Distributed Asynchronous Online Learning for Natural Language Processing

Kevin Gimpel Dipanjan Das Noah A. Smith
Introduction

- Two recent lines of research in speeding up large learning problems:
 - Parallel/distributed computing
 - Online (and mini-batch) learning algorithms:
 - stochastic gradient descent, perceptron, MIRA, stepwise EM

- How can we bring together the benefits of parallel computing and online learning?
Introduction

- We use **asynchronous** algorithms
 (Nedic, Bertsekas, and Borkar, 2001; Langford, Smola, and Zinkevich, 2009)

- We apply them to structured prediction tasks:
 - Supervised learning
 - Unsupervised learning with both convex and non-convex objectives

- Asynchronous learning speeds convergence and works best with small mini-batches
Problem Setting

- Iterative learning
 - Moderate to large numbers of training examples
 - Expensive inference procedures for each example
 - For concreteness, we start with gradient-based optimization

- Single machine with multiple processors
 - Exploit shared memory for parameters, lexicons, feature caches, etc.
 - Maintain one master copy of model parameters
Single-Processor Batch Learning

Parameters: θ_t
Processors: P_i
Dataset: D
Single-Processor Batch Learning

\[
\begin{array}{|c|}
\hline
\theta \\
\hline
\mathcal{P}_1 \\
\hline
\end{array}
\]

Parameters: \(\theta_t \)
Processors: \(\mathcal{P}_i \)
Dataset: \(D \)
Single-Processor Batch Learning

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\theta_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{P}_1)</td>
<td>(\mathbf{g} = \text{calc}(\mathcal{D}, \theta_0))</td>
</tr>
</tbody>
</table>

\[\mathbf{g} = \text{calc}(\mathcal{D}, \theta) : \]
Calculate gradient \(\mathbf{g} \) on data \(\mathcal{D} \) using parameters \(\theta \)

Parameters: \(\theta_t \)
Processors: \(\mathcal{P}_i \)
Dataset: \(\mathcal{D} \)
Single-Processor Batch Learning

$$\theta_1 = \text{up}(\theta_0, g)$$

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
<th>θ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td>$g = \text{calc}(\mathcal{D}, \theta_0)$</td>
<td>$\theta_1 = \text{up}(\theta_0, g)$</td>
</tr>
</tbody>
</table>

- **$g = \text{calc}(\mathcal{D}, \theta)$**: Calculate gradient g on data \mathcal{D} using parameters θ.
- **$\theta_1 = \text{up}(\theta_0, g)$**: Update θ_0 using gradient g to obtain θ_1.

Parameters: θ_t
Processors: \mathcal{P}_i
Dataset: \mathcal{D}
Single-Processor Batch Learning

<table>
<thead>
<tr>
<th>θ</th>
<th>θ₀</th>
<th>θ₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>$g = \text{calc}(\mathcal{D}, \theta₀)$</td>
<td>$\theta₁ = \text{up}(\theta₀, g)$</td>
</tr>
</tbody>
</table>

- **g = calc(\mathcal{D}, \theta)**: Calculate gradient g on data \mathcal{D} using parameters θ.
- **$\theta₁ = \text{up}(\theta₀, g)$**: Update $\theta₀$ using gradient g to obtain $\theta₁$.

Parameters: θ_t

Processors: \mathcal{P}_i

Dataset: \mathcal{D}
Parallel Batch Learning

<table>
<thead>
<tr>
<th>θ</th>
<th>θ₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>g₁ = calc(D₁, θ₀)</td>
</tr>
<tr>
<td>P₂</td>
<td>g₂ = calc(D₂, θ₀)</td>
</tr>
<tr>
<td>P₃</td>
<td>g₃ = calc(D₃, θ₀)</td>
</tr>
</tbody>
</table>

- Divide data into parts, compute gradient on parts in parallel

Parameters: \(\theta_t \)
Processors: \(P_i \)
Dataset: \(D = D₁ \cup D₂ \cup D₃ \)
Gradient: \(g = g₁ + g₂ + g₃ \)
Parallel Batch Learning

<table>
<thead>
<tr>
<th>0</th>
<th>Time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>θ_0</th>
<th>θ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>$g_1 = \text{calc}(\mathcal{D}_1, \theta_0)$</td>
<td>$\theta_1 = \text{up}(\theta_0, g)$</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>$g_2 = \text{calc}(\mathcal{D}_2, \theta_0)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_3</td>
<td>$g_3 = \text{calc}(\mathcal{D}_3, \theta_0)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Divide data into parts, compute gradient on parts in parallel
- One processor updates parameters

Parameters: θ_t
Processors: P_i
Dataset: $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{D}_3$
Gradient: $g = g_1 + g_2 + g_3$
Parallel Batch Learning

