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Abstract

We establish that stability is necessary and suffi-
cient for learning, even in the general learning set-
ting where uniform convergence conditions are not
necessary for learning, and where learning might
only be possible with a non-ERM learning rule.
This goes beyond previous work on the relation-
ship between stability and learnability, which fo-
cused on supervised classification and regression,
where learnability is equivalent to uniform conver-
gence and it is enough to consider the ERM.

1 Introduction
We consider the General Setting of Learning [9] where we
would like to minimize a population risk functional (stochas-
tic objective)

F (h) = EZ∼D [f(h;Z)] (1)

where the distribution D of Z is unknown, based on
i.i.d. sample z1, . . . , zm drawn from D (and full knowl-
edge of the function f ). This general setting subsumes su-
pervised classification and regression, certain unsupervised
learning problems, density estimation and stochastic opti-
mization. For example, in supervised learning z = (x, y)
is an instance-label pair, h is a predictor, and f(h, (x, y)) =
loss(h(x), y) is the loss functional.

For supervised classification and regression problems, it
is well known that a problem is learnable (see precise defi-
nition in Section 2) if and only if the empirical risks

FS(h) = 1
m

m∑
i=1

f(h, zi) (2)

converge uniformly to their expectations [1]. If uniform con-
vergence holds, then the empirical risk minimizer (ERM) is
consistent, i.e. the population risk of the ERM converges to
the optimal population risk, and the problem is learnable us-
ing the ERM. That is, learnability is equivalent to learnability
by ERM, and so we can focus our attention solely on empir-
ical risk minimizers.

Stability has also been suggested as an explicit alternate
condition for learnability. Intuitively, stability notions focus
on particular algorithms, or learning rules, and measure their
sensitivity to perturbations in the training set.

In particular, it has been established that various forms
of stability of the ERM are sufficient for learnability.
Mukherjee et al [6] argue that since uniform conver-
gence also implies stability of the ERM, and is nec-
essary for (distribution independent) learning in the su-
pervised classification and regression setting, then stabil-
ity of the ERM is necessary and sufficient for learn-
ability in the supervised classification and regression set-
ting. It is important to emphasize that this characteriza-
tion of stability as necessary for learnability goes through
uniform convergence. I.e. the chain of implications is:

ERM Stable
Learnable
with ERM

Uniform
Convergence

However, the equivalence between (distribution indepen-
dent) consistency of empirical risk minimization and uni-
form convergence is specific to supervised classification and
regression. The results of Alon et al [1] establishing this
equivalence do not always hold in the more general learning
setting. In particular, we recently showed that in strongly
convex stochastic optimization problems, the ERM is sta-
ble and thus consistent, even though the empirical risks do
not converge to their expectations uniformly (Example 7.1,
taken from [8]). Since the other implications in the chain
above still hold in the general learning setting (e.g., uniform
convergence implies stability and stability implies learnabil-
ity by ERM), this example demonstrates that stability is a
strictly more general sufficient condition for learnability.

A natural question is then whether, in the general
setting, stability is also necessary for learning. Here
we establish that indeed, even in the general learning
setting, (distribution independent) stability of ERM is
necessary and sufficient for (distribution independent) con-
sistency of the ERM. The situation is therefore as follows:

Uniform
Convergence ERM Stable

Learnable
with ERM

We emphasize that, unlike the arguments of Mukherjee et
al [6], the proof of necessity does not go through uniform
convergence, allowing us to deal also with settings beyond
supervised classification and regression.

The discussion above concerns only stability and
learnability of the ERM. In supervised classification
and regression there is no need to go beyond the ERM,
since learnability is equivalent to learnability by em-



pirical risk minimization. But as we recently showed,
there are learning problems in the general setting which
are learnable using some alternate learning rule, but in
which ERM is neither stable nor consistent (Example
7.2, taken from [8]). Stability of ERM is therefore
a sufficient, but not necessary, condition for learnability:

Uniform
Convergence

ERM
Stable

Learnable
with ERM

Learnable

This prompts us to study the stability properties of non-ERM
learning rules.

We establish that, even in the general setting, any con-
sistent and generalizing learning rule (i.e. where in addition
to consistency, the empirical risk is also a good estimate of
the population risk) must be asymptotically empirical risk
minimizing (AERM, see precise definition in Section 2). We
thus focus on such rules and show that also for an AERM,
stability is sufficient for consistency and generalization. The
converse is a bit weaker for AERMs, though. We show that a
strict notion of stability, which is necessary for ERM consis-
tency, is not necessary for AERM consistency, and instead
suggest a weaker notion (averaging out fluctuations across
random training sets) that is necessary and sufficient for
AERM consistency. Noting that any consistent learning rule
can be transformed to a consistent and generalizing learn-
ing rule, we obtain a sharp characterization of learnability in
terms of stability—learnability is equivalent to the existence
of a stable AERM:

Exists Stable
AERM

Learnable
with AERM

Learnable

2 The General Learning Setting
A “learning problem” is specified by a hypothesis domainH,
an instance domain Z and an objective function (e.g. “loss
functional” or “cost function”) f : H × Z → R. Through-
out this paper we assume the function is bounded by some
constant B, i.e. |f(h, z)| ≤ B for all h ∈ H and z ∈ Z .

A “learning rule” is a mapping A : ∪mZm → H from
sequences of instances in Z to hypotheses. We refer to se-
quences S = {z1, . . . , zm} as “sample sets”, but it is impor-
tant to remember that the order and multiplicity of instances
may be significant. A learning rule that does not depend on
the order is said to be symmetric. We will generally consider
samples S ∼ Dm of m i.i.d. draws from D.

A possible approach to learning is to minimize the empir-
ical risk FS(h). We say that a rule A is an ERM (Empirical
Risk Minimizer) if it minimizes the empirical risk

FS(A(S)) = FS(ĥ) = min
h∈H

FS(h). (3)

where we use FS(ĥ) = minh∈H FS(h) to refer to the min-
imum empirical risk. But since there might be several hy-
potheses minimizing the empirical risk, ĥ does not refer to a
specific hypotheses and there might be many rules which are
all ERM.

We say that a rule A is an AERM (Asymptotical Em-
pirical Risk Minimizer) with rate εerm(m) under distribu-
tion D if:

ES∼Dm

[
FS(A(S))− FS(ĥS)

]
≤ εerm(m) (4)

Here and whenever talking about a “rate” ε(m), we require
it be monotone decreasing with ε(m) m→∞→ 0. A learning
rule is universally an AERM with rate εerm(m), if it is an
AERM with rate εerm(m) under all distributions D over Z .

