
Learning Kernel-Based Halfspaces with the Zero-One Loss

Shai Shalev-Shwartz
The Hebrew University
shais@cs.huji.ac.il

Ohad Shamir
The Hebrew University
ohadsh@cs.huji.ac.il

Karthik Sridharan
Toyota Technological Institute

karthik@tti-c.org

Abstract

We describe and analyze a new algorithm for agnostically learning kernel-based halfspaces
with respect to the zero-one loss function. Unlike most previous formulations which rely on
surrogate convex loss functions (e.g. hinge-loss in SVM and log-loss in logistic regression),
we provide finite time/sample guarantees with respect to the more natural zero-one loss
function. The proposed algorithm can learn kernel-based halfspaces in worst-case time
poly(exp(L log(L/ε))), for any distribution, where L is a Lipschitz constant (which can be
thought of as the reciprocal of the margin), and the learned classifier is worse than the
optimal halfspace by at most ε. We also prove a hardness result, showing that under a
certain cryptographic assumption, no algorithm can learn kernel-based halfspaces in time
polynomial in L.

1 Introduction

A highly important hypothesis class in machine learning theory and applications is that of halfspaces
in a Reproducing Kernel Hilbert Space (RKHS). It is often trained using Support Vector Machines
(SVMs) [27]. SVMs replace the more natural 0-1 loss function with a convex surrogate – the hinge-
loss. By doing so, we can rely on convex optimization tools. However, there are no guarantees on
how well the hinge-loss approximates the 0-1 loss function. There do exist some recent results on
the asymptotic relationship between surrogate convex loss functions and the 0-1 loss function [29, 5],
but these do not come with finite-sample or finite-time guarantees. In this paper, we tackle the task
of learning kernel-based halfspaces with respect to the non-convex 0-1 loss function. Our goal is to
derive learning algorithms and to analyze them in the finite-sample finite-time setting.

Following the standard statistical learning framework, we assume that there is an unknown
distribution, D, over the set of labeled examples, X × {0, 1}, and our primary goal is to find a
classifier, h : X → {0, 1}, with low generalization error,

errD(h) def= E
(x,y)∼D

[|h(x)− y|] . (1)

The learning algorithm is allowed to sample a training set of labeled examples, (x1, y1), . . . , (xm, ym),
where each example is sampled i.i.d. from D, and it returns a classifier. Following the agnostic PAC
learning framework [17], we say that an algorithm (ε, δ)-learns a concept class H of classifiers using
m examples, if with probability of at least 1− δ over a random choice of m examples the algorithm
returns a classifier ĥ that satisfies

errD(ĥ) ≤ inf
h∈H

errD(h) + ε . (2)

We note that ĥ does not necessarily belong to H. Namely, we are concerned with improper learning,
which is as useful as proper learning for the purpose of deriving good classifiers. A common learning
paradigm is the Empirical Risk Minimization (ERM) rule, which returns a classifier that minimizes
the average error over the training set,

ĥ ∈ argmin
h∈H

1
m

m∑
i=1

|h(xi)− yi| .

-1 1

1

-1 1

1

Figure 1: Illustrations of transfer functions for L = 10 (left) and L = 3 (right): the 0-1 transfer function
(dashed blue line); the sigmoid transfer function (dotted black line); the erf transfer function (green line);
the piece-wise linear transfer function (dashed red line).

The class of (origin centered) halfspaces is defined as follows. Let X be a compact subset of a
RKHS, which w.l.o.g. will be taken to be the unit ball around the origin. Let φ0−1 : R→ R be the
function φ0−1(a) = 1(a ≥ 0) = 1

2 (sgn(a) + 1). The class of halfspaces is the set of classifiers

Hφ0−1

def= {x 7→ φ0−1(〈w,x〉) : w ∈ X} .

Although we represent the halfspace using w ∈ X , which is a vector in the RKHS whose dimen-
sionality can be infinite, in practice we only need a function that implements inner products in the
RKHS (a.k.a. a kernel function), and one can define w as the coefficients of a linear combination of
examples in our training set. To simplify the notation throughout the paper, we represent w simply
as a vector in the RKHS.

It is well known that if the dimensionality of X is n, then the VC dimension of Hφ0−1 equals n.
This implies that the number of training examples required to obtain a guarantee of the form given
in Equation (2) for the class of halfspaces scales at least linearly with the dimension n [27]. Since
kernel-based learning algorithms allow X to be an infinite dimensional inner product space, we must
use a different class in order to obtain a guarantee of the form given in Equation (2).

One way to define a slightly different concept class is to approximate the non-continuous function,
φ0−1, with a Lipschitz continuous function, φ : R→ [0, 1], which is often called a transfer function.
For example, we can use a sigmoidal transfer function

φsig(a) def=
1

1 + exp(−4La)
, (3)

which is a L-Lipschitz function. Other L-Lipschitz transfer functions are the erf function and the
piece-wise linear function:

φerf(a) def= 1
2

(
1 + erf

(√
π La

))
, φpw(a) def= max

{
min

{
1
2 + La , 1

}
0
}

(4)

An illustration of these transfer functions is given in Figure 1. Analogously to the definition of
Hφ0−1 , for a general transfer function φ we define Hφ to be the set of predictors x 7→ φ(〈w,x〉).
Since now the range of φ is not {0, 1} but rather the entire interval [0, 1], we interpret φ(〈w,x〉) as
the probability to output the label 1. The definition of errD(h) remains1 as in Equation (1).

The advantage of using a Lipschitz transfer function can be seen via Rademacher generalization
bounds [3]. In fact, a simple corollary of the contraction lemma implies the following:

Theorem 1 Let ε, δ ∈ (0, 1) and let φ be an L-Lipschitz transfer function. Let m be an integer
satisfying

m ≥

(
2L+ 3

√
2 ln(8/δ)
ε

)2

.

Then, for any distribution D over X × {0, 1}, the ERM algorithm (ε, δ)-learns the concept class Hφ

using m examples.

1Note that in this case errD(h) can be interpreted as P(x,y)∼D,b∼φ(〈w,x〉)[y 6= b].

The above theorem tells us that the sample complexity of learning Hφ is Ω̃(L2/ε2). Crucially, the
sample complexity does not depend on the dimensionality of X , but only on the Lipschitz constant
of the transfer function. This allows us to learn with kernels, when the dimensionality of X can even
be infinite. A related analysis compares the error rate of a halfspace w to the number of margin
mistakes w makes on the training set - see Section 4.1 for a comparison.