<table>
<thead>
<tr>
<th>£</th>
<th>£0</th>
<th>£1</th>
</tr>
</thead>
<tbody>
<tr>
<td>£0</td>
<td>£0 = calc(£1, £0)</td>
<td>£1 = up(£0, g)</td>
</tr>
<tr>
<td>£1</td>
<td>g1 = calc(£1, £0)</td>
<td>g1 = calc(£1, £1)</td>
</tr>
<tr>
<td>£2</td>
<td>g2 = calc(£2, £0)</td>
<td>g2 = calc(£2, £1)</td>
</tr>
<tr>
<td>£3</td>
<td>g3 = calc(£3, £0)</td>
<td>g3 = calc(£3, £1)</td>
</tr>
</tbody>
</table>

Parameters:
- £t

Processors:
- £i

Dataset:
- £ = £1 ∪ £2 ∪ £3

Gradient:
- £ = £1 + £2 + £3

- Divide data into parts, compute gradient on parts in parallel
- One processor updates parameters
Parallel Synchronous Mini-Batch Learning

Finkel, Kleeman, and Manning (2008)

<table>
<thead>
<tr>
<th></th>
<th>θ_0</th>
<th>θ_1</th>
<th>θ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td>$g_1 = c(B^1_1, \theta_0)$</td>
<td>$\theta_1 = u(\theta_0, g)$</td>
<td>$g_1 = c(B^1_2, \theta_1)$</td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td>$g_2 = c(B^2_1, \theta_0)$</td>
<td>$g_2 = c(B^2_2, \theta_1)$</td>
<td>$g_2 = c(B^2_3, \theta_2)$</td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td>$g_3 = c(B^3_1, \theta_0)$</td>
<td>$g_3 = c(B^3_2, \theta_1)$</td>
<td>$g_3 = c(B^3_3, \theta_2)$</td>
</tr>
</tbody>
</table>

- **Parameters:** θ_t
- **Processors:** \mathcal{P}_i
- **Mini-batches:** $B_t = B^1_t \cup B^2_t \cup B^3_t$
- **Gradient:** $g = g_1 + g_2 + g_3$

- **Same architecture, just more frequent updates**
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td></td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td></td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td></td>
</tr>
</tbody>
</table>

0 \hspace{2em} \text{Time}

Parameters:
- θ_t

Processors:
- \mathcal{P}_i

Mini-batches:
- \mathcal{B}_j

Gradient:
- g_k
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td>$g_1 = c(\mathcal{B}_1, \theta_0)$</td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td>$g_2 = c(\mathcal{B}_2, \theta_0)$</td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td>$g_3 = c(\mathcal{B}_3, \theta_0)$</td>
</tr>
</tbody>
</table>

Parameters: θ_t

Processors: \mathcal{P}_i

Mini-batches: \mathcal{B}_j

Gradient: g_k
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
<th>θ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td>$g_1 = c(B_1, \theta_0)$</td>
<td>$\theta_1 = u(\theta_0, g_1)$</td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td>$g_2 = c(B_2, \theta_0)$</td>
<td></td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td>$g_3 = c(B_3, \theta_0)$</td>
<td></td>
</tr>
</tbody>
</table>

