fdag: A C++ Toolkit for Nonlinear Function Learning

Kevin Gimpel
Toyota Technological Institute at Chicago

Abstract

We describe fdag, a C++ toolkit for nonlinear function learning.1 It is simple and lightweight,
built for rapid prototyping and ease of extension. fdag implements automatic differentiation
for functions representable by a formalism we call formula directed acyclic graphs (FDAGs).
An FDAG is a directed acyclic edge-ordered multigraph in which nodes, called formulas, are
operators like + or tanh, parameters like 6, or constants like 7. Directed edges point from formulas
toward their child formulas. Each formula has a value. To compute the value of an operator
formula, the operator is applied to the values of all child formulas.

FDAGs are related to other low-level computational frameworks like sum-product net-
works (Poon and Domingos, 2011), but permit arbitrary operators with arbitrary arity and allow
undirected cycles in the graph structure, increasing computation reuse. Classic algorithms for au-
tomatic differentiation are applicable, though they differ slightly from backpropagation due to the
cycles. fdag can be used to compute gradients for training deep neural networks, but can also be
used for a broader class of nonlinear functions that are not necessarily composed of “neural” lay-
ers. The philosophy of fdag is similar to that of the much more powerful Theano (Bergstra et al.,
2010) and Dyna (Eisner and Filardo, 2011), but we instead focus on simplicity and expressivity.
When using fdag, one writes programs that directly generate FDAGs, rather than specifying sym-
bolic expressions which are then compiled into computation graphs. As a result, fdag requires
more code to do simple computations than other toolkits, but complex computations may be eas-
ier in fdag as one is not limited by the capabilities of the symbolic expression language. This can
be especially useful with richly-structured recursive functions such as recursive/recurrent neural
networks.

In this document, we introduce fdag and describe the FDAG formalism. We give an overview
of how to implement simple function learning in fdag, then give several examples, including
logistic regression and a multilayer perceptron. We give details of supported operators and our
automatic differentiation algorithm in the appendices.

'The work described here is based on efforts of several members of Noah’s ARK in the Language Technologies
Institute at Carnegie Mellon University, especially Shay Cohen, Dipanjan Das, Chris Dyer, Michael Heilman, Noah A.
Smith, and Mengqiu Wang, and was originally inspired by elements in the Dyna language (Eisner and Filardo, 2011).
The released version of the toolkit was written primarily by me, but is based on algorithms and code that have been
circulating among the aforementioned (and others) for many years. No novelty is claimed for any of the technical
material herein; I have merely concretized some ideas that have been in the air for many decades in an attempt to make
them more accessible and useful.

Contents

1 Introduction

2 Formula Directed Acyclic Graphs
3 Implementing Models in £dag

4 Examples
41 AMinimal Example.
42 LogisticRegression
43 Deep Neural Networks
4.4 Class-Separated Deep Neural Networks
4.5 Convolutional Neural Networks for Sequence Classification
4.6 Recurrent Neural Networks

A Formula Node Types

Automatic Differentiation in FDAGs

1 INTRODUCTION 3

1 Introduction

We describe fdag, a C++ toolkit for nonlinear function learning. fdag is inspired by deep learning
but supports a broader class of functions than that generally assumed by neural networks. In
particular, fdag supports functions representable as formula directed acyclic graphs (FDAGs),
using automatic differentiation to compute gradients with respect to parameters. This relieves the
programmer from working out backpropagation algorithms each time the function architecture is
changed, enabling rapid prototyping.

Several generic toolkits already exist for function learning, many of which also include im-
plementations of automatic differentiation algorithms. Examples include Theano (Bergstra et al.,
2010) and Dyna (Eisner and Filardo, 2011). Why create another one? The design of fdag was
driven by the following goals:

¢ Simplicity: fdag is readable and concise, with the core toolkit containing approximately
1200 lines of C++ code. It does not use any external libraries or C++11 features, making
it easy to compile and run on a wide range of systems. The intent is for researchers to
rapidly learn the capabilities of fdag and begin implementing models immediately. To this
end, we provide concise implementations of several example models that can be used or
extended. We include a variety of operators used in deep networks, but it is straightforward
to implement new, arbitrary-arity operators, even those that require arbitrary amounts of
additional state. All that is required is to implement code for evaluating the node based on
its children and differentiating the node’s value with respect to each (numbered) child. See
Table 1 in Appendix A for currently-supported operators. Simple finite difference checks
are provided for debugging gradient computation when experimenting with new function
architectures or operators.