Returning to our goal of minimizing the expected risk,
we say a rule A is consistent with rate εcons(m) under dis-
tribution D if for all m,

ES∼Dm [F (A(S))− F (h∗)] ≤ εcons(m). (5)

where we denote F (h∗) = infh∈H F (h). A rule is univer-
sally consistent with rate εcons(m) if it is consistent with rate
εcons(m) under all distributionsD over Z . A problem is said
to be learnable if there exists some universally consistent
learning rule for the problem. This definition of learnability,
requiring a uniform rate for all distributions, is the relevant
notion for studying learnability of a hypothesis class. It is a
direct generalization of agnostic PAC-learnability [?] to Vap-
nik’s General Setting of Learning as studied by Haussler [?]
and others.

We say a rule A generalizes with rate εgen(m) under
distribution D if for all m,

ES∼Dm [|F (A(S))− FS(A(S))|] ≤ εgen(m). (6)

A rule universally generalizes with rate εgen(m) if it gener-
alizes with rate εgen(m) under all distributions D over Z .

We note that other authors sometimes define “consis-
tency”, and thus also “learnable” as a combination of our
notions of “consistency” and “generalizing”.

3 Stability
We define a sequence of progressively weaker notions of sta-
bility, all based on leave-one-out validation. For a sample S
of size m, let S\i = {z1, ..., zi−1, zi+1, ..., zm} be a sample
of m − 1 points obtained by deleting the i-th observation of
S. All our measures of stability concern the effect deleting
zi has on f(h, zi), where h is the hypotheses returned by the
learning rule. That is, all measures consider the magnitude
of f(A(S\i); zi)− f(A(S); zi).

Definition 1. A rule A is uniform-LOO stable with rate
εstable(m) if for all samples S of m points and for all i:∣∣∣f(A(S\i); zi)− f(A(S); zi)

∣∣∣ ≤ εstable(m).

Definition 2. A rule A is all-i-LOO stable with rate
εstable(m) under distributions D if for all i:

ES∼Dm

[∣∣∣f(A(S\i); zi)− f(A(S); zi)
∣∣∣] ≤ εstable(m).

Definition 3. A rule A is LOO stable with rate εstable(m)
under distributions D if

1
m

m∑
i=1

ES∼Dm

[∣∣∣f(A(S\i); zi)− f(A(S); zi)
∣∣∣] ≤ εstable(m).

For symmetric learning rules, Definitions 2 and 3 are
equivalent. Example 7.5 shows that the symmetry assump-
tion is necessary, and the two definitions are not equivalent
for non-symmetric learning rules.

Our weakest notion of stability, which we show is still
enough to ensure learnability, is:



Definition 4. A rule A is on-average-LOO stable with rate
εstable(m) under distributions D if∣∣∣∣∣ 1
m

m∑
i=1

ES∼Dm

[
f(A(S\i); zi)− f(A(S); zi)

]∣∣∣∣∣ ≤ εstable(m).

We say that a rule is universally stable with rate
εstable(m), if the stability property holds with rate εstable(m)
for all distributions.

Claim 3.1. Uniform-LOO stability with rate εstable(m) im-
plies all-i-LOO stability with rate εstable(m), which im-
plies LOO stability with rate εstable(m), which implies on-
average-LOO stability with rate εstable(m).

Relationship to Other Notions of Stability
Many different notions of stability, some under multiple
names, have been suggested in the literature.

In particular, our notion of all-i-LOO stability has
been studied by several authors under different names:
pointwise-hypothesis stability [3], CVloo stability [6], and
cross-validation-(deletion) stability [7]. All are equivalent,
though the rate is sometimes defined differently. Other
authors define stability with respect to replacing, rather
then deleting, an observation. E.g. “CV stability” [4] and
“cross-validation-(replacement)” [7] are analogous to all-i-
LOO stability and “average stability” [7] is analogous to
average-LOO stability for symmetric learning rules. In gen-
eral the deletion and replacement variants of stability are
incomparable—in Appendix A we briefly discuss how the
results in this paper change if replacement stability is used.

A much stronger notion is uniform stability [3], which is
strictly stronger than any of our notions, and is sufficient for
tight generalization bounds. However, this notion is far from
necessary for learnability ([4] and Example 7.3 below).

In the context of symmetric learning rules, all-i-LOO sta-
bility and LOO stability are equivalent. In order to treat non-
symmetric rules more easily, we prefer working with LOO
stability.

For an elaborate discussion of the relationships between
different notions of stability, see [4].

4 Main Results
We first establish that existence of a stable AERM is suffi-
cient for learning:

Theorem 4.1. If a rule is an AERM with rate εerm(m) and
stable (under any of our definitions) with rate εstable(m) un-
der D, then it is consistent and generalizes under D with
rates

εcons(m) ≤ 3εerm(m) + εstable(m+ 1) + 2B
m+1

εgen(m) ≤ 4εerm(m) + εstable(m+ 1) + 6B√
m

Corollary 4.2. If a rule is universally an AERM and stable
then it is universally consistent and generalizing.

Seeking a converse to the above, we first note that it is
not possible to obtain a converse for each distributionD sep-
arately, i.e. to Theorem 4.1. In Example 7.6, we show a spe-
cific learning problem and distribution D in which the ERM

(in fact, any AERM) is consistent, but not stable, even under
our weakest notion of stability.

However, we are able to obtain a converse to Corollary
4.2. That is, establish that a universally consistent ERM, or
even AERM, must also be stable. For exact ERMs we have:

Theorem 4.3. For an ERM the following are equivalent:
• Universal LOO stability.
• Universal consistency.
• Universal generalization.

Recall that for a symmetric rule, LOO stability and all-i-
LOO stability are equivalent, and so consistency or gener-
alization of a symmetric ERM (the typical case) also imply
all-i-LOO stability.

Theorem 4.3 only guarantees LOO stability as a neces-
sary condition for consistency. Example 7.3 (adapted from
[4]) establishes that we cannot strengthen the condition to
uniform-LOO stability, or any stronger definition: there ex-
ists a learning problem for which the ERM is universally
consistent, but not uniform-LOO stable.

For AERMs, we obtain a weaker converse, ensuring only
on-average-LOO stability:

Theorem 4.4. For an AERM, the following are equivalent:
• Universal on-average-LOO stability.
• Universal consistency.
• Universal generalization.

On-average-LOO stability is strictly weaker then LOO sta-
bility, but this is the best that can be assured. In Example 7.4
we present a learning problem and an AERM that is univer-
sally consistent, but is not LOO stable.

The exact rate conversions of Theorems 4.3 and 4.4 are
specified in the corresponding proofs (Section 6), and are all
polynomial. In particular, an εcons-universal consistent εerm-
AERM is on-average-LOO stable with rate

εstable(m) ≤ 3εerm(m−1) + 3εcons((m−1)1/4) + 6B√
m−1 .