Parameters: θ_t

Processors: \mathcal{P}_i

Mini-batches: B_j

Gradient: g_k
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>Time</th>
<th>Parameters: θ_t</th>
<th>Processors: P_i</th>
<th>Mini-batches: B_j</th>
<th>Gradient: g_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>P_1</td>
<td>B_1</td>
<td>$g_1 = c(B_1, \theta_0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_2</td>
<td>B_2</td>
<td>$g_2 = c(B_2, \theta_0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P_3</td>
<td>B_3</td>
<td>$g_3 = c(B_3, \theta_0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B_4</td>
<td>$\theta_1 = u(\theta_0, g_1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$g_1 = c(B_4, \theta_1)$</td>
</tr>
</tbody>
</table>
Parallel Asynchronous Mini-Batch Learning
Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
<th>θ_1</th>
<th>θ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td>$g_1 = c(B_1, \theta_0)$</td>
<td>$\theta_1 = u(\theta_0, g_1)$</td>
<td>$g_1 = c(B_4, \theta_1)$</td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td>$g_2 = c(B_2, \theta_0)$</td>
<td></td>
<td>$\theta_2 = u(\theta_1, g_2)$</td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td>$g_3 = c(B_3, \theta_0)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters: θ_t
Processors: \mathcal{P}_i
Mini-batches: B_j
Gradient: g_k
Parallel Asynchronous Mini-Batch Learning
Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>Parameters: θ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors: P_i</td>
</tr>
<tr>
<td>Mini-batches: B_j</td>
</tr>
<tr>
<td>Gradient: g_k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
<th>θ_1</th>
<th>θ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>$g_1 = c(B_1, \theta_0)$</td>
<td>$\theta_1 = u(\theta_0, g_1)$</td>
<td>$g_1 = c(B_4, \theta_1)$</td>
</tr>
<tr>
<td>P_2</td>
<td>$g_2 = c(B_2, \theta_0)$</td>
<td>$\theta_2 = u(\theta_1, g_2)$</td>
<td>$g_2 = c(B_5, \theta_2)$</td>
</tr>
<tr>
<td>P_3</td>
<td>$g_3 = c(B_3, \theta_0)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>θ</th>
<th>θ₀</th>
<th>θ₁</th>
<th>θ₂</th>
<th>θ₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℙ₁</td>
<td>(g₁ = c(B₁, θ₀))</td>
<td>(θ₁ = u(θ₀, g₁))</td>
<td>(g₁ = c(B₄, θ₁))</td>
<td></td>
</tr>
<tr>
<td>ℙ₂</td>
<td>(g₂ = c(B₂, θ₀))</td>
<td>(θ₂ = u(θ₁, g₂))</td>
<td>(g₂ = c(B₅, θ₂))</td>
<td></td>
</tr>
<tr>
<td>ℙ₃</td>
<td>(g₃ = c(B₃, θ₀))</td>
<td>(θ₃ = u(θ₂, g₃))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters: \(θ_t \)

Processors: \(ℙ_i \)

Mini-batches: \(B_j \)

Gradient: \(g_k \)
Parallel Asynchronous Mini-Batch Learning
Nedic, Bertsekas, and Borkar (2001)

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_0</th>
<th>θ_1</th>
<th>θ_2</th>
<th>θ_3</th>
<th>θ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{P}_1</td>
<td>$g_1 = c(\mathcal{B}_1, \theta_0)$</td>
<td>$\theta_1 = u(\theta_0, g_1)$</td>
<td>$g_1 = c(\mathcal{B}_4, \theta_1)$</td>
<td>$\theta_4 = u(\theta_3, g_1)$</td>
<td>$g_1 = c(\mathcal{B}_6, \theta_4)$</td>
</tr>
<tr>
<td>\mathcal{P}_2</td>
<td>$g_2 = c(\mathcal{B}_2, \theta_0)$</td>
<td>$\theta_2 = u(\theta_1, g_2)$</td>
<td>$g_2 = c(\mathcal{B}_5, \theta_2)$</td>
<td>$\theta_5 = u(\theta_4)$</td>
<td>$g_2 = c(\mathcal{B}_7, \theta_5)$</td>
</tr>
<tr>
<td>\mathcal{P}_3</td>
<td>$g_3 = c(\mathcal{B}_3, \theta_0)$</td>
<td>$\theta_3 = u(\theta_2, g_3)$</td>
<td>$g_3 = c(\mathcal{B}_6, \theta_3)$</td>
<td>$\theta_6 = u(\theta_5)$</td>
<td>$g_3 = c(\mathcal{B}_8, \theta_6)$</td>
</tr>
</tbody>
</table>

- Gradients computed using stale parameters
- Increased processor utilization
- Only idle time caused by lock for updating parameters

Parameters: θ_t
Processors: \mathcal{P}_i
Mini-batches: \mathcal{B}_j
Gradient: g_k
Theoretical Results

- How does the use of stale parameters affect convergence?

- Convergence results exist for convex optimization using stochastic gradient descent
 - Convergence guaranteed when max delay is bounded (Nedic, Bertsekas, and Borkar, 2001)
 - Convergence rates linear in max delay (Langford, Smola, and Zinkevich, 2009)
Experiments

| Task | Model | Method | Convex? | $|\mathcal{D}|$ | $|\theta|$ | m |
|-----------------------------------|------------|----------------------------|---------|----------|-----------|-----|
| Named-Entity Recognition | CRF | Stochastic Gradient Descent| Y | 15k | 1.3M | 4 |
| Word Alignment | IBM Model 1| Stepwise EM | Y | 300k | 14.2M | 10k |
| Unsupervised Part-of-Speech Tagging| HMM | Stepwise EM | N | 42k | 2M | 4 |

- To compare algorithms, we use wall clock time (with a dedicated 4-processor machine)
- m = mini-batch size
Experiments

| Task | Model | Method | Convex? | $|D|$ | $|\theta|$ | m |
|------------------------|-------|-------------------------|---------|-----|----------|-----|
| Named-Entity Recognition | CRF | Stochastic Gradient Descent | Y | 15k | 1.3M | 4 |

- CoNLL 2003 English data
- Label each token with entity type (person, location, organization, or miscellaneous) or non-entity
- We show convergence in F1 on development data
Asynchronous Updating Speeds Convergence

All use a mini-batch size of 4
Comparison with Ideal Speed-up

Asynchronous (4 processors)

Ideal

Wall clock time (hours)
Why Does Asynchronous Converge Faster?