From the computational complexity point of view, the result given in Theorem 1 is problematic,
since the ERM algorithm should solve the non-convex optimization problem

argmin
w:‖w‖≤1

1
m

m∑
i=1

|φ(〈w,xi〉)− yi| . (5)

Solving this problem in polynomial time is hard under reasonable assumptions (see Section 3 in
which we present a formal hardness result). Adapting a technique due to [7] we show in Appendix A
that it is possible to find an ε-accurate solution to Equation (5) (where the transfer function is
φpw) in time poly

(
exp

(
L2

ε2 log(Lε)
))

. The main contribution of this paper is the derivation and
analysis of a more simple learning algorithm that (ε, δ)-learns the class Hsig using time and sample
complexity of at most poly

(
exp

(
L log(Lε)

))
. That is, the runtime of our algorithm is exponentially

smaller than the runtime required to solve the ERM problem using the technique described in [7],
and with only a polynomial dependence on ε. Moreover, the algorithm of [7] performs an exhaustive
search over all (L/ε)2 subsets of the m examples in the training set, and therefore its runtime is
always order of mL2/ε2 . In contrast, our algorithm’s runtime depends on a parameter B, which is
bounded by exp(L) only under a worst-case assumption. Depending on the underlying distribution,
B can be much smaller than the worst-case bound. In practice, we will cross-validate for B, and
therefore the worst-case bound will often be pessimistic.

The rest of the paper is organized as follows. In Section 2 we describe our main results. Next, in
Section 3 we provide a hardness result, showing that it is not likely that there exists an algorithm
that learns Hsig or Hpw in time polynomial in L. We outline additional related work in Section 4. In
particular, the relation between our approach and margin-based analysis is described in Section 4.1,
and the relation to approaches utilizing a distributional assumption is discussed in Section 4.2. We
wrap up with a discussion in Section 5.

2 Main Results

In this section we present our main result. Recall that we would like to derive an algorithm which
learns the class Hsig. However, the ERM optimization problem associated with Hsig is non-convex.
The main idea behind our construction is to learn a larger hypothesis class, denoted HB , which
approximately contains Hsig, and for which the ERM optimization problem becomes convex. The
price we need to pay is that from the statistical point of view, it is more difficult to learn the class
HB than the class Hsig, therefore the sample complexity increases.

The class HB we use is a class of linear predictors in some other RKHS. The kernel function
that implements the inner product in the newly constructed RKHS is

K(x,x′) def=
1

1− ν〈x,x′〉
, (6)

where ν ∈ (0, 1) is a parameter and 〈x,x′〉 is the inner product in the original RKHS. As mentioned
previously, 〈x,x′〉 is usually implemented by some kernel function K ′(z, z′), where z and z′ are the
pre-images of x and x′ with respect to the feature mapping induced by K ′. Therefore, the kernel in
Equation (6) is simply a composition with K ′, i.e. K(z, z′) = 1/(1− νK ′(z, z′)).

To simplify the presentation we will set ν = 1/2, although in practice other choices might
be more effective. It is easy to verify that K is a valid positive definite kernel function (see for
example [22, 11]). Therefore, there exists some mapping ψ : X → V, where V is an RKHS with
〈ψ(x), ψ(x′)〉 = K(x,x′). The class HB is defined to be:

HB
def= {x 7→ 〈v, ψ(x)〉 : v ∈ V, ‖v‖2 ≤ B} . (7)

The main result we prove in this section is the following:

Theorem 2 Let ε, δ ∈ (0, 1) and let L ≥ 3. Let B = 2L4 + exp
(
7L log

(
2L
ε

)
+ 3
)

and let m be a

sample size that satisfies m ≥ 8B
ε2

(
2 + 9

√
ln(8/δ)

)2

. Then, for any distribution D, with probability

of at least 1− δ, any ERM predictor ĥ ∈ HB with respect to HB satisfies
errD(ĥ) ≤ min

h∈Hsig
errD(hsig) + ε .

We note that the bound on B is far from being the tightest possible in terms of constants and
second-order terms. Also, the assumption of L ≥ 3 is rather arbitrary, and is meant to simplify the
presentation of the bound.

To prove this theorem, we start with analyzing the time and sample complexity of learning HB .
The sample complexity analysis follows directly from a Rademacher generalization bounds [3]. In
particular, the following theorem tells us that the sample complexity of learning HB with the ERM
rule is order of B/ε2 examples.

Theorem 3 Let ε, δ ∈ (0, 1), let B ≥ 1, and let m be a sample size that satisfies

m ≥ 2B
ε2

(
2 + 9

√
ln(8/δ)

)2

.

Then, for any distribution D, the ERM algorithm (ε, δ)-learns HB.

Proof Since K(x,x) ≤ 2, the Rademacher complexity of HB is bounded by
√

2B/m (see also [15]).
Additionally, using Cauchy-Schwartz inequality we have that the loss is bounded, |〈v, ψ(x)〉 − y| ≤√

2B + 1. The results now follows directly from [4, 15].

Next, we show that the ERM problem with respect to HB can be solved in time poly(m). The
ERM problem associated with HB is

min
v:‖v‖2≤B

1
m

m∑
i=1

|〈v, ψ(xi)〉 − yi| .

Since the objective function is defined only via inner products with ψ(xi), and the constraint on
v is defined by the `2-norm, it follows by the Representer theorem [28] that there is an optimal
solution v? that can be written as v? =

∑m
i=1 αiψ(xi). Therefore, instead of optimizing over v, we

can optimize over the set of weights α1, . . . , αm by solving the equivalent optimization problem

min
α1,...,αm

1
m

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

αjK(xj ,xi)− yi

∣∣∣∣∣∣ s.t.
m∑

i,j=1

αiαjK(xi,xj) ≤ B .

This is a convex optimization problem in Rm and therefore can be solved in time poly(m) using
standard optimization tools.2 We therefore obtain:

Corollary 1 Let ε, δ ∈ (0, 1) and let B ≥ 1. Then, for any distribution D, it is possible to (ε, δ)-
learn HB in sample and time complexity of poly

(
B
ε log(1/δ)

)
.

It is left to understand why the class HB approximately contains the class Hsig. Recall that for
any transfer function, φ, we define the class Hφ to be all the predictors of the form x 7→ φ(〈w,x〉).
The first step is to show that HB contains the union of Hφ over all polynomial transfer functions
that satisfy a certain boundedness condition on their coefficients.

Lemma 1 Let PB be the following set of polynomials (possibly with infinite degree)

PB
def=

p(a) =
∞∑
j=0

βj a
j :

∞∑
j=0

β2
j 2j ≤ B

 . (8)

Then, ⋃
p∈PB

Hp ⊂ HB .

