(H) in terms of the
Rademacher Complexity of the function class. The proof closely follows the arguments of Mendelson [21,
discussion after Definition 4.2].

Lemma A.2. For any hypothesis class H, any sample size n and any ε > Rn(H) we have that

fatε(H) ≤ 4 n Rn(H)2

ε2

In particular, if Rn(H) =
√
R/n (the typical case), then fatε(H) ≤ R/ε2.
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Proof. Consider any ε ≥ Rn(H). Let x∗1, . . . , x
∗
fatε

be the set of fatε shattered points. This means that there
exists s1, . . . , sfatε such that for any J ⊂ [fatε] there exists hJ ∈ H such that ∀i ∈ J, hJ(xi) ≥ si + ε and
∀i 6∈ J, hJ(xi) ≤ si − ε. Now consider a sample x1, . . . , xn′ of size n′ = d n

fatε
efatε, obtained by taking each

x∗i and repeating it d n
fatε
e times, i.e. xi = x∗b i

fatε
c. Now, following Mendelson’s arguments:

Rn′(H) ≥ Eσ∼Unif{±1}n′

 1

n′
sup
h∈H

∣∣∣∣∣∣
n′∑
i=1

σih(xi)

∣∣∣∣∣∣


≥ 1

2
Eσ∼Unif{±1}n′

 1

n′
sup

h,h′∈H

∣∣∣∣∣∣
n′∑
i=1

σi(h(xi)− h′(xi))

∣∣∣∣∣∣
 (triangle inequality)

=
1

2
Eσ∼Unif{±1}n′

 1

n′
sup

h,h′∈H

∣∣∣∣∣∣
fatε∑
i=1

dn/fatεe∑
j=1

σ(i−1)fatε+j

 (h(x∗i )− h′(x∗i ))

∣∣∣∣∣∣


≥ 1

2
Eσ∼Unif{±1}n′

 1

n′

∣∣∣∣∣∣
fatε∑
i=1

dn/fatεe∑
j=1

σ(i−1)fatε+j

 (hR(x∗i )− hR(x∗i ))

∣∣∣∣∣∣


where for each σ1, . . . , σn′ , R ⊆ [fatε] is given by R =
{
i ∈ [fatε]

∣∣∣sign
(∑dn/fatεe

j=1 σ(i−1)dn/fatεe+j

)
≥ 0
}

, hR

is the function in H that ε-shatters the set R and hR be the function that shatters the complement of set R.

≥ 1

2
Eσ∼Unif{±1}n′

 1

n′

fatε∑
i=1

∣∣∣∣∣∣
dn/fatεe∑
j=1

σ(i−1)fatε+j

∣∣∣∣∣∣ 2ε


≥ ε

n′

fatε∑
i=1

Eσ∼Unif{±1}n′

∣∣∣∣∣∣
dn/fatεe∑
j=1

σ(i−1)fatε+j

∣∣∣∣∣∣


≥ ε fatε
n′

√
dn/fatεe

2
(Kinchine’s inequality)

=

√
ε2 fatε
2 n′

.

We can now conclude that:

fatε ≤
2n′R2

n′(H)

ε2
≤ 4nR2

n(H)

ε2

where last inequality is because Rademacher complexity decreases with increase in number of samples and
n ≤ n′ ≤ 2n (because ε ≥ Rn(H) which implies that fatε < n).

Dudley Upper Bound :

In order to state and prove the following Lemma, we shall find it simpler to use the empirical Rademacher
complexity for a given sample x1, . . . , xn [2]:

R̂n(H) = Eσ∼Unif({±1}n)

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

h(xi)σi

∣∣∣∣∣
]
. (22)

and the L2 covering number at scale ε > 0 specific to a sample x1, . . . , xn, denoted by N2 (ε,F , (x1, . . . , xn))
as the size of a minimal cover Cε such that

∀f ∈ F ,∃fε ∈ Cε s.t.

√√√√ 1

n

n∑
i=1

(f(zi)− fε(zi))2 ≤ ε .
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We will also denote Ê
[
f2
]

= 1
n

∑n
i=1 f

2(xi).

The following Lemma is stated in terms of the empirical Rademacher complexity and covering numbers.
Taking a supremum over samples of size n, we get the same relationship between the worst-case Rademacher
complexity and covering numbers, as is used in Section 2.