¢ Flexibility: fdag is deliberately lower-level than Theano and Dyna. The latter compile
symbolic expressions into computation graphs upon which operations are performed. fdag
requires the programmer to write code that generates computation graphs (i.e., FDAGs) di-
rectly. Rather than using the static graph transformations of Theano or Dyna, the program-
mer is responsible for doing his own FDAG substructure reuse. This is often reminiscent of
memoization in dynamic programming. The advantage of this trade-off is flexibility. The
programmer has direct access to the underlying machinery that performs computations,
which only makes sense here because it is simple enough to understand easily. Also, the
programmer need not worry about how to represent complex expressions in the symbolic
language supported by the toolkit, but can instead focus on the structure of the graph that
performs the desired computations. This can be especially useful for functions with rich
dependencies that resist concise symbolic expressions, such as those found in recursive and
recurrent neural networks. The underlying representation is always at least as flexible as
any symbolic expression-based interface to it.

* Transparency: the two aims above have the side effect of promoting transparency while
developing with fdag. The code is short and simple enough to manually inspect. FDAGs

2 FORMULA DIRECTED ACYCLIC GRAPHS 4

Figure 1: Example FDAG. The value computed at the root node is a + 3.

can be printed and checked during debugging. It is hoped that fdag can be used as a
teaching tool in courses and by graduate students in machine learning. It is also hoped
that it can be easily adapted and/or translated to other programming languages of interest.

In the remainder of this document, we detail the formal elements of fdag, give details of
implementing models, and discuss examples.

2 Formula Directed Acyclic Graphs

We now present our formula directed acyclic graph (FDAG) formalism. An example is shown in
Figure 1. Each circle in the figure is a node in the FDAG. There is an operator node +, a parameter
node a, and a constant node 3. Each node has directed edges leading to its child nodes. A node
may have zero or more children. The graph must be connected and may not have directed cycles.
There must be a single node with no incoming edges which is designated as the root of the FDAG.
Each node has a value and a derivative. Each operator node type (e.g., “plus” or “times”) has an
evaluation function we denote EVAL and a derivation function we denote DERIVE. To denote the
output of the EVAL function called on a node z, we use the notation EVAL(z). We define the EVAL
and DERIVE functions for several node types in Table 1 in Appendix A. Intuitively, parameters
and constants evaluate to their values, and operators perform their operation on their children.

We show a larger example in Figure 2. This FDAG represents “(a + 3)? + 4a*”. We note that
operators need not be binary. We permit arbitrary arity for operators, including unary operators.
We also note that the FDAG in Figure 2 contains repeated substructure, and that it is a tree (no
undirected or directed cycles). Using trees leads to very simple algorithms for automatic differen-
tiation via backpropagation. However, if we relax the tree constraint to permit undirected cycles,
we can obtain smaller graphs that permit more reuse of computation. In Figure 3, we show an
equivalent FDAG that has fewer nodes. We created directed edges to the single a parameter node
each time a is used, and did the same for the “a + 3” subtree in the “(a + 3)?” term. This strategy
does not change the result of calling EVAL on the root. It makes its computation faster by using
fewer nodes and edges.

Formally, an FDAG is a tuple (V, E,r, 0, ®), where V is a set of nodes, E C V x V is the set
of directed edges connecting nodes in V, » € V is the unique root node which has no incoming

2 FORMULA DIRECTED ACYCLIC GRAPHS 5

Figure 3: Smaller FDAG to compute the same expression as Figure 2. Note the use of (undirected)
cycles to reuse computation.

edges, 0 is the parameter set for the FDAG, and ¢ : V' — 6 is a parameter map, a function that
links parameter nodes to actual parameters in 6.

We define a node 7 as a tuple (¢, ¢, u), where t is the node’s type, ¢ = (v1, va, ..., v|¢) is a vector
of references to child nodes in V, possibly with repeated entries, and u is the node’s value. The
type may be an operator like 4 or x or any other (arbitrary-arity) operator, or may indicate that
the node is a constant (in which case @& = 7) or parameter (& = 7). If the node is a constant, we
assume u contains the constant value that is filled upon creation of the node and is never changed.
If node x is a parameter, then whenever the node’s value u is requested, ®(x) is returned. Since the
child vector c is ordered and can contain duplicates, the formalism is actually closer to a directed
acyclic edge-ordered multigraph rather than a DAG, though we retain the term DAG here for its
familiarity and since it evokes the essential idea of the formalism: (undirected) cycles can increase
reuse of computation and thereby speed up learning.