The above results apply only to AERMs, for which we
also see that universal consistency and generalization are
equivalent. Next we show that if in fact we seek universal
consistency and generalization, then we must consider only
AERMs:

Theorem 4.5. If a rule A is universally consistent with rate
εcons(m) and generalizing with rate εgen(m), then it is uni-
versally an AERM with rate

εerm(m) ≤ εgen(m) + 3εcons(m1/4) +
4B√
m

Combining theorems 4.4 and 4.5, we get that the exis-
tence of a universally on-average-LOO stable AERM is a
necessary (and sufficient) condition for existence of some
universally consistent and generalizing rule. As we show
in Example 7.7, there might still be a universally consistent
learning rule (hence the problem is learnable by our defini-
tion) that is not stable even by our weakest definition (and is
not an AERM nor generalizing). Nevertheless, any univer-
sally consistent learning rule can be transformed into a uni-
versally consistent and generalizing learning rule (Lemma
6.11). Thus by Theorems 4.5 and 4.4 this rule must also be a
stable AERM, establishing:



Theorem 4.6. A learning problem is learnable if and only if
there exists a universally on-average-LOO stable AERM.

In particular, if there exists a εcons-universally consistent
rule, then there exists a rule that is εstable-on-average-LOO
stable and εerm-AERM where:

εerm(m) = 3εcons(m1/4) + 7B√
m

,

εstable(m) = 6εcons((m− 1)1/4) + 19B√
m−1

(7)

5 Comparison with Prior Work
5.1 Theorem 4.1 and Corollary 4.2
The consistency implication in Theorem 4.1 (specifically,
that all-LOO stability of an AERM implies consistency) was
established by Mukherjee et al [6, Theorem 3.15].

As for the generalization guarantee, Rakhlin et al [7]
prove that for ERM, average-LOO stability is equivalent
to generalization. For more general learning rules, [3] at-
tempted to show that all-i-LOO stability implies generaliza-
tion. However, Mukherjee et al [6] (in remark 3, pg. 173)
provide a simple counterexample and note that the proof of
[3] is wrong, and in fact all-i-LOO stability alone is not
enough to ensure generalization. To correct this, Mukher-
jee et al [6] introduced an additional condition, referred to as
Elooerr stability, which together with all-i-LOO stability en-
sures generalization. For AERMs, they use arguments spe-
cific to supervised learning, arguing that universal consis-
tency implies uniform convergence, and establish general-
ization only via this route. And so, Mukherjee et al obtain a
version of Corollary 4.2 that is specific to supervised learn-
ing.

In summary, comparing Theorem 4.1 to previous work,
our results extend the generalization guarantee also to
AERMs in the general learning setting.

Rakhlin et al [7] also show that the replacement (rather
then deletion) version stability implies generalization for any
rule (even non-AERM), and hence consistency for AERMs.
Recall that the deletion and replacement version are not
equivalent. We are not aware of strong converses for the
replacement variant.

5.2 Converse Results
Mukherjee et al [6] argue that all-i-LOO stability of the ERM
(in fact, of any AERM) is also necessary for ERM univer-
sal consistency and thus learnability. However, their argu-
ments are specific to supervised learning, and establish sta-
bility only via uniform convergence of FS(h) to F (h), as
discussed in the introduction. As we now know, in the gen-
eral learning setting, ERM consistency is not equivalent to
this uniform convergence, and furthermore, there might be a
non-ERM universally consistent rule even though the ERM
is not universally consistent. Therefore, our results here ap-
ply to the general learning setting and do not use uniform
convergence arguments.

For an ERM, Rakhlin et al [7] show that generaliza-
tion is equivalent to on-average-LOO stability, for any dis-
tribution and without resorting to uniform convergence ar-
guments. This provides a partial converse to Theorem 4.1.
However, our results extend to AERM’s as well and more

importantly, provide a converse to AERM consistency rather
than just generalization. This distinction between consis-
tency and generalization is important, as there are situations
with consistent but not stable AERM’s (Example 7.6), or
even universally consistent learning rules which are not sta-
ble, generalizing nor AERM’s (Example 7.7).

Another converse result that does not use uniform con-
vergence arguments, but is specific only to the realizable
binary learning setting was given by Kutin and Niyogi [4].
They show that in this setting, for any distribution D, all-i-
LOO stability of the ERM under D is necessary for ERM
consistency under D. This is a much stronger form of con-
verse as it applies to any specific distribution separately,
rather then requiring universal consistency. However, not
only is it specific to supervised learning, but further requires
the distribution be realizable (i.e. zero error is achievable).
As we show in Example 7.6, a distribution-specific converse
is not possible in the general setting.

All the papers cited above focus on symmetric learning
rules where all-i-LOO stability is equivalent to LOO stabil-
ity. We prefer not to limit our attention to symmetric rules,
and instead use LOO stability.

6 Detailed Results and Proofs

We first establish that for AERMs, on-average-LOO stabil-
ity and generalization are equivalent, and that for ERMs the
equivalence extends also to LOO stability. This extends the
work of Rakhlin et al [7] from ERMs to AERMs, and with
somewhat better rate conversions.

6.1 Equivalence of Stability and Generalization

It will be convenient to work with a weaker version of gen-
eralization as an intermediate step: We say a rule A on-
average generalizes with rate εoag(m) under distribution D
if for all m,

|ES∼Dm [F (A(S))− FS(A(S))]| ≤ εoag(m). (8)

It is straightforward to see that generalization implies on-
average generalization with the same rate. We show that for
AERMs, the converse is also true, and also that on-average
generalization is equivalent to on-average stability, establish-
ing the equivalence between generalization and on-average
stability (for AERMs).

Lemma 6.1 (For AERMs: on-average generalization ⇔
on-average stability). Let A be AERM with rate εerm(m)
under D. If A is on-average generalizing with rate εoag(m)
then it is on-average LOO stable with rate εoag(m − 1) +
2εerm(m− 1) + 2B/m. If A is on-average LOO stable with
rate εstable(m) then it is on-average generalizing with rate
εstable(m+ 1) + 2εerm(m) + 2B/m.

Proof. For the ERMs of S and S\i we have∣∣∣FS\i(ĥS\i)− FS(ĥS)
∣∣∣ ≤ 2B

m , and so since A is AERM:

E
[∣∣∣FS(A(S))−FS\i(A(S\i))

∣∣∣]≤ 2εerm(m−1)+ 2B
m (9)



generalization⇒ stability Applying (8) to S\i and com-
bining with (9) we have

∣∣E [F (A(S\i))− FS(A(S))
]∣∣ ≤

εoag(m − 1) + 2εerm(m − 1) + 2B/m, which does not ac-
tually depend on i, hence:

εoag(m− 1) + 2εerm(m− 1) + 2B/m

≥
∣∣∣E [F (A(S\i))− FS(A(S))

]∣∣∣ (10)

=
∣∣∣Ei [E [F (A(S\i))− FS(A(S))

]]∣∣∣
=
∣∣∣ES\i,zi

[
Ei
[
f(A(S\i), zi)

]]
− ES [f(A(S), zi)]

∣∣∣
=
∣∣∣E [Ei [f(A(S\i), zi)− f(A(S), zi)

]]∣∣∣ (11)

which establishes on-average stability.

stability ⇒ generalization Bounding (11) by
εstable(m) and working back we get that (10)
is also bounded by εstable(m). Combined with
(9) we get

∣∣E [F (A(S\i))− FS\i(A(S\i))
]∣∣ ≤

εstable(m) + 2εoag(m − 1) + 2B/m which establishes
on-average generalization.