Proof To simplify the proof, we first assume that X is simply the unit ball in Rn, for an arbitrarily
large but finite n. Consider the mapping ψ : X → RN defined as follows: for any x ∈ X , we let ψ(x)
be an infinite vector, indexed by k1 . . . , kj for all (k1, . . . , kj) ∈ {1, . . . , n}j and j = 0 . . .∞, where

2In fact, using stochastic gradient descent, we can (ε, δ)-learn HB in time O(m2), where m is as defined
in Theorem 3 —See for example [9, 23].

the entry at index k1 . . . , kj equals 2−j/2xk1 ·xk2 · · ·xkj . The inner-product between ψ(x) and ψ(x′)
for any x,x′ ∈ X can be calculated as follows,

〈ψ(x), ψ(x′)〉 =
∞∑
j=0

∑
(k1,...,kj)∈{1,...,n}j

2−jxk1x
′
k1 · · ·xkjx

′
kj =

∞∑
j=0

2−j(〈x,x′〉)j =
1

1− 1
2 〈x,x′〉

.

This is exactly the kernel function defined in Equation (6) (recall that we set ν = 1/2) and therefore
ψ maps to the RKHS defined by K. Consider any polynomial p(a) =

∑∞
j=0 βja

j in PB , and any
w ∈ X . Let vw be an element in RN explicitly defined as being equal to βj2j/2wk1 · · ·wkj at index
k1, . . . , kj (for all k1, . . . , kj ∈ {1, . . . , n}j , j = 0 . . .∞). By definition of ψ and vw, we have that

〈vw, ψ(x)〉 =
∞∑
j=0

∑
k1,...,kj

2−j/2βj2j/2wk1 · · ·wkjxk1 · · · ·xkj =
∞∑
j=0

βj(〈w,x〉)j = p(〈w,x〉) .

In addition,

‖vw‖2 =
∞∑
j=0

∑
k1,...,kj

β2
j 2jw2

k1 · · ·w
2
kj =

∞∑
j=0

β2
j 2j

∑
k1

w2
k1

∑
k2

w2
k2 · · ·

∑
kj

w2
kj =

∞∑
j=0

β2
j 2j

(
‖w‖2

)j ≤ B.
Thus, the predictor x 7→ 〈vw, ψ(x)〉 belongs to HB and is the same as the predictor x 7→ p(〈w,x〉).
This proves that Hp ⊂ HB for all p ∈ PB as required. Finally, if X is an infinite dimensional RKHS,
the only technicality is that in order to represent x as a (possibly infinite) vector, we need to show
that our RKHS has a countable basis. This holds since the inner product 〈x,x′〉 over X is continuous
and bounded (see [1]).

Finally, the following lemma states that with a sufficiently large B, there exists a polynomial in
PB which approximately equals to φsig. This implies that HB approximately contains Hsig.

Lemma 2 Let φsig be as defined in Equation (3), where for simplicity we assume L ≥ 3. For any
ε > 0, let

B = 2L4 + exp
(
7L log

(
2L
ε

)
+ 3
)
.

Then there exists p ∈ PB such that
∀x,w ∈ X , |p(〈w,x〉)− φsig(〈w,x〉)| ≤ ε .

The proof of the lemma is based on a Chebyshev approximation technique and is given in Ap-
pendix B. Since the proof is rather involved, we also present a similar lemma, whose proof is
simpler, for the φerf transfer function (see Appendix C). It is interesting to note that φerf actually
belongs to PB for a sufficiently large B, since it can be defined via its infinite-degree Taylor expan-
sion. However, the bound for φerf depends on exp(L2), rather than exp(L) for the sigmoid transfer
function φsig.

Finally, Theorem 2 is obtained as follows: Combining Theorem 3 and Lemma 1 we get that with
probability of at least 1− δ,

errD(ĥ) ≤ min
h∈HB

errD(h) + ε/2 ≤ min
p∈PB

min
h∈Hp

errD(h) + ε/2 . (9)

From Lemma 2 we obtain that for any w ∈ X , if h(x) = φsig(〈w,x〉) then there exists a polynomial
p0 ∈ PB such that if h′(x) = p0(〈w,x〉) then errD(h′) ≤ errD(h) + ε/2. Since it holds for all w, we
get that

min
p∈PB

min
h∈Hp

errD(h) ≤ min
h∈Hsig

errD(h) + ε/2 .

Combining this with Equation (9), Theorem 2 follows.

3 Hardness

In this section we derive a hardness result for agnostic learning of Hsig or Hpw with respect to the
zero-one loss. The hardness result relies on the hardness of gnostic3 PAC learning intersection of
halfspaces given in Klivans and Sherstov [18] (see also similar arguments in [13]). The hardness
result is representation-independent —it makes no restrictions on the learning algorithm and in
particular also holds for improper learning algorithms. The hardness result is based on the following
cryptographic assumption (see [18] for details).

3In the gnostic PAC model, we assume that some hypothesis in the class has errD(h) = 0, while in the
agnostic PAC model, which we study in this paper, errD(h) might be strictly greater than zero for all h ∈ H.
Note that our definition of (ε, δ)-learning in this paper is in the agnostic model.

Assumption 1 There is no polynomial time solution to the Õ(n1.5)-unique-Shortest-Vector-Problem.

With this assumption, Klivans and Sherstov proved the following:

Theorem 4 (Theorem 1.2 in Klivans and Sherstov [18]) Let X = {±1}n, let

H = {x 7→ φ0,1(〈w,x〉 − θ − 1/2) : θ ∈ N,w ∈ Nn, |θ|+ ‖w‖1 ≤ poly(n)} ,

and let Hk = {x 7→ (h1(x) ∧ . . . ∧ hk(x)) : ∀i, hi ∈ H}. Then, based on Assumption 1, Hk is not
efficiently learnable in the gnostic PAC model for any k = nρ where ρ > 0 is a constant.

The above theorem implies the following.

Lemma 3 Based on Assumption 1, there is no algorithm that runs in time poly(n, 1/ε, 1/δ) and
(ε, δ)-learns the class H defined in Theorem 4.

Proof To prove the lemma we show that if there is a polynomial time algorithm that learns H in
the agnostic model, then there exists a weak learning algorithm (with a polynomial edge) that learns
Hk in the gnostic PAC model. In the gnostic PAC model weak learning implies strong learning [21],
hence the existence of a weak learning algorithm that learns Hk will contradict Theorem 4.