3 IMPLEMENTING MODELS IN FDAG 6

3 Implementing Models in £dag

We now discuss some details of implementing models using £dag. The expected use of £dag is to
learn models by minimizing a loss function that sums over examples in the training data. For each
term in the sum, we build an FDAG f, compute its value, and perform automatic differentiation
to compute the gradient of the value with respect to the parameters in f. Functions are provided
for online or mini-batch parameter updating via stochastic gradient descent or AdaGrad (Duchi
et al,, 2011), among others.

The Model class (src/fdag/model.x) owns parameter and gradient vectors and has
several useful functions for learning. When creating the FDAG for a training example,
The Model functions getFormulaObject (operator), getConstantFormulaObject (v),
and getCachedParameterFormula (id) should be used to get Formula objects. The
getCachedParameterFormula (id) function uses a cache to store pointers to parameter
Formula nodes so that they can be reused whenever possible, and also so that automatic differen-
tiation works correctly. The automatic differentiation algorithm requires calling a function on each
parameter Formula node in the FDAG. All Formula’s corresponding to model parameters are
cached upon creation by the Model class and reused if the getCachedParameterFormula ()
function is called whenever parameter Formula’s are needed in user code.?

After creating the FDAG for an example, the evalAndComputeDerivatives () function in
the Model class is provided for evaluating the FDAG and computing derivatives of its root with
respect to the parameters in the cache of parameter Formula’s. For debugging, this function can
optionally perform simple finite difference checking, which is essential when debugging FDAG
construction code. An error message is printed if the derivative for parameter j is such that

V?uto o V?umerlcal >4

where V3" is the derivative of parameter j computed by automatic differentiation and V?“merical
is the derivative estimated via the following finite difference method:

Vr}umerical — f(e + 6.7) B f(e - 6.7)
J 20

where 6 is the parameter vector, § > 0 is some small value (we use 1 x 1076 by default), and j is a
“one-hot” vector with entry j set to 1 and all other entries set to zero.

Functions in the Model class are provided for parameter updating after the gradient vec-
tor has been computed: doSGDUpdate (), doSGDMomentumUpdate (), doAdaGradUpdate (),
and doAdaDeltaUpdate (). After calling them, call resetGradientVector () to reset the
gradient vector to all zeroes. Mini-batch optimization is easily supported: when comput-
ing the gradient on an FDAG, the new derivative is added to the old entry in the gradient

’If you instead wish to bypass the cache (e.g., if you are using your own parameter Formula cache or
you want to keep separate parameter Formula nodes in your FDAGs each time a parameter if used), use
getParameterFormulaObject (id) instead of getCachedParameterFormula (id).

4 EXAMPLES 7

vector. Call evalAndComputeDerivatives () after creating the FDAG for a single exam-
ple, then call resetFormulaObjects () as usual, but only call doxUpdate () (followed by
resetGradientVector ()) after computing gradients for the FDAGs for all examples in the
mini-batch.

This process can involve frequent creation and deletion of Formula objects. To im-
prove efficiency, the Model class uses pools of Formula instances (see FormulaPool in
src/fdag/formulapool.*). Rather than constantly creating new Formula instances,
they are drawn from the pool when needed. After processing an example, the model’s
resetFormulaObjects () function must be called to reset the formula pool and reset cached
parameter Formula nodes for the next example. The initial pool capacity is passed as an optional
argument to the Model constructor, which can affect performance. Choosing an initial capac-
ity equal to the high watermark of Formula node usage across examples will avoid allocating
new Formula instances after initialization. When you are finished processing an example and no
longer need any of the Formula objects you created, call resetFormulaObjects (). If you are
using the parameter Formula’s cache, pass true as the argument.

4 Examples

We now give examples of model implementations that use fdag. Self-contained code is provided
for eachin src/samples. Each example uses the Model classin src/fdag/model . h. For larger
examples it may be more appropriate to extend Model to have finer control over its members.