Lemma 6.2 (AERM + on-average generalization⇒ gen-
eralization). If A is an AERM with rate εerm(m) and on-
average generalizes with rate εoag(m) underD, then A gen-
eralizes with rate εoag(m) + 2εerm(m) + 2B√

m
under D.

Proof. Using respective optimalities of ĥS and h? we can
bound:

FS(A(S))− F (A(S))

= FS(A(S))− FS(ĥS) + FS(ĥS)− FS(h?)
+ FS(h?)− F (h?) + F (h?)− F (A(S))

≤ FS(A(S))− FS(ĥS) + FS(h?)− F (h?) = Y (12)

Where the final equality defines a new random variable Y .
By Lemma 6.3 and the AERM guarantee we have E [|Y |] ≤
εerm(m) +B/

√
m). From Lemma 6.4 we can conclude that

E [|FS(A(S))− F (A(S))|]
≤ |E [FS(A(S))− F (A(S))]|+ 2E [|Y |]
≤ εoag(m) + 2εerm(m) + 2B√

m
.

Utility Lemma 6.3. For i.i.d. Xi, |Xi| ≤ B and X =
1
m

∑m
i=1Xi we have E [|X − E [X]|] ≤ B/

√
m.

Proof. E [|X − E [X]|] ≤
√

Var[X] =
√

Var[Xi]/m ≤
B/
√
m.

Utility Lemma 6.4. LetX,Y be random variables s.t. X ≤
Y almost surely. Then E [|X|] ≤ |E [X]|+ 2E [|Y |].

Proof. Denote a+ = max(0, a) and observe that X ≤ Y
implies X+ ≤ Y+ (this holds when both have the same sign,
and when X ≤ 0 ≤ Y , while Y < 0 < X is not possible).
We therefor have E [X+] ≤ E [Y+] ≤ E [|Y |]. Also note
that |X| = 2X+ − X . We can now calculate: E [|X|] =
E [2X+ −X] = 2E [X+]−E [X] ≤ 2E [|Y |] + |E [X]|.

For exact ERM, we get a stronger equivalence:

Lemma 6.5 (ERM+on-average-LOO⇒LOO stable). If an
exact ERM A is on-average-LOO stable with rate εstable(m)
under D, then it is also LOO stable under D with the same
rate.

Proof. By optimality of ĥS = A(S):

f(ĥS\i , zi)− f(ĥS , zi) = FS(ĥS\i)− FS(ĥS)

+ FS\i(ĥS)− FS\i(ĥS\i) ≥ 0. (13)

Then using on-average-LOO stability:

1
m

m∑
i=1

E
[∣∣∣f(ĥS\i , zi)− f(ĥS , zi)

∣∣∣]
=

1
m

m∑
i=1

E
[(
f(ĥS\i , zi)− f(ĥS , zi)

)]
≤ εstable(m)

Lemma 6.5 can be extended also to AERMs with rate
o( 1
n ). However, for AERMs with a slower rate, or at least

with rate Ω( 1√
n

), Example 7.4 establishes that this stronger
converse is not possible.

We have now established the stability↔generalization
parts of Theorems 4.1, 4.3 and 4.4 (in fact, even a slightly
stronger converse than in Theorems 4.3 and 4.4, as it does
not require universality).

6.2 A Sufficient Condition for Consistency
It is also fairly straightforward to see that generalization
(or even on-average generalization) of an AERM implies its
consistency:

Lemma 6.6 (AERM+generalization⇒consistency). If A
is AERM with rate εerm(m) and it on-average generalizes
with rate εoag(m) under D then it is consistent with rate
εoag(m) + εerm(m) under D.

Proof.

E [F (A(S))− F (h?)] = E [F (A(S))− FS(h?)]
= E [F (A(S))− FS(A(S))] + E [FS(A(S))− FS(h?)]

≤ E [F (A(S))− FS(A(S))] + E
[
FS(A(S))− FS(ĥS)

]
≤ εgen(m) + εerm(m)

Combined with the results of Section 6.1, this completes
the proof of Theorem 4.1 and the stability→consistency
and generalization→consistency parts of Theorems 4.3
and 4.4.

6.3 Converse Direction
Lemma 6.1 already provides a converse result, establishing
that stability is necessary for generalization. However, in or-
der to establish that stability is also necessary for universal
consistency we must prove that universal consistency of an
AERM implies universal generalization. Note that consis-
tency under a specific distribution for an AERM does not
imply generalization nor stability (Example 7.6). We must
instead rely on universal consistency. The main tool we use
is the following lemma:



Lemma 6.7 (Main Converse Lemma). If a problem is
learnable, i.e. there exists a universally consistent rule A
with rate εcons(m), then under any distribution,

E
[∣∣∣FS(ĥS)− F (h?)

∣∣∣] ≤ εemp(m) where

εemp(m) = 2εcons(m′) + 2B√
m

+ 2Bm′2

m

for any sequence m′ is such that m′ → ∞ and m′ =
o(
√
m).

Proof. Let I = {I1, . . . , Im′} be a random sample of m′
indexes in the range 1..m where each Ii is independently
uniformly distributed, and I is independent of S. Let S′ =
{zIi
}m′i=1, i.e. a sample of size m′ drawn from the uniform

distribution over samples in S (with replacements). We first
bound the probability that I has no repeated indexes (“dupli-
cates”):

Pr (I has duplicates) ≤
∑m′

i=1(i− 1)
m

≤ m′
2

2m
(14)

Conditioned on not having duplicates in I , the sample S′ is
actually distributed according to Dm′ , i.e. can be viewed as
a sample from the original distribution. We therefor have by
universal consistency:

E [|F (A(S′))− F (h?)| | no dups] ≤ εcons(m′) (15)
But viewed as a sample drawn from the uniform distribution
over instances in S, we also have:

ES′
[∣∣∣FS(A(S′))− FS(ĥS)

∣∣∣] ≤ εcons(m′) (16)

Conditioned on having no duplications in I , S \S′ (i.e. those
samples in S not chosen by I) is independent of S′, and
|S \ S′| = m−m′, and so by Lemma 6.3:

ES
[∣∣F (A(S′))− FS\S′(A(S′))

∣∣] ≤ B√
m−m′

(17)

Finally, if there are no duplicates, then for any hypothesis,
and in particular for A(S′) we have:∣∣FS(A(S′))− FS\S′(A(S′))

∣∣ ≤ 2Bm′

m
(18)

Combining (15),(16),(17) and (18), accounting for a maxi-
mal discrepancy of B when we do have duplicates, and as-
suming 2 ≤ m′ ≤ m/2, we get the desired bound.