Indeed, let D be any distribution such that there exists h? ∈ Hk with errD(h?) = 0. Let us
rewrite h? = h?1 ∧ . . . h?k where for all i, h?i ∈ H. To show that there exists a weak learner, we first
show that there exists some h ∈ H with errD(h) ≤ 1/2− 1/n.

Since for each x if h?(x) = 0 then there exists j s.t. h?j (x) = 0, we can use the union bound to
get that

1 = P[∃j : h?j (x) = 0|h?(x) = 0] ≤
∑
j

P[h?j (x) = 0|h?(x) = 0] ≤ kmax
j

P[h?j (x) = 0|h?(x) = 0]

So, for j that maximizes P[h?j (x) = 0|h?(x) = 0] we get that P[h?j (x) = 0|h?(x) = 0] ≥ 1/k.
Therefore,

errD(h?j) = P[h?j (x) = 1 ∧ h?(x) = 0] = P[h?(x) = 0] P[h?j (x) = 1|h?(x) = 0]

= P[h?(x) = 0] (1− P[h?j (x) = 0|h?(x) = 0]) ≤ P[h?(x) = 0] (1− 1/k) .

Now, if P[h?(x) = 0] ≤ (1/2 + 1/k) then the above gives

errD(h?j) ≤ (1/2 + 1/k)(1− 1/k) = 1/2 + 1/k − 1/(2k)− 1/k2 ≤ 1/2− 1/k .

Otherwise, if P[h?(x) = 0] > (1/2 + 1/k), then the constant predictor h(x) = 0 have errD(h) <
1/2 − 1/k. In both cases we have shown that there exists a predictor in H with error of at most
1/2− 1/k.

Finally, if we can agnostically learn H in time poly(n, 1/ε, 1/δ), then we can find h′ with
errD(h′) ≤ minh∈H errD(h) + ε ≤ 1/2 − 1/k + ε in time poly(n, 1/ε, 1/δ). This means that we
can have a weak learner that runs in polynomial time, and this concludes our proof.

Let h be a hypothesis in the class H defined in Theorem 4 and take any x ∈ {±1}n. Then,
there exist an integer θ and a vector of integers w such that h(x) = φ0,1(〈w,x〉 − θ − 1/2). But
since 〈w,x〉 − θ is also an integer, if we let L = 1 this means that h(x) = φpw(〈w,x〉 − θ − 1/2)
as well. Furthermore, letting x′ ∈ Rn+1 denote the concatenation of x with the constant 1 and
letting w′ ∈ Rn+1 denote the concatenation of w with the scalar (−θ − 1/2) we obtain that h(x) =
φpw(〈w′,x′〉). Last, let us normalize w̃ = w′/‖w′‖, x̃ = x/‖x′‖, and redefine L to be ‖w′‖ ‖x′‖, we
get that h(x) = φpw(〈w̃, x̃〉). That is, we have shown that H is contained in a class of the form Hpw

with a Lipschitz constant bounded by poly(n). Combining the above with Lemma 3 we obtain the
following:

Corollary 2 Let L be a Lipschitz constant and let Hpw be the class defined by the L-Lipschitz
transfer function φpw. Then, based on Assumption 1, there is no algorithm that runs in time
poly(L, 1/ε, 1/δ) and (ε, δ)-learns the class Hpw.

A similar argument leads to the hardness of learning Hsig.

Theorem 5 Let L be a Lipschitz constant and let Hsig be the class defined by the L-Lipschitz transfer
function φsig. Then, based on Assumption 1, there is no algorithm that runs in time poly(L, 1/ε, 1/δ)
and (ε, δ)-learns the class Hsig.

Proof Let h be a hypothesis in the class H defined in Theorem 4 and take any x ∈ {±1}n. Then,
there exist an integer θ and a vector of integers w such that h(x) = φ0,1(〈w,x〉−θ−1/2). However,
since 〈w,x〉 − θ is also an integer, we see that

|φ0,1(〈w,x〉 − θ − 1/2)− φsig(〈w,x〉 − θ − 1/2)| ≤ 1
1 + exp(2L)

.

This means that for any ε > 0, if we pick L = log(2/ε−1)
2 and define hsig(x) = φsig(〈w,x〉 − θ− 1/2),

then |h(x) − hsig(x)| ≤ ε/2. Furthermore, letting x′ ∈ Rn+1 denote the concatenation of x with
the constant 1 and letting w′ ∈ Rn+1 denote the concatenation of w with the scalar (−θ − 1/2) we
obtain that hsig(x) = φsig(〈w′,x′〉). Last, let us normalize w̃ = w′/‖w′‖, x̃ = x/‖x′‖, and redefine
L to be

L =
‖w′‖‖x′‖ log(2/ε− 1)

2
(10)

so that hsig(x) = φsig(〈w̃, x̃〉). Thus we see that if there exists an algorithm that runs in time
poly(L, 1/ε, 1/δ) and (ε/2, δ)-learns the class Hsig, then since for all h ∈ H exists hsig ∈ Hsig such
that |hsig(x) − h(x)| ≤ ε/2, there also exists an algorithm that (ε, δ)-learns the concept class H
defined in Theorem 4 in time polynomial in (L, 1/ε, 1/δ) (for L defined in Equation 10). But by
definition of L in Equation 10 and the fact that ‖w′‖ and ‖x′‖ are of size poly(n), this means that
there is an algorithm that runs in time polynomial in (n, 1/ε, 1/δ) and (ε, δ)-learns the class H,
which contradicts Lemma 3.

4 Related work

The problem of learning kernel-based halfspaces has been extensively studied before, mainly in the
framework of SVM [27, 11, 22]. When the data is separable with a margin µ, it is possible to learn
a halfspaces in polynomial time. The learning problem becomes much more difficult when the data
is not separable with margin.

In terms of hardness results, [7] derive hardness results for proper learning with sufficiently small
margins. There are also strong hardness of approximation results for proper learning without margin
(see for example [14] and the references therein). We emphasize that we allow improper learning,
which is just as useful for the purpose of learning good classifiers, and thus these hardness results do
not apply. Instead, the hardness result we derived in Section 3 hold for improper learning as well.
As mentioned before, the main tool we rely on for deriving the hardness result is the representation
independent hardness result for learning intersections of halfspaces given in [18].

Practical algorithms such as SVM often replace the 0-1 error function with a convex surrogate,
and then apply convex optimization tools. However, there are no guarantees on how well the
surrogate function approximates the 0-1 error function. Recently, [29, 5] studied the asymptotic
relationship between surrogate convex loss functions and the 0-1 error function. In contrast, in this
paper we show that even with a finite sample, surrogate convex loss functions can be competitive
with the 0-1 error function as long as we replace inner-products with the kernel K(x,x′) = 1/(1 −
0.5〈x,x′〉).