4.1 A Minimal Example

We start with a simple example of building an FDAG and computing its
value and derivatives of its parameters. The program is contained in the file
src/samples/runminimal_example.cpp. It creates a model with a single parameter a
with value 5, creates an FDAG for “2a + 3”, prints it, computes derivatives, and prints it again.
Running . /run.minimal_example should produce the following output:

Printing FDAG before evaluation:

+ 0 0
* 0 0
const 2 0
param_0 O 0
const 3 0

Computed value = 13

Printing FDAG after evaluation:
+ 13 1
* 10 1

4 EXAMPLES 8

const 2 0
param_0 5 2
const 3 0

We print an FDAG by calling printFormula () on the root Formula. This function prints the
Formula node’s type (e.g., + or param_0 or const) followed by its value and its derivative. Then
it recurs on its children, printing a single Formula per line and adding tabs to indicate nesting of
children. The derivative of a node is here defined as the derivative of the root of the FDAG with
respect to the particular node. So the derivative of 2a + 3 with respect to 2a + 3 is 1, the derivative
of 2a 4 3 with respect to 2a is 1, and the derivative of 2a + 3 with respect to a is 2. The derivative
of a constant node is defined to be 0. Before evaluation and automatic differentiation, all values
are 0 (other than those for constant nodes) and all derivatives are 0. After evaluation, the values
and derivatives for all nodes have been filled in.

4.2 Logistic Regression

We now describe the implementation of a multiclass logistic regression classifier in fdag, con-
tained in the file src/samples/run_logistic_regression.cpp.

Given data with d features for each instance and ¢ possible labels, we use a d x ¢ weight matrix
W, where Wj; is the weight for feature j and label i. We use a length-¢ bias vector b where b; is
the bias weight for label i. Then the logistic regression model assigns the following probability to
label i for input feature vector = (z1, 22, ..., Z4):

exp {bi + Z?Zl Wjﬂj}

Pr(i|x) = ; p
> k—1€XP {bk + 25 ijl’j}

During training, we minimize log-loss summed over all training examples; it is written below for
a single training example (i, z):

loss(i, &) = —log Pr(i|x) = — (bi + E?:l Wjisnj) +log b exp {bk + E?:l ijxj}

The function createScoreFDAGForLabel(i,) builds the FDAG for (bi + Zj‘:l Wjixj>. We

note that this FDAG appears twice for the correct label but we can save computation by only
building it once. The function createLossFDAGForDatum(i,) builds the FDAG for loss(i,).

Figure 4 shows the FDAG for the loss function for a binary classification task where the given
example has correct label “0”. We only build the score FDAG for each label once, and use an
undirected cycle to link twice to the score for the label that is correct for this example. This saves
computation without changing the result.

We also include an L2 regularization term with coefficient C. The function
createL2ReqularizationTerm creates an FDAG for the following, where n is the num-

4 EXAMPLES 9

=
&

Figure 4: FDAG showing log-loss for a single example for training binary logistic regression. The
two labels are 0 and 1. We assume the correct label is 0 for this training example. Since the score
for label 0 appears twice, we reuse that part of the FDAG, introducing an undirected cycle in the
process. The use of “plate” notation is inspired by analogous notation in graphical models: a plate
(i.e., a rectangle in the graph) represents repeated graph structure specified by the bounds in the
lower right corner of the plate. We note that we could have also reused the constant formula nodes
corresponding to the z; instead of creating them each twice.

ber of training examples:

reg(W, b) Zb2+zz

i=1 j=1

After building the FDAG f for a single training example, where f = loss(i,) + reg(W, b), the
function evalAndComputeDerivatives () in the Model class is called on f. This function
evaluates f and computes derivatives with respect to all cached parameter Formula’s.

To classify, we return the highest-scoring label (see classifyDatum(x)):

k= argmax b + Z Wik,
7j=1

4 EXAMPLES 10

Experiments We use the ionosphere binary classification dataset from the UCI Machine Learn-
ing Repository Bache and Lichman (2013).> The code uses 5-fold cross validation by de-
fault. After compilation, the experiment can be run as follows: . /run_logistic_regression
data_file=data/ionosphere.data

Details will be printed to stderr, ending with the total time for the experiment and the mean
held-out accuracy across folds. With C' = 0, this accuracy should be 85.1429%. Reusing the same
Formula node for the repeated score (as shown in Figure 4) reduces total training time by about
30%. This experimental comparison can be run by commenting and uncommenting particular
lines in createlLossFDAGForDatum () ; see notes therein.