In the supervised learning setting, Lemma 6.7 is just an
immediate consequence of learnability being equivalent to
consistency and generalization of the ERM. However, the
Lemma applies also in the General Setting, where univer-
sal consistency might be achieved only by a non-ERM. The
Lemma states that if a problem is learnable, even though the
ERM might not be consistent (as in, e.g. Example 7.2), the
empirical error achieved by the ERM is in fact an asymptot-
ically unbiased estimator of F (h?).

Equipped with Lemma 6.7, we are now ready to show
that universal consistency of an AERM implies generaliza-
tion and that any universally consistent and generalizing rule
must be an AERM. What we show is actually a bit stronger:
that if a problem is learnable, and so Lemma 6.7 holds, then
for any distribution D separately, consistency of an AERM
underD implies generalization underD and also any consis-
tent and generalizing rule under D must be an AERM.

Lemma 6.8 (learnable+AERM+consistent⇒generalizing).
If Lemma 6.7 holds with rate εemp(m), and A is an εerm-
AERM and εcons-consistent under D, then it is generalizing
under D with rate εemp(m) + εerm(m) + εcons(m).

Proof.

E [|FS(A(S))− F (A(S))|] ≤ E
[∣∣∣FS(A(S))− FS(ĥS)

∣∣∣]
+ E [|F (h?)− F (A(S))|] + E

[∣∣∣FS(ĥS)− F (h?)
∣∣∣]

≤ εerm(m) + εcons(m) + εemp(m)

Lemma 6.9 (learnable+consistent+generalizing⇒AERM).
If Lemma 6.7 holds with rate εemp(m), and A is εcons-
consistent and εgen-generalizing under D, then it is AERM
under D with rate εemp(m) + εgen(m) + εcons(m).

Proof.

E
[∣∣∣FS(A(S))− FS(ĥS)

∣∣∣] ≤ E [|FS(A(S))− F (A(S))|]

+ E [|F (A(S))− F (h?)|] + E
[∣∣∣F (h?)− FS(ĥS)

∣∣∣]
≤ εgen(m) + εcons(m) + εemp(m)

Lemma 6.8 establishes that universal consistency of an
AERM implies universal generalization, and thus completes
the proof of Theorems 4.3 and 4.4. Lemma 6.9 establishes
Theorem 4.5. To get the rates in 4, we use m′ = m1/4 in
Lemma 6.7.

Lemmas 6.6, 6.8 and 6.9 together establish an interesting
relationship:

Corollary 6.10. For a (universally) learnable problem, for
any distribution D and learning rule A, any two of the fol-
lowing imply the third :
•A is an AERM under D.
•A is consistent under D.
•A generalizes under D.

Note, however, that any one property by itself is possible,
even universally:
- The ERM in Example 7.2 is neither consistent nor general-
izing, despite the problem being learnable.
- Example 7.7 demonstrates a universally consistent learning
rule which is neither generalizing nor an AERM.
- A rule returning a fixed hypothesis always generalizes, but
of course need not be consistent nor an AERM.

In contrast, for learnable supervised classification and re-
gression problems, it is not possible for a learning rule to
be just universally consistent, without being an AERM and
without generalization. Nor is it possible for a learning rule
to be a universal AERM for a learnable problem, without
being generalizing and consistent.

Corollary 6.10 can also provide a certificate of non-
learnability. E.g. for the problem in Example 7.6 we show
a specific distribution for which there is a consistent AERM
that does not generalize. We can conclude that there is no
universally consistent learning rule for the problem, other-
wise the corollary is violated.



6.4 Existence of a Stable Rule
Theorems 4.5 and 4.4, which we just completed proving,
already establish that for AERMs, universal consistency is
equivalent to universal on-average-LOO stability. Existence
of a universally on-average-LOO stable AERM is thus suffi-
cient for learnability. In order to prove that it is also neces-
sary, it is enough to show that existence of a universally con-
sistent learning rule implies existence of a universally con-
sistent AERM. This AERM must then be on-average-LOO
stable by Theorem 4.4.

We actually show how to transform a consistent rule to
a consistent and generalizing rule. If this rule is universally
consistent, then by Lemma 6.9 we can then conclude it must
an AERM, and by 6.1 that it must be on-average-LOO stable.

Lemma 6.11. For any rule A there exists a rule A′, such
that:
•A′ universally generalizes with rate 3B√

m
.

• For any D, if A is εcons-consistent under D then A′ is
εcons(b

√
mc) consistent under D.

Proof. For a sample S of sizem, let S′ be a sub-sample con-
sisting of the first b

√
mc observation in S. Define A′(S) =

A(S′). That is, A′ applies A to only b
√
mc of the observa-

tion in S.

A′ generalizes: We can decompose:

FS(A(S′))−F (A(S′)) = 1
b
√
mc (FS′(A(S′))− F (A(S′)))

+ (1− 1
b
√
mc )(FS\S′(A(S′))− F (A(S′)))

The first term can be bounded by 2B/b
√
mc. As for the

second term, S \ S′ is statistically independent of S′ and so
we can use Lemma 6.3 to bound its expected magnitude to
obtain:

E [|FS(A(S′))− F (A(S′))|]
≤ 2B
b
√
mc + (1− 1

b
√
mc )

B√
m−b

√
mc
≤ 3B√

m
(19)

A′ is consistent: If A is consistent, then:

E
[
F (A′(S))− inf

h∈H
F (h)

]
≤

E
[
F (A(S′))− inf

h∈H
F (h)

]
≤ εcons(b

√
mc)

Proof of Converse in Theorem 4.6 If there exists a uni-
versally consistent rule with rate εcons(m), by Lemma 6.11
there exists A′ which is universally consistent and general-
izing. Choosing m′ = m1/4 in Lemma 6.7 and applying
Lemmas 6.9 and 6.1 we get the rates specified in (7).

Remark We can strengthen the above theorem to show
existence of an on-average-LOO stable, always AERM (ie.
a rule which for every sample approximately minimizes
FS(h)). The new learning rule for this purpose chooses the
hypothesis returned by the original rule whenever empirical
risk is small and chooses an ERM otherwise. The proof is
completed via Markov inequality to bound the probability
that we don’t choose the hypothesis returned by the original
learning rule.