4.1 Margin analysis
Recall that we circumvented the dependence of the VC dimension of Hφ0−1 on the dimensionality
of X by replacing φ0−1 with a Lipschitz transfer function. Another common approach is to require
that the learned classifier will be competitive with the margin error rate of the optimal halfspace.
Formally, the µ-margin error rate of a halfspace of the form hw(x) = 1(〈w,x〉 > 0) is defined as:

errD,µ(w) = Pr[hw(x) 6= y ∨ |〈w,x〉| ≤ µ] . (11)

Intuitively, errD,µ(w) is the error rate of hw had we µ-shifted each point in the worst possible way.
Margin based analysis restates the goal of the learner (as given Equation (2)) and requires that the
learner will find a classifier h that satisfies:

errD(h) ≤ min
w:‖w‖=1

errD,µ(w) + ε . (12)

Bounds of the above form are called margin-based bounds and are widely used in the statistical anal-
ysis of Support Vector Machines and AdaBoost. It was shown [4, 20] that m = Θ(log(1/δ)/(µ ε)2)

examples are sufficient (and necessary) to learn a classifier for which Equation (12) holds with prob-
ability of at least 1 − δ. Note that as in the sample complexity bound we gave in Theorem 1, the
margin based sample complexity bound also does not depend on the dimension.

In fact, the Lipschitz approach used in this paper and the margin-based approach are closely
related. First, it is easy to verify that if we set L = 1/(2µ), then for any w the hypothesis
h(x) = φpw(〈w,x〉) satisfies errD(h) ≤ errD,µ(w). Therefore, an algorithm that (ε, δ)-learns Hpw also
guarantees that Equation (12) holds. Second, it is also easy to verify that if we set L = 1

4µ log
(

2−ε
ε

)
then for any w the hypothesis h(x) = φsig(〈w,x〉) satisfies errD(h) ≤ errD,µ(w) + ε/2. Therefore,
an algorithm that (ε/2, δ)-learns Hsig also guarantees that Equation (12) holds.

As a direct corollary of the above discussion we obtain that it is possible to learn a vector w
that guarantees Equation (12) in time poly(exp(Õ(1/µ))).

A computational complexity analysis under margin assumptions was first carried out in [7] (see
also the hierarchical worst-case analysis recently proposed in [6]). The technique used in [7] is based
on the observation that in the noise-free case, an optimal halfspace can be expressed as a linear sum
of at most 1/µ2 examples. Therefore, one can perform an exhaustive search over all sub-sequences of
1/µ2 examples, and choose the optimal halfspace. Note that this algorithm will always run in time
m1/µ2

. Since the sample complexity bound requires that m will be order of 1/(µε)2, the runtime of
the method described by [7] becomes poly(exp(Õ(1/µ2))). In comparison, our algorithm achieves a
better runtime of poly(exp(Õ(1/µ))). Moreover, while the algorithm of [7] performs an exhaustive
search, our algorithm’s runtime depends on the parameter B, which is poly(exp(Õ(1/µ))) only under
a worst-case assumption. Since in practice we will cross-validate for B, it is plausible that in many
real-world scenarios the runtime of our algorithm will be much smaller.

4.2 Distributional Assumptions

The idea of approximating the zero-one transfer function with a polynomial was first proposed
by [16] who studied the problem of agnostically learning halfspaces without kernels in Rn under
distributional assumption. In particular, they showed that if the distribution over X is uniform over
the unit ball, then it is possible to agnostically learn Hφ0−1 in time poly(n1/ε4). This was further
generalized by [8], who showed that similar bounds hold for product distributions.

Beside distributional assumptions, these works are characterized by explicit dependence on the
dimension of X , and therefore are not adequate for the kernel-based setting we consider in this paper,
in which the dimensionality of X can even be infinite. More precisely, while [16] try to approximate
the zero-one transfer function with a low-degree polynomial, we require instead that the coefficients
of the polynomials are bounded. The principle that when learning in high dimensions “the size of
the parameters is more important than their number” was one of the main advantages in the analysis
of the statistical properties of several learning algorithms (e.g. [2]).

Interestingly, in [24] it is shown that the very same algorithm we use in this paper recover the
same complexity bound of [16].

5 Discussion

In this paper we described and analyzed a new technique for agnostically learning kernel-based
halfspaces with the zero-one loss function. The bound we derive has an exponential dependence
on L, the Lipschitz coefficient of the transfer function. While we prove that (under a certain
cryptographic assumption) no algorithm can have a polynomial dependence on L, the immediate
open question is whether the dependence on L can be further improved.

A perhaps surprising property of our analysis is that we propose a single algorithm, returning
a single classifier, which is simultaneously competitive against all transfer functions p ∈ PB . In
particular, it learns with respect to the “optimal” transfer function, where by optimal we mean the
one which attains the smallest error rate, E[|p(〈w,x〉)− y|], over the distribution D.

Our algorithm boils down to linear regression with the absolute loss function and while composing
a particular kernel function over our original RKHS. It is possible to show that solving the vanilla
SVM, with the hinge-loss, and composing again our particular kernel over the desired kernel, can
also give similar guarantees. It is therefore interesting to study if there is something special about
the kernel we propose or maybe other kernel functions (e.g. the Gaussian kernel) can give similar
guarantees.

Another possible direction is to consider other types of margin-based analysis or transfer func-
tions. For example, in the statistical learning literature, there are several definitions of “noise”
conditions, some of them are related to margin, which lead to faster decrease of the error rate as

a function of the number of examples (see for example [10, 26, 25]). Studying the computational
complexity of learning under these conditions is left to future work.

Acknowledgments

We would like to thank Adam Klivans for helping with the Hardness results.

References

[1] C. Thomas-Agnan A. Berlinet. Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Springer, 2003.

[2] P. L. Bartlett. For valid generalization, the size of the weights is more important than the size
of the network. In Advances in Neural Information Processing Systems 9, 1997.

[3] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. In 14th Annual Conference on Computational Learning Theory, COLT 2001,
volume 2111, pages 224–240. Springer, Berlin, 2001.

[4] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002.

[5] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101:138–156, 2006.

[6] S. Ben-David. Alternative measures of computational complexity. In TAMC, 2006.

[7] S. Ben-David and H. Simon. Efficient learning of linear perceptrons. In NIPS, 2000.