- Processors are kept in near-constant use
- Synchronous SGD leads to idle processors → need for load-balancing
Clearer improvement for asynchronous algorithms when increasing number of processors
Artificial Delays

After completing a mini-batch, 25% chance of delaying

Delay (in seconds) sampled from
\[\max(\mathcal{N}(\mu, (\mu/5)^2), 0) \]

Avg. time per mini-batch = 0.62 s
Experiments

| Task | Model | Method | Convex? | $|\mathcal{D}|$ | $|\theta|$ | m |
|-------------------------|---------|------------|---------|---------|----------|------|
| Word Alignment | IBM Model 1 | Stepwise EM | Y | 300k | 14.2M | 10k |

- Given parallel sentences, draw links between words:

 konnten sie es übersetzen ?

 could you translate it ?

- We show convergence in log-likelihood (convergence in AER is similar)
Stepwise EM
(Sato and Ishii, 2000; Cappe and Moulines, 2009)

- Similar to stochastic gradient descent in the space of sufficient statistics, with a particular scaling of the update
- More efficient than incremental EM
 (Neal and Hinton, 1998)
- Found to converge much faster than batch EM
 (Liang and Klein, 2009)
Word Alignment Results

For stepwise EM, mini-batch size = 10,000

- Asynch. Stepwise EM (4 processors)
- Synch. Stepwise EM (4 processors)
- Synch. Stepwise EM (1 processor)
- Batch EM (1 processor)
Word Alignment Results

For stepwise EM, mini-batch size = 10,000

Asynchronous is no faster than synchronous!
Word Alignment Results

Asynchronous is no faster than synchronous!

For stepwise EM, mini-batch size = 10,000
Comparing Mini-Batch Sizes

Wall clock time (minutes)

Log-Likelihood

Asynch. (m = 10,000)
Synch. (m = 10,000)
Asynch. (m = 1,000)
Synch. (m = 1,000)
Asynch. (m = 100)
Synch. (m = 100)
Comparing Mini-Batch Sizes

Asynchronous is faster when using small mini-batches
Comparing Mini-Batch Sizes

Wall clock time (minutes)

Log-Likelihood

Asynch. (m = 10,000)
Synch. (m = 10,000)
Asynch. (m = 1,000)
Synch. (m = 1,000)
Asynch. (m = 100)
Synch. (m = 100)

Error from asynchronous updating
Word Alignment Results

For stepwise EM, mini-batch size = 10,000
Comparison with Ideal Speed-up

For stepwise EM, mini-batch size = 10,000
MapReduce?

- We also ran these algorithms on a large MapReduce cluster (M45 from Yahoo!)

- Batch EM
 - Each iteration is one MapReduce job, using 24 mappers and 1 reducer

- Asynchronous Stepwise EM
 - 4 mini-batches processed simultaneously, each run as a MapReduce job
 - Each uses 6 mappers and 1 reducer
MapReduce?

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

Log-Likelihood

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)
MapReduce?

Asynch. Stepwise EM (4 processors)
-20
-25
-30
-35
-40
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)
Log-Likelihood

Asynch. Stepwise EM (MapReduce)
Batch EM (MapReduce)

Wall clock time (minutes)
Experiments

| Task | Model | Method | Convex? | $|D|$ | $|\theta|$ | m |
|-----------------------|--------|-----------|---------|-----|------------|-----|
| Unsupervised Part-of-Speech Tagging | HMM | Stepwise EM | N | 42k | 2M | 4 |

- Bigram HMM with 45 states

- We plot convergence in likelihood and many-to-1 accuracy
Part-of-Speech Tagging Results

mini-batch size = 4 for stepwise EM

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)
Comparison with Ideal

Log-Likelihood

Wall clock time (hours)

Accuracy (%)

Asynch. Stepwise EM (4 processors)
Ideal

ARK
lti
Carnegie Mellon
Comparison with Ideal

Asynchronous better than ideal?
Conclusions and Future Work

- Asynchronous algorithms speed convergence and do not introduce additional error.
- Effective for unsupervised learning and non-convex objectives.
- If your problem works well with small mini-batches, try this!

Future work
- Theoretical results for non-convex case
- Explore effects of increasing number of processors
- New architectures (maintain multiple copies of θ)
Thanks!