7 Examples
Our first example (taken from [8]) shows that uniform con-
vergence is not necessary for ERM consistency. I.e. univer-
sal ERM consistency holds without uniform convergence.
Of course, this can also happen in “trivial” settings where
there is one hypothesis h0 which dominates all other hypoth-
esis (i.e. f(h0, z) < f(h, z) for all z and all h 6= h0) [9].
However, the example below demonstrates a non-trivial sit-
uation with ERM universal consistency but no uniform con-
vergence: there is no dominating hypothesis, and finding the
optimal hypothesis does require learning. In particular, un-
like “trivial” problems with a dominating hypothesis, in the
example below there is not even local uniform convergence.
I.e. there is no uniform convergence even among hypotheses
that are close to being population optimal.

Example 7.1. There exists a learning problem for which any
ERM is universally consistent, but the empirical risks do not
converge uniformly to their expectations.

Proof. Consider a convex stochastic optimization problem
given by:

f(w; (x, α)) = ‖α ∗ (w − x)‖+ ‖w‖2

=
√∑

i

α2[i](w[i]− x[i])2 + ‖w‖2 ,

where w is the hypothesis, w,x are elements in a unit ball
around the origin of a Hilbert space with a countably infi-
nite orthonormal basis e1, e2, . . ., and α is an infinite binary
sequence. α[i] is the i-th coordinate of α, w[i] := 〈w, ei〉,
and x[i] is defined similarly. In our other submission [8],
we show that the ERM is stable, hence consistent. How-
ever, when x = 0 a.s. and α is i.i.d. uniform, there is no
uniform convergence, not even locally. To see why, note
that for a random sample S of any finite size, with prob-
ability one there exists an “excluded” basis vector ej such
that αi[j] = 0 for all (xi, αi) ∈ S. For any t > 0, we have
F (tej) − FS(tej) ≥ t2, regardless of the sample size. Set-
ting t = 1 establishes supw |F (w)− FS(w)| ≥ 1 even as
m → ∞, and so there is no uniform convergence. Choos-
ing t arbitrarily small, we see that even when F (tej) is close
to optimal, the deviations |F (w)− FS(w)| still do not con-
verge to zero as m→∞.

Perhaps more surprisingly, the next example (also taken
from [8]) shows that in the general setting, learnability might
require using a non-ERM.

Example 7.2. There exists a learning problem with a uni-
versally consistent learning rule, but for which no ERM is
universally consistent.

Proof. Consider the same hypothesis space and sample
space as before, with:

f(w, z) =
‖α ∗ (w − x)‖

2
+
ε

2

∞∑
i=1

2−i(wi − 1)2 ,

where ε = 0.01. When x = 0 a.s. and α is i.i.d. uniform,
then the ERM must have ‖ŵ‖ = 1. To see why, note that



for an excluded ej (which exists a.s.) increasing w[j] to-
wards one decreases the objective. But since ‖ŵ‖ = 1, we
have F (ŵ) ≥ 1/2, while infw F (w) ≤ F (0) = ε, and so
F (ŵ) 6→ infw F (w).

On the other hand, A(S) = arg minFS(w)+ 20√
m
‖w‖2

is a uniformly-LOO stable AERM and hence by Theorem
4.1 universally consistent.

In the next three examples, we show that in a certain
sense, Theorem 4.3 and Theorem 4.4 cannot be improved
with stronger stability notions. Viewed differently, they also
constitute separation results between our various stability no-
tions, and show which are strictly stronger than the other.
Example 7.4 also demonstrates the gap between supervised
learning and a general learning setting, by presenting a learn-
ing problem and an AERM that is universally consistent, but
not LOO stable.

Example 7.3. There exists a learning problem with a uni-
versally consistent and all-i-LOO stable learning rule, but
there is no universally consistent and uniform LOO stable
learning rule.

Proof. This example is taken from [4]. Consider the hypoth-
esis space {0, 1}, the instance space {0, 1}, and the objective
function f(h, z) = |h− z|.

It is straightforward to verify that an ERM is a univer-
sally consistent learning rule. It is also universally all-i-LOO
stable, because removing an instance can change the hypoth-
esis only if the original sample had an equal number of 0’s
and 1′s (plus or minus one), which happens with probability
at most O(1/

√
m) where m is the sample size. However, it

is not hard to see that the only uniform LOO stable learning
rule, at least for large enough sample sizes, is a constant rule
which always returns the same hypothesis h regardless of
the sample. Such a learning rule is obviously not universally
consistent.

Example 7.4. There exists a learning problem with a uni-
versally consistent (and average-LOO stable) AERM, which
is not LOO stable.

Proof. Let the instance space, hypothesis space and objec-
tive function be as in Example 7.3. Consider the follow-
ing learning rule, based on a sample S = (z1, . . . , zm):
if
∑
i 11{zi=1}/m > 1/2 +

√
log(4)/2m, return 1. If∑

i 11{zi=1}/m < 1/2−
√

log(4)/2m, return 0. Otherwise,
return Parity(S) = (z1 + . . . zm) mod 2.

This learning rule is an AERM, with εerm(m) =√
2 log(4)/m. Since we have only two hypotheses, we have

uniform convergence of FS(·) to F (·) for any hypothesis.
Therefore, our learning rule universally generalizes (with
rate εgen(m) =

√
log(4/δ)/2m), and by Theorem 4.4, this

implies that the learning rule is also universally consistent
and average-LOO stable.

However, the learning rule is not LOO stable. Consider
the uniform distribution on the instance space. By Hoeffd-
ing’s inequality, |

∑
i 11{zi=1}/m − 1/2| ≤

√
log(4)/2m

with probability at least 1/2 for any sample size m. In that
case, the returned hypothesis is the parity function (even
when we remove an instance from the sample, assuming

m ≥ 3). When this happens, it is not hard to see that for
any i,

f(A(S), zi)− f(A(S\i), zi) = 11{zi=1}(−1)Parity(S).

This implies that

E

[
1
m

m∑
i=1

∣∣∣(f(A(S\i); zi)− f(A(S); zi)
)∣∣∣] (20)

≥ 1
2

E

[
1
m

m∑
i=1

11{zi=1}

∣∣∣∣∣
√

log(4)
2m

≥
∣∣∣ m∑
i=1

11{zi=1}

m
− 1

2

∣∣∣]

≥ 1
2

(
1
2
−
√

log(4)
2m

)
−→ 1

4
,

which does not converge to zero with the sample size m.
Therefore, the learning rule is not LOO stable.