[8] E. Blais, R. O’Donnell, and K Wimmer. Polynomial regression under arbitrary product distri-
butions. In COLT, 2008.

[9] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, pages 161–168,
2008.

[10] O. Bousquet. Concentration Inequalities and Empirical Processes Theory Applied to the Analysis
of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

[11] N. Cristianini and J. Shawe-Taylor. Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

[12] D. Elliot. The evaluation and estimation of the coefficients in the chebyshev series expansion
of a function. Mathematics of Computation, 18(86):274–284, April 1964.

[13] V. Feldman, P. Gopalan, S. Khot, and A.K. Ponnuswami. New results for learning noisy
parities and halfspaces. In In Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science, 2006.

[14] V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. In Proceedings
of the 47th Foundations of Computer Science (FOCS), 2006.

[15] S.M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk
bounds, margin bounds, and regularization. In NIPS, 2008.

[16] A. Kalai, A.R. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces. In
Proceedings of the 46th Foundations of Computer Science (FOCS), 2005.

[17] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. In COLT,
pages 341–352, July 1992. To appear, Machine Learning.

[18] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections
of halfspaces. In FOCS, 2006.

[19] J.C. Mason. Chebyshev Polynomials. CRC Press, 2003.

[20] D. A. McAllester. Simplified PAC-Bayesian margin bounds. In COLT, pages 203–215, 2003.

[21] R.E. Schapire. Pattern languages are not learnable. In COLT, pages 122–129, August 1990.

[22] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press, 2002.

[23] S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size.
In International Conference on Machine Learning, pages 928–935, 2008.

[24] S. Shalev-Shwartz, O. Shamir, and K. Sridharan. Agnostically learning halfspaces with margin
errors. Technical report, Toyota Technological Institute, 2009.

[25] I. Steinwart and C. Scovel. Fast rates for support vector machines using gaussian kernels.
Annals of Statistics, 35:575, 2007.

[26] A. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32:
135–166, 2004.

[27] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[28] G. Wahba. Spline Models for Observational Data. SIAM, 1990.

[29] T. Zhang. Statistical behavior and consistency of classification methods based on convex risk
minimization. The Annals of Statistics, 32:56–85, 2004.

A Solving the ERM problem given in Equation (5)

In this section we show how to approximately solve Equation (5) when the transfer function is φpw.
The technique we use is similar to the covering technique described in [7].

For each i, let bi = 2(yi − 1/2). It is easy to verify that the objective of Equation (5) can be
rewritten as

1
m

m∑
i=1

f(bi〈w,xi〉) where f(a) = min{1,max{0, 1/2− La}} . (13)

Let g(a) = max{0, 1/2 − La}. Note that g is a convex function and g(a) ≥ f(a) for every a where
equality holds whenever a ≤ 1.

Let w? be a minimizer of Equation (13) over the unit ball. We partition the set [m] into

I1 = {i ∈ [m] : g(bi〈w?,xi〉) = f(bi〈w?,xi〉)} , I2 = [m] \ I1 .

Now, let ŵ be a vector that satisfies∑
i∈I1

g(bi〈ŵ,xi〉) ≤ min
w:‖w‖≤1

∑
i∈I1

g(bi〈w,xi〉) + εm . (14)

Clearly, we have

m∑
i=1

f(bi〈ŵ,xi〉) ≤
∑
i∈I1

g(bi〈ŵ,xi〉) +
∑
i∈I2

f(bi〈ŵ,xi〉)

≤
∑
i∈I1

g(bi〈ŵ,xi〉) + |I2|

≤
∑
i∈I1

g(bi〈w?,xi〉) + εm+ |I2|

=
m∑
i=1

f(bi〈w?,xi〉) + εm .

Dividing the two sides of the above we obtain that ŵ is an ε-accurate solution to Equation (13).
Therefore, it suffices to show a method that finds a vector ŵ that satisfies Equation (14). To do so,
we use a standard generalization bound (based on Rademacher complexity) as follows:

Lemma 4 Let us sample i1, . . . , ik i.i.d. according to the uniform distribution over I1. Let ŵ be a
minimizer of

∑k
j=1 g(bij 〈w,xij 〉) over w in the unit ball. Then,

E

[
1
|I1|

∑
i∈I1

g(bi〈ŵ,xi〉)− min
w:‖w‖≤1

1
|I1|

∑
i∈I1

g(bi〈w,xi〉)

]
≤ 2L/

√
k ,

where expectation is over the choice of i1, . . . , ik.

Proof Simply note that g is L-Lipschitz and then apply a Rademacher generalization bound with
the contraction lemma.

The above lemma immediately implies that if k ≥ 4L2/ε2, then there exist i1, . . . , ik in I1 such
that if ŵ ∈ argminw:‖w‖≤1

∑k
j=1 g(bij 〈w,xij 〉) then ŵ satisfies Equation (14) and therefore it is an

ε-accurate solution of Equation (13). The procedure will therefore perform an exhaustive search over
all i1, . . . , ik in [m], for each such sequence the procedure will find ŵ ∈ argminw:‖w‖≤1

∑k
j=1 g(bij 〈w,xij 〉)

(in polynomial time). Finally, the procedure will output the ŵ that minimizes the objective of
Equation (13). The total runtime of the procedure is therefore poly(mk). Plugging in the value of
k = d4L2/ε2e and the value of m according to the sample complexity bound given in Theorem 1 we
obtain the total runtime of

poly
(

(L/ε)L
2/ε2
)

= poly
(

exp
(
L2

ε2 log(L/ε)
))

.

B Proof of Lemma 2

In order to approximate φsig with a polynomial, we will use the technique of Chebyshev approxi-
mation (cf. [19]). One can write any continuous function on [−1,+1] as a Chebyshev expansion∑∞
n=0 αnTn(·), where each Tn(·) is a particular n-th degree polynomial denoted as the n-th Cheby-

shev polynomial (of the first kind). These polynomials are defined as T0(x) = 1, T1(x) = x, and
then recursively via Tn+1(x) = 2xTn(x) − Tn−1(x). For any n, Tn(·) is bounded in [−1,+1]. The
coefficients in the Chebyshev expansion of φsig are equal to

αn =
1 + 1(n > 0)

π

∫ 1

x=−1

φsig(x)Tn(x)√
1− x2

dx. (15)

Truncating the series after some threshold n = N provides an N -th degree polynomial which ap-
proximates the original function.

In order to obtain a bound on B, we need to understand the behavior of the coefficients in
the Chebyshev approximation. These are determined in turn by the behavior of αn as well as the
coefficients of each Chebyshev polynomial Tn(·). The following two lemmas provide the necessary
bounds.