4.3 Deep Neural Networks

We also include an implementation of a feed-forward, fully-connected deep neural network, also
known as a multilayer perceptron (MLP). See the file src/samples/run_dnn.cpp.
We assume data with d features for each instance and ¢ possible labels. We consider an MLP

with h hidden layers and a “softmax” layer at the end to normalize the scores. We use i+ 1 weight

(9)

matrices (%), where W;;" is the weight for input j and output ¢ in layer g. We use a vector of layer

widths, denoted A = (\y, ..., \y). The first weight matrix, W) uses the features directly as input

and has dimension d x A;. The final weight matrix, W) has dimension \;, x £.* We also use h+ 1

bias vectors b(? where bgq) is the bias weight for output 7 in layer ¢. For the first i bias vectors, the

length of b(@) is \; the final bias vector has length /.
The MLP assigns the following probability to label i for input feature vector = (x1, z2, ..., Z4):

exp{ +Z>‘h W(h (-h)}
S exp {0 + o, wiPs)

Pr(i|x) =

(@)

where 2, is defined recursively as follows:

()_g b(q1)+ZWq1)

where g is a nonlinear function. We use rectified linear units (ReLU) by default. The base case is

defined:
(0)

Zi = Ty

For learning, we again minimize log-loss. In lieu of regularization, we use dropout. For ¢ > 0, we

(@)

set z;" = 0 with probability o, where « is the dropout rate.

Provided in the software release (in data/ionosphere.data)and also downloadable from archive.ics.uci.
edu/ml/machine-learning-databases/ionosphere/ionosphere.data
“If h = 0, then X = () and the single weight matrix W(*) has dimension d x .

4 EXAMPLES 11

Experiment We again use the ionosphere dataset with the same 5-fold cross validation set-
ting as Section 4.2. After compilation, the experiment can be run as follows: ./run_dnn
data_file=data/ionosphere.data layer_widths=10 dropout_rate=0.5

The layer_widths parameter is a comma-delimited string of layer widths. If we set it to 0,
we recover logistic regression. The dropout_rate parameter is a. Running with a single hidden
layer of width 10 (layer_widths=10) and a dropout rate of 0.5 (dropout_rate=0.5) results
in an average held-out accuracy of 90.5714%. We can switch from rectified linear units to tanh
activations simply by changing the line

Formulax activation model.getFormulaObject (RELU) ;
to

Formulax activation = model.getFormulaObject (TANH) ;

We can easily use more layers of varying widths. E.g., to train with two layers of width 20 we pass
layer_widths=20, 20.

4.4 Class-Separated Deep Neural Networks

We also include an implementation of a feed-forward, fully-connected deep neural network which
permits the use of both shared hidden layers across all classes as well as separated hidden layers
for each class label. This allows us to learn a separate non-linear scoring function for each class
that builds upon a shared non-linear scoring function for all classes. We call the resulting model a
class-separated deep neural network (CSDNN). See the file src/samples/run_csdnn. cpp.
We assume data with d features for each instance and ¢ possible class labels. We consider h;
shared hidden layers and h, separated hidden layers. In the code, there can be different numbers
and widths of separated hidden layers for each class, but for this exposition we assume that each
class has the same sequence of separated hidden layers. We use a vector of shared layer widths,
denoted XA = ()1, ..., \p,), and a vector of separated layer widths, denoted p = (i1, ..., fn,)-

We use h; shared weight matrices W9, 1 < ¢ < hy, where Wj(f) is the weight for input j and
output ¢ in shared layer ¢. Defining \g to equal the input dimension d, each shared weight matrix

W (@ has dimension Ag—1 X Aq. We also use h; shared bias vectors b@,1 < g < hy, where bEQ) is
the bias weight for output i in shared layer ¢. The length of b(9) is \,.
For each class label k, we use hy + 1 separated weight matrices W% (9, 0 < ¢ < hy, where

Wﬁ-’(q) is the weight for input j and output ¢ in separated layer ¢ for class label k. For convenience,
we define ;1o = Ap, and pp,+1 = 1. That is, the input to the first separated hidden layer for each
class is the output of the final shared hidden layer (110 = Ap,). The output of the final separated
hidden layer for each class is a single dimension (y4,+1 = 1) since our goal is to produce a scalar
score for each class label. Then, for a given label k, each of the hy + 1 separated weight matrices

W@ (0 < ¢ < hy) has dimension g X fg+1. We similarly define hy + 1 separated bias vectors

@) o < q < hg, where bf’(q) is the bias weight for output ¢ in shared layer ¢ for class k. The
length of b5 (@) is Hg+1-

4 EXAMPLES 12

The CSDNN assigns the following probability to class label i for input feature vector x =
<£L‘1,£L‘2,...,$d>t ‘
exp {zi’(hQH)}

1 €XD {ZT ’(h2+1)}
k,(q)

where 2,7 is a class-separated output unit for dimension i, class label k, and separated layer
depth q. It is defined recursively as follows:

Pr(ilz) =

Hg—1
z@{m(q) —g bf7(q—1) + Z Wj(fi7(q—1)zj1?7(q—1)
j=1

where g is a nonlinear function. Rather than defining the base case in terms of the input features
as above in the DNN, we define the base case in terms of the shared hidden layer output units:

257(0) — Zz‘(hl)
where zi(q) is defined recursively as follows:
Ag—1
Zi(Q) =g bl(q—l) + Z W](Zfl—l)z](q—l)
j=1
The base case is defined:
Z(O) = I

)

For learning, we again minimize log-loss. In lieu of regularization, we use dropout. For ¢ > 0, we
(@)

set z;7/ = 0 with probability o, where « is the dropout rate.

4.5 Convolutional Neural Networks for Sequence Classification

We include an implementation of a simple convolutional neural network for sequence classifica-
tion. See the files in src/samples/cnn/.

4.6 Recurrent Neural Networks

We include an implementation of a recurrent neural network (RNN). The RNN is used to convert
an arbitrary-length sequence into a fixed-size vector, which is then used to predict the output class
using a softmax layer. See the file src/samples/run_recurrentnn.cpp.

We also include implementations of recurrent neural networks that use long short-term mem-
ory units and gated recurrent units. See src/samples/run_lstmrnn.cpp.

A sequence classifier that uses both recurrent neural networks and convolutional filters is in-
cluded in the file src/samples/seqclassify/run_seqclassify.cpp.

A FORMULA NODE TYPES 13

name @ EVAL(z) DERIVE(z, j)
constant ~ u N/A
parameter T O(x) N/A
plus + > EVAL(¢;) 1
times X [L; EVAL(c;) u/EVAL(c;)
minus — EVAL(c1) — EVAL(c2) Ij=1] -1 =2]
neg —1 —EVAL(cy) -1
exp exp exp{EVAL(c1)} u
log log log(EVAL(cq)) 1/u
tanh tanh tanh(EVAL(c1)) 1—u?
relu ReLU max(0, EVAL(cq)) Ifu < 0]0 4 Tfu > 0]
logistic logit | 1/(1 4+ exp{—EVAL(c1)}) u(l —u)
divide + EVAL(c1)/EVAL(c2) I[j=1]/EVAL(c2)
+1[j =2](—EVAL(c1)/EVAL(c2)?)
power ’ EVAL(cp)PVAL(e2) I[j =1](EVAL(c2) * EVAL(cy)EVAL(e2)—T)
1] =2)(ulog(EVAL(c1)))
max max u «— max; EVAL(¢;), I[j = k]
k < argmax; EVAL(¢;)

Table 1: Evaluation and derivation function definitions for nodes of different types. The node
of interest is denoted = € V, the EVAL(z) column shows the computed value of node z, and the
DERIVE(z, j) column shows the value to propagate to the jth child node of z, i.e., the increment
when deriving z with respect to child node ¢;. We assume i ranges over child node indices of
x. We also assume that DERIVE(z, j) is called after EVAL(z), and therefore that v holds EVAL(x).
Computing DERIVE for a max node uses some additional bookkeeping, namely the index & of the
child node with max value. The values in the “name” column match the identifiers used in the
toolkit. The DERIVE function is left undefined for constants and parameters because they never
have child nodes.

A Formula Node Types

In Table 1 we show the definitions of the evaluate and derivation functions for several node types
supported in the fdag toolkit. To implement an additional node type, only the EVAL and DERIVE
functions need to be implemented. We note that the max node uses some additional state to store
the index of the maximum-value child for differentiation, but this is not essential; it is only done
for runtime efficiency at an increase of memory use. We also note that DERIVE for a “times” node
uses the fast rule shown here only when u # 0; when v = 0, it checks whether EVAL(c;) = 0 and
returns the product of the remaining children if so.

B AUTOMATIC DIFFERENTIATION IN FDAGS 14

B Automatic Differentiation in FDAGs

We now describe how we perform automatic differentiation in an FDAG. [To be written]

References

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.
uci.edu/ml.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU
math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy),
2010.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159, July 2011.

Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern Al In Oege de Moor,
Georg Gottlob, Tim Furche, and Andrew Sellers, editors, Datalog Reloaded, volume 6702 of Lec-
ture Notes in Computer Science, pages 181-220. Springer, 2011.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In UAI,
pages 337-346, 2011.