Note that the proof implies that average-LOO stability
cannot be replaced even by weaker stability notions than
LOO stability. For instance, a natural stability notion inter-
mediate between average-LOO stability and LOO stability
is

ES∼Dm

[∣∣∣∣∣ 1
m

m∑
i=1

(
f(A(S\i); zi)− f(A(S); zi)

)∣∣∣∣∣
]
, (21)

where the absolute value is now over the entire sum, but in-
side the expectation. In the example used in the proof, (21)
is still lower bounded by (20), which does not converge to
zero with the sample size.

Example 7.5. There exists a learning problem with a univer-
sally consistent and LOO-stable AERM, which is not sym-
metric and is not all-i-LOO stable.

Proof. Let the instance space be [0, 1], the hypothesis space
[0, 1]∪2, and the objective function f(h, z) = 11{h=z}. Con-
sider the following learning rule A: given a sample, check
if the value z1 appears more than once in the sample. If no,
return z1, otherwise return 2.

Since FS(2) = 0, and z1 returns only if this value con-
stitutes 1/m of the sample, the rule above is an AERM
with rate εerm(m) = 1/m. To see universal consis-
tency, let Pr(z1) = p. With probability (1 − p)m−2,
z1 /∈ {z2, . . . , zm}, and the returned hypothesis is z1, with
F (z1) = p. Otherwise, the returned hypothesis is 2, with
F (2) = 0. Hence ES [F (A(S))] ≤ p(1 − p)m−2, which
can be easily verified to be at most 1/(m− 1), so the learn-
ing rule is consistent with rate εcons(m) ≤ 1/(m − 1). To
see LOO-stability, notice that our learning hypothesis can
change by deleting zi, i > 1, only if zi is the only instance in
z2, . . . , zm equal to z1. So εstable(m) ≤ 2/m (in fact, LOO-
stability holds even without the expectation). However, this
learning rule is not all-i-LOO-stable. For instance, for any
continuous distribution, |f(A(S\1), z1)−f(A(S), z1)| = 1
with probability 1, so it obviously cannot be all-i-LOO-stable
with respect to i = 1.

Next we show that for specific distributions, even ERM
consistency does not imply even our weakest notion of sta-
bility.
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Figure 1: Implications of various properties of learning problems. Consistency refers to univeral consistency and stability refers
to univeral on-average-LOO stability.
Example 7.6. There exists a learning problem and a dis-
tribution on the instance space, such that the ERM (or any
AERM) is consistent but is not average-LOO stable.

Proof. Let the instance space be [0, 1], the hypothesis space
consist of all finite subsets of [0, 1], and define the objec-
tive function as f(h, z) = 11{z/∈h}). Consider any contin-
uous distribution on the instance space. Since the under-
lying distribution D is continuous, we have F (h) = 1 for
any hypothesis h. Therefore, any learning rule (including
any AERM) will be consistent with F (A(S)) = 1. On the
other hand, the ERM here always achieves FS(ĥS) = 0, so
any AERM cannot generalize, or even on-average-generalize
(by Lemma 6.2), hence cannot be average-LOO stable (by
Lemma 6.1).

Finally, the following example shows that while learn-
ability is equivalent to the existence of stable and consistent
AERM’s (Theorem 4.4 and Theorem 4.6), there might still
exist other learning rules, which are neither of the above.

Example 7.7. There exists a learning problem with a uni-
versally consistent learning rule, which is not average-LOO
stable, generalizing nor an AERM.

Proof. Let the instance space be [0, 1]. Let the hypothesis
space consist of all finite subsets of [0, 1], and the objective
function be the indicator function f(h, z) = 11{z∈h}. Con-
sider the following learning rule: given a sample S ⊆ [0, 1],
the learning rule checks if there are any two identical in-
stances in the sample. If so, the learning rule returns the
empty set ∅. Otherwise, it returns the sample.

This learning rule is not an AERM, nor does it neces-
sarily generalize or is average-LOO stable. Consider any
continuous distribution on [0, 1]. The learning rule always
returns a countable set A(S), with FS(A(S)) = 1, while
FS(∅) = 0 (so it is not an AERM) and F (A(S)) = 0
(so it does not generalize). Also, f(A(S), zi) = 0 while
f(A(S\i0, zi) = 1 with probability 1, so it is not average-
LOO stable either.

However, the learning rule is universally consistent. If
the underlying distribution is continuous on [0, 1], then the
returned hypothesis is S, which is countable hence , F (S) =
0 = infh F (h). For discrete distributions, let M1 denote the
proportion of instances in the sample which appear exactly
once, and let M0 be the probability mass of instances which
did not appear in the sample. Using [5, Theorem 3], we have
that for any δ, it holds with probability at least 1 − δ over a
sample of size m that

|M0 −M1| ≤ O
(

log(m/δ)√
m

)
,

uniformly for any discrete distribution. If this event occurs,
then either M1 < 1, or M0 ≥ 1 − O(log(m/δ)/

√
m). But

in the first event, we get duplicate instances in the sample,
so the returned hypothesis is the optimal ∅, and in the sec-
ond case, the returned hypothesis is the sample, which has
a total probability mass of at least 1 − O(log(m/δ)/

√
m),

and therefore F (A(S)) ≤ O(log(m/δ)/
√
m). As a result,

regardless of the underlying distribution, with probability of
at least 1− δ over the sample,

F (A(S)) ≤ O
(

log(m/δ)√
m

)
.

Since the r.h.s. converges to 0 with m for any δ, it is easy to
see that the learning rule is universally consistent.

8 Discussion
In the familiar setting of supervised classification or regres-
sion, the question of learnability is reduced to that of uni-
form convergence of empirical risks to their expectation, and
in turn to finiteness of the fat-shattering dimension [1]. Fur-
thermore, due to the equivalence of learnability and uniform
convergence, there is no need to look beyond the ERM.

We recently showed [8] that the situation in the general
learning setting is substantially more complex. Universal
ERM consistency might not be equivalent to uniform con-
vergence, and furthermore, learnability might be possible
only with a non-ERM. We are therefore in need of a new un-
derstanding of the question of learnability that applies more
broadly then just to supervised classification and regression.

In studying learnability in the general setting, Vapnik [9]
focuses solely on empirical risk minimization, which we now
know is not sufficient for understanding learnability (e.g. Ex-
ample 7.2). Furthermore, for empirical risk minimization,
Vapnik establishes uniform convergence as a necessary and
sufficient condition not for ERM consistency, but rather for
strict consistency of the ERM. We now know that even in
rather non-trivial problems (e.g. Example 7.1 taken from
[8]), where the ERM is consistent and generalizes, strict
consistency does not hold. Furthermore, Example 7.1 also
demonstrates that ERM stability guarantees ERM consis-
tency, but not strict consistency, perhaps giving another in-
dication that strict consistency might be too strict (this and
other relationships are depicted in Figure 1).

In Examples 7.1 and 7.2 we see that stability is a strictly
more general sufficient condition for learnability. This
makes stability an appealing candidate for understanding
learnability in the more general setting.