Lemma 5 For any n > 1, |αn| in the Chebyshev expansion of φsig on [−1,+1] is upper bounded as
follows:

|αn| ≤
1/2L+ 1/π
(1 + π/4L)n

.

Also, we have |α0| ≤ 1, |α1| ≤ 2.

Proof The coefficients αn, n = 1, . . . in the Chebyshev series are given explicitly by

αn =
2
π

∫ 1

x=−1

φsig(x)Tn(x)√
1− x2

dx. (16)

For α0, the same equality holds with 2/π replaced by 1/π, so α0 equals

1
π

∫ 1

x=−1

φsig(x)√
1− x2

dx,

which by definition of φsig(x), is at most (1/π)
∫ 1

x=−1

(√
1− x2

)−1
dx = 1. As for α1, it equals

2
π

∫ 1

x=−1

φsig(x)x√
1− x2

dx,

whose absolute value is at most (2/π)
∫ 1

x=−1

(√
1− x2

)−1
dx = 2.

To evaluate the integral in Equation (16) for general n and L, we will need to use some tools
from complex analysis. The calculation follows [12], to which we refer the reader for justification of
the steps and further details4.

On the complex plane, the integral in Equation (16) can be viewed as a line integral over [−1,+1].
Using properties of Chebyshev polynomials, this integral can be converted into a more general
complex-valued integral over an arbitrary closed curve C on the complex plane which satisfies certain
regularity conditions:

αn =
1
πi

∫
C

φsig(z)dz√
z2 − 1(z ±

√
z2 − 1)n

dz, (17)

where the sign in ± is chosen so that |z ±
√
z2 − 1| > 1. In particular, for any parameter ρ > 1, the

set of points z satisfying |z ±
√
z2 − 1| = ρ form an ellipse, which grows larger with ρ and with foci

at z = ±1 and which grows larger with ρ. Since we are free to choose C, we choose it as this ellipse
while letting ρ→∞.

To understand what happens when ρ → ∞, we need to characterize the singularities of φsig(z),
namely the points z where φsig(z) is not well defined. Recalling that φsig(z) = (1 + e−4Lz)−1, we
see that the problematic points are i(π + 2πk)/4L for any k = ±1,±2, . . ., where the denominator
in φsig(z) equals zero. Note that this forms a discrete set of isolated points - in other words, φsig is

4We note that such calculations also appear in standard textbooks on the subject, but they are usually
carried under asymptotic assumptions and disregarding coefficients which are important for our purposes.

a meromorphic function. The fact that φsig is ’well behaved’ in this sense allows us to perform the
analysis below.

The behavior of the function at its singularities is defined via the residue of the function at
each singularity c, which equals limz→c(z − c)φsig(z) assuming the limit exists (in that case, the
singularity is called a simple pole, otherwise a higher order limit might be needed). In our case, the
residue for the singularity at iπ/4L equals

lim
z→0

z

1 + e−iπ−4Lz
= lim
z→0

z

1− e−4Lz
= lim
z→0

1/4L
e−4Lz

= 1/4L,

where we used l’Hôpital’s rule to calculate the limit. The same residue also apply to all the other
singularities.

For points in the complex plane uniformly bounded away from these singularities, |φsig(z)| is
bounded, and therefore it can be shown that the integral in Equation (17) will tend to zero as we
let C become an arbitrarily large ellipse (not passing too close to any of the singularities) by taking
ρ → ∞. However, as ρ varies smoothly, the ellipse does cross over singularity points, and these
contribute to the integral. For meromorphic functions, with a discrete set of isolated singularities,
we can simply sum over all contributions, and it can be shown (see equation 10 in [12] and the
subsequent discussion) that

αn = −2
∞∑

k=−∞

rk√
z2
k − 1

(
zk ±

√
z2
k − 1

)n ,
where zk is the singularity point i(π + 2πk)/4L with corresponding residue rk. Substituting the
results for our chosen function, we have

αn =
∞∑

k=−∞

1/4L√
(i(π + 2πk)/4L)2 − 1

(
i(π + 2πk)/4L±

√
(i(π + 2πk)/4L)2 − 1

)n .
A routine simplification leads to the following5:

αn =
∞∑

k=−∞

1/4L

in+1

√
((π + 2πk)/4L)2 + 1

(
(π + 2πk)/4L±

√
((π + 2πk)/4L)2 + 1

)n .
It can be verified that ± should be chosen according to 1(k ≥ 0). Therefore,

|αn| =
∞∑

k=−∞

1/4L√
((π + 2πk)/4L)2 + 1

(
|π + 2πk|/4L+

√
((π + 2πk)/4L)2 + 1

)n
≤

∞∑
k=−∞

1/4L
(|π + 2πk|1/4L+ 1)n

≤ 1/4L
(1 + π/4L)n

+ 2
∞∑
k=1

1/4L
(1 + π(1 + 2k)/4L)n

≤ 1/4L
(1 + π/4L)n

+
∫ ∞
k=0

1/2L
(1 + π(1 + 2k)/4L)n

dk

Solving the integral and simplifying gives us

|αn| ≤
1

(1 + π/4L)n

(
1/4L+

1 + π/4L
π(n− 1)

)
.

Since n ≥ 2, the result in the lemma follows.

5On first look, it might appear that αn takes imaginary values for even n, due to the in+1 factor, despite
αn being equal to a real-valued integral. However, it can be shown that αn = 0 for even n. This additional
analysis can also be used to slightly tighten our final results in terms of constants in the exponent, but it
was not included for simplicity.

Lemma 6 For any non-negative integer n and j = 0, 1, . . . , n, let tn,j be the coefficient of xj in
Tn(x). Then tn,j = 0 for any j with a different parity than n, and for any j > 0,

|tn,j | ≤
en+j

√
2π

Proof The fact that tn,j = 0 for j, n with different parities, and |tn,0| ≤ 1 is standard. Using an
explicit formula from the literature (see [19], pg. 24), as well as Stirling approximation, we have
that

|tn,j | = 2n−(n−j)−1 n

n− n−j
2

(
n− n−j

2
n−j

2

)
=

2jn
n+ j

(
n+j

2

)
!(

n−j
2

)
!j!

≤ 2jn
j!(n+ j)

(
n+ j

2

)j
=

n(n+ j)j

(n+ j)j!
≤ n(n+ j)j

(n+ j)
√

2πj(j/e)j
=

nej

(n+ j)
√

2πj

(
1 +

n

j

)j
≤ nej

(n+ j)
√

2πj
en.

from which the lemma follows.