Lemma A.3 ([27] following [21]). For any function class F containing functions f : X 7→ R, we have that

R̂n(F) ≤ inf
α≥0

4α+ 10

∫ supf∈F

√
Ê[f2]

α

√
logN (ε,F , (x1, . . . , xn))

n
dε


Proof. Let β0 = supf∈F

√
Ê [f2] and for any j ∈ Z+ let βj = 2−j supf∈F

√
Ê [f2]. The basic trick here is

the idea of chaining. For each j let Ti be a (proper) L2-cover at scale βj of F for the given sample. For each

f ∈ F and j, pick an f̂i ∈ Ti such that f̂i is an βi approximation of f . Now for any N , we express f by
chaining as

f = f − f̂N +
N∑
i=1

(
f̂i − f̂i−1

)
where f̂0 = 0. Hence for any N we have that

R̂n(F) =
1

n
Eσ

sup
f∈F

n∑
i=1

σi

f(xi)− f̂N (xi) +

N∑
j=1

(
f̂j(xi)− f̂j−1(xi)

)
≤ 1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f(xi)− f̂N (xi)

)]
+

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]

≤ 1

n

√√√√ n∑
i=1

σ2
i sup
f∈F

√√√√ n∑
i=1

(f(xi)− f̂N (xi)2 +

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]

≤ βN +

N∑
j=1

1

n
Eσ

[
sup
f∈F

n∑
i=1

σi

(
f̂j(xi)− f̂j−1(xi)

)]
(23)

where the step before last is due to Cauchy-Shwarz inequality and σ = [σ1, ..., σn]
>

. Now note that

1

n

n∑
i=1

(f̂j(xi)− f̂j−1(xi))
2 =

1

n

n∑
i=1

(
(f̂j(xi))− f(xi)) + (f(xi)− f̂j−1(xi))

)2
≤ 2

n

n∑
i=1

(
f̂j(xi))− f(xi)

)2
+

2

n

n∑
i=1

(
f(xi)− f̂j−1(xi)

)2
≤ 2β2

j + 2β2
j−1 = 6β2

j

Now Massart’s finite class lemma [19] states that if for any function class G, supg∈G

√
1
n

∑n
i=1 g(xi)2 ≤ R,

then R̂n(G) ≤
√

2R2 log(|G|)
n . Applying this to function classes {f − f ′ : f ∈ Tj , f ′ ∈ Tj−1} (for each j) we
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get from Equation (23) that for any N ,

R̂n(F) ≤ βN +

N∑
j=1

βj

√
12 log(|Tj | |Tj−1|)

n

≤ βN +

N∑
j=1

βj

√
24 log |Tj |

n

≤ βN + 10

N∑
j=1

(βj − βj+1)

√
log |Tj |

n

≤ βN + 10

N∑
j=1

(βj − βj+1)

√
log N (βj ,F , (x1, . . . , xn))

n

≤ βN + 10

∫ β0

βN+1

√
log N (ε,F , (x1, . . . , xn))

n
dε

where the third step is because 2(βj − βj+1) = βj and we bounded
√

24 by 5. Now for any α > 0, pick
N = sup{j : βj > 2α}. In this case we see that by our choice of N , βN+1 ≤ 2α and so βN = 2βN+1 ≤ 4ε.

Also note that since βN > 2α, βN+1 = βN
2 > α. Hence we conclude that

R̂n(F) ≤ 4α+ 10

∫ supf∈F

√
Ê[f2]

α

√
log N (ε,F , (x1, . . . , xn))

n
dε

Since the choice of α was arbitrary we take an infimum over α.

Detailed Proof of Main Result :

Detailed proof of Theorem 1. By Theorem 6.1 of [6] (specifically the displayed equation prior to the
last one in the proof of the theorem) we have that if ψn is any sub-root function that satisfies for all r > 0,
Rn(Lφ(r)) ≤ ψn(r) then,

L (h) ≤ L̂(h) + 45r∗n +
√
L (h)

(√
8r∗n +

√
4b(log(1/ε) + 6 log log n)

n

)
+

20b(log(1/ε) + 6 log log n)

n
(24)

where r∗n is the largest solution to equation ψn(r) = r. Now by Lemma 2.2 we have that ψn(r) =
56
√
Hr log1.5 nR̂n(H) satisfies the property that for all r > 0, Rn(Lφ(r)) ≤ ψn(r) and so using this we

see that
r∗n = 562H log3nRn(H)

and for this r∗n Equation (24) holds. Now using the simple fact that for any non-negative A,B,C,

A ≤ B + C
√
A⇒ A ≤ B + C2 +

√
BC

we conclude,

L (h) ≤ L̂(h) + 106 r∗n +
48b

n

(
log 1

ε + log log n
)

+

√
L̂(h)

(
8r∗n +

4b

n

(
log 1

ε + log log n
))

plugging in r∗n we get the required statement.
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