Indeed, we show that stability is not only sufficient, but
is also necessary for learning, even in the general learning
setting. A previous such characterization was based on uni-
form convergence and thus applied only to supervised clas-



sification and regression [6]. Extending the characterization
beyond these settings is particularly interesting, since for su-
pervised classification and regression the question of learn-
ability is already essentially solved. Extending the charac-
terization, without relying on uniform convergence, also al-
lows us to frame stability as the core condition guaranteeing
learnability, with uniform convergence only a sufficient, but
not necessary, condition for stability (see Figure 1).

In studying the question of learnability and its relation to
stability, we encounter several differences between this more
general setting, and settings such as supervised classification
and regression where learnability is equivalent to uniform
convergence. We summarize some of these distinctions:
• Perhaps the most important distinction is that in the gen-

eral setting learnability might be possible only with a
non-ERM. In this paper we establish that if a problem
is learnable, although it might not be learnable with an
ERM, it must be learnable with some AERM. And so,
in the general setting we must look beyond empirical
risk minimization, but not beyond asymptotic empirical
risk minimization.
• Related to the above distinction, in supervised classifi-

cation and regression, if one AERM is universally con-
sistent then all AERMs are universally consistent. In
the general setting we must choose the AERM carefully.
• In supervised classification and regression, a uni-

versally consistent rule must also generalize and be
AERM. But example 7.7 demonstrates that in the gen-
eral setting, a universally consistent rule need not gen-
eralize nor be an AERM. Theorem 4.5 establishes that,
even in the general setting, if a rule is universally con-
sistent and generalizing then it must be an AERM. This
gives us another reason to not look beyond asymptotic
empirical risk minimization, even in the general setting.
The above distinctions can also be seen through Corol-
lary 6.10, which concerns the relationship between
AERM, consistency and generalization in learnable
problems. In the general setting, any two conditions
imply the other, but it is possible for any one condition
to exist without the others. In supervised classification
and regression, if a problem is learnable then gener-
alization always holds (for any rule), and so universal
consistency and AERM imply each other.
• In supervised classification and regression, ERM incon-

sistency for some distribution is enough to establish
non-learnability. Establishing non-learnability in the
general setting is trickier, since one must consider all
AERMs. We show how Corollary 6.10 can be used to
provide a certificate for non-learnability, in the form of
a rule that is consistent and an AERM for some specific
distribution, but does not generalize (Example 7.6).
• In the general setting, universal consistency of an

AERM only guarantees on-average-LOO stability, but
not LOO stability as in the supervised classification set-
ting [6]. As we show in Example 7.4, this is a real dif-
ference and not merely a deficiency of our proofs.

We have begun exploring the complexities of learnability in
the general setting, and uncovered important relationships
between learnability and stability. But many problems are
left open.

Throughout the paper we ignored the issue of getting
high-confidence concentration guarantees. We choose to use
convergence in expectation, and defined the rates as rates on
the expectation. Since the objective f is bounded, conver-
gence in expectation is equivalent to convergence in prob-
ability and using Markov’s inequality we can translate a
rate of the form E [|· · ·|] ≤ ε(m) to a “low confidence”
guarantee Pr(|· · ·| > ε(m)/δ) ≤ δ. Can we also obtain
exponential concentration results of the form Pr(|· · ·| >
ε(m)polylog(1/δ)) ≤ δ ? It is possible to construct exam-
ples in the general setting in which convergence in expecta-
tion of the stability does not imply exponential concentration
of consistency and generalization. Is it possible to show that
exponential concentration of stability is equivalent to expo-
nential concentration of consistency and generalization?

We showed that existence of an average-LOO stable
AERM is necessary and sufficient for learnability (Theo-
rem 4.6). Although specific AERMs might be universally
consistent and generalizing without being LOO stable (Ex-
ample 7.4), it might still be possible to show that for a learn-
able problem, there always exists some LOO stable AERM.
This would tighten our converse result and establish exis-
tence of a LOO stable AERM as equivalent to learnability.

Even existence of a LOO stable AERM is not as elegant
and simple as having finite VC dimension, or fat-shattering
dimension. It would be very interesting to derive equivalent
but more ’combinatorial’ conditions for learnability.
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A Replacement Stability
We used the Leave One-Out version of stabilities throughout
the paper, however many of the results hold when we use
the replacement versions instead. Here we briefly survey the
differences in the main results as they apply to replacement-
based stability.

Let S(i) denote the sample S with zi replaced by some
other z′i drawn from the same unknown distribution D.

Definition 5. A rule A is uniform-RO stable with
rate εstable(m) if for all samples S of m points and
∀z′, z′1, ..., z′m ∈ Z :

1
m

m∑
i=1

∣∣∣f(A(S(i)); z′)− f(A(S); z′)
∣∣∣ ≤ εstable(m).

Definition 6. A rule A is on-average-RO stable with rate
εstable(m) under distributions D if∣∣∣∣∣ 1
m

m∑
i=1

ES∼Dm;z′1,...,z
′
m∼D

[
f(A(S(i)); zi)− f(A(S); zi)

]∣∣∣∣∣
≤ εstable(m).

With the above definitions replacing uniform-LOO sta-
bility and on-average-LOO stability respectively, all theo-
rems in Section 4 other than Theorem 4.3 hold (i.e. Theorem
4.1, Corollary 4.2, Theorem 4.4 and Theorem 4.6).

We do not know how to obtain a replacement-variant
of Theorem 4.3—even for an consistent ERM, we can only
guarantee on-average-RO stability (as in Theorem 4.4), but
we do not know if this is enough to ensure RO stability.

However, although for ERMs we can only obtain a
weaker converse, we can guarantee the existence of an
AERM that is not only on-average-RO stable but actually
uniform-RO stable. That is, we get a much stronger variant
of Theorem 4.6:

Theorem A.1. A learning problem is learnable if and only
if there exists an uniform-RO stable AERM.

Proof. Clearly if there exists any rule A that is uniform-RO
stable and AERM then the problem is learnable since the
learning rule A is in fact universally consistent by theorem
4.1. On the other hand if there exists a rule A that is uni-
versally consistent, then consider the rule A′ as in the con-
struction of Lemma 6.11. As shown in the lemma this rule is
consistent. Now note that A′ only uses the first

√
m samples

of S. Hence for i >
√
m we have A′(S(i)) = A′(S) and so:

1
m

m∑
i=1

∣∣∣f(A(S(i)); z′)− f(A(S); z′)
∣∣∣

=

√
m∑

i=1

∣∣∣f(A(S(i)); z′)− f(A(S); z′)
∣∣∣ ≤ 2B√

m

We thus showed that this rule is consistent and generalizes
and is 2B√

m
-uniformly RO stable.