We are now in a position to prove a bound on B. As discussed earlier, φsig(x) in the domain
[−1,+1] equals the expansion

∑∞
n=0 αnTx. The error resulting from truncating the Chebyshev

expanding at index N , for any x ∈ [−1,+1], equals∣∣∣∣∣φsig(x)−
N∑
n=0

αnTn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

αnTn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|αn|,

where in the last transition we used the fact that |Tn(x)| ≤ 1. Using Lemma 5 and assuming N > 0,
this is at most

∞∑
n=N+1

1/2L+ 1/π
(1 + π/4L)n

=
2 + 4L/π

π(1 + π/4L)N
.

In order to achieve an accuracy of less than ε in the approximation, we need to equate this to ε and
solve for N , i.e.

N =
⌈

log1+π/4L

(
2 + 4L/π

πε

)⌉
(18)

The series left after truncation is
∑N
n=0 αnTn(x), which we can write as

∑N
j=0 βjx

j . Using
Lemma 5 and Lemma 6, the absolute value of the coefficient βj for j > 1 can be upper bounded by∑

n=j..N,n=j mod 2

|an||tn,j | ≤
∑

n=j..N,n=j mod 2

1/2L+ 1/π
(1 + π/4L)n

en+j

√
2π

=
(1/2L+ 1/π)ej√

2π

∑
n=j..N,n=j mod 2

(
e

1 + π/4L

)n

=
(1/2L+ 1/π)ej√

2π

(
e

1 + π/4L

)j bN−j2 c∑
n=0

(
e

1 + π/4L

)2n

≤ (1/2L+ 1/π)ej√
2π

(
e

1 + π/4L

)j (e/(1 + π/4L))N−j+2 − 1
(e/(1 + π/4L))2 − 1

.

Since we assume L ≥ 3, we have in particular e/(1 + π/4L) > 1, so we can upper bound the
expression above by dropping the 1 in the numerator, to get

1/2L+ 1/π√
2π((e/(1 + π/4L))2 − 1)

(
e

1 + π/4L

)N+2

ej .

The cases β0, β1 need to be treated separately, due to the different form of the bounds on α0, α1.
Repeating a similar analysis (using the actual values of tn,1, tn,0 for any n), we get

β0 ≤ 1 +
1
π

+
2L
π2

β1 ≤ 2 +
3(1 + 2L/π)(4L+ π)

2π2
.

Now that we got a bound on the βj , we can plug it into the bound on B, and get

B =
N∑
j=0

2jβ2
j ≤ β2

0 + 2β2
1 +

N∑
j=2

(
1/2L+ 1/π√

2π((e/(1 + π/4L))2 − 1)

)2(
e

1 + π/4L

)2N+4

(2e2)j

≤ β2
0 + 2β2

1 +
(

1/2L+ 1/π√
2π((e/(1 + π/4L))2 − 1)

)2(
e

1 + π/4L

)2N+4 (2e2)N+1

e2 − 1

= β2
0 + 2β2

1 +
2(1/2L+ 1/π)2e6

(e2 − 1)2π((e/(1 + π/4L))2 − 1)2(1 + π/4L)4

(√
2e2

1 + π/4L

)2N

.

To make the expression more readable, we use the (rather arbitrary) assumption that L ≥ 3. In
that case, by some numerical calculations, it is not difficult to show that we can upper bound the
above by

2L4 + 0.15

(√
2e2

1 + π/4L

)2N

≤ 2L4 + 0.15(2e4)N .

Combining this with Equation (18), we get that this is upper bounded by

2L4 + 0.15(2e4)log1+π/4L(2+4L/π
πε)+1,

or at most

2L4 + exp

 log(2e4) log
(

2+4L/π
πε

)
log(1 + π/4L)

+ 3

 .

Using the fact that log(1 + x) ≥ x − x2 for x ≥ 0, and the assumption that L ≥ 3, we can bound
the exponent by

log(2e4) log
(

2+4L/π
πε

)
π
4L

(
1− π

8L

) + 3 ≤ 7 log(2L/ε)L+ 3.

Substituting back, we get the result stated in Lemma 2.

C The φerf(·) Function

In this section, we prove a result anaologous to Lemma 2, using the φerf(·) transfer function. In a
certain sense, it is stronger, because we can show that φerf(·) actually belongs to PB for sufficiently
large B. However, the resulting bound is worse than Lemma 2, as it depends on exp(L2) rather
than exp(L). However, the proof is much simpler, which helps to illustrate the technique.

The relevant lemma is the following:

Lemma 7 Let φerf(·) be as defined in Equation (4), where for simplicity we assume L ≥ 3. For any
ε > 0, let

B ≤ 1
4

+ 2L2
(

1 + 3πeL2e4πL
2
)
.

Then φerf(·) ∈ PB.

Proof By a standard fact, φerf(·) is equal to its infinite Taylor series expansion at any point, and
this series equals

φerf(a) =
1
2

+
1√
π

∞∑
n=0

(−1)n(
√
πLa)2n+1

n!(2n+ 1)
.

Luckily, this is an infinite degree polynomial, and it is only left to calculate for which values of B
does it belong to PB . Plugging in the coefficients in the bound on B, we get that

B ≤ 1
4

+
1
π

∞∑
n=0

(2πL2)2n+1

(n!)2(2n+ 1)2
≤ 1

4
+

1
π

∞∑
n=0

(2πL2)2n+1

(n!)2

=
1
4

+ 2L2

(
1 +

∞∑
n=1

(2πL2)2n

(n!)2

)
≤ 1

4
+ 2L2

(
1 +

∞∑
n=1

(2πL2)2n

(n/e)2n

)

=
1
4

+ 2L2

(
1 +

∞∑
n=1

(
2πeL2

n

)2n
)
.

Thinking of (2πeL2/n)2n as a continuous function of n, a simple derivative exercise shows that it
is maximized for n = 2πL2, with value e4πL

2
. Therefore, we can upper bound the series in the

expression above as follows:

∞∑
n=1

(
2πeL2

n

)2n

=
b2
√

2πeL2c∑
n=1

(
2πeL2

n

)2n

+
∞∑

n=d2
√

2πeL2e

(
2πeL2

n

)2n

≤ 2
√

2πeL2e4πL
2

+
∞∑

n=d2
√

2πeL2e

(
1
2

)n
≤ 3πeL2e4πL

2
.

where the last transition is by the assumption that L ≥ 3. Substituting into the bound on B, we
get the result stated in the lemma.

