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Abstract

Spoken language, especially conversational speech, is characterized by great variability in word pronunciation,
including many variants that differ grossly from dictionary prototypes. This is one factor in the poor performance of
automatic speech recognizers on conversational speech, and it has been very difficult to mitigate in traditional phone-
based approaches to speech recognition. An alternative approach, which has been studied by ourselves and others, is
one based on sub-phonetic features rather than phones. In such an approach, a word’s pronunciation is represented
as multiple streams of phonological features rather than a single stream of phones. Features may correspond to the
positions of the speech articulators, such as the lips and tongue, or may be more abstract categories such as manner
and place.

This article reviews our work on a particular type of articulatory feature-based pronunciation model. The model
allows for asynchrony between features, as well as per-feature substitutions, making it more natural to account for
many pronunciation changes that are difficult to handle with phone-based models. Such models can be efficiently
represented as dynamic Bayesian networks. The feature-based models improve significantly over phone-based coun-
terparts in terms of frame perplexity and lexical access accuracy. The remainder of the article discusses related work
and future directions.
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1. Introduction

Human speech is characterized by enormous variability in pronunciation. Two speakers may use different variants
of the same word, such as EE-ther vs. EYE-ther, or they may have different dialectal or non-native accents. There
are also speaker-independent causes, such as speaking style—the same words may be pronounced carefully and clearly
when reading but more sloppily in conversational or fast speech [44] (e.g. “probably” may be pronounced “probly”
or even “prawly”). In this article we are concerned with building a pronunciation model that is a distribution over the
possible sub-word sequences that may be produced in uttering a given word; and we focus on building a model that
is as accurate as possible for conversational speech. Here we address speaker-independent pronunciation variability,
i.e. variability due to speaking style or context, although the methods we describe are applicable to studying dialectal
or idiolectal variation as well. There are many possible applications for this work, including in automatic speech
recognition (ASR), linguistics, and psycholinguistics. In this work, we are mainly motivated by the ASR application,
where pronunciation variation in conversational speech is a significant problem.

Pronunciation variation has long been considered a major factor in the poor performance of ASR systems on
conversational speech [72, 63, 94, 25, 91, 59]. Early work on this topic analyzed this effect in various ways. For ex-
ample, Weintraub ez al. [94] compared the error rates of a recognizer on identical word sequences recorded in identical
conditions but with different styles of speech, and found the error rate to be almost twice higher for spontaneous con-
versational sentences than for the same sentences read by the same speakers in a dictation style. Fosler-Lussier [25]
found that words pronounced non-canonically are more likely than canonical productions to be deleted or substi-
tuted by an automatic speech recognizer. McAllaster and Gillick [63] generated synthetic speech with pronunciations
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matching canonical dictionary forms, and found that it can be recognized with error rates about eight times lower than
for synthetic speech with the pronunciations observed in actual conversational data.

Considering recent advances in speech recognition, one may wonder whether this is still a challenge. Indeed
it is: Although error rates in general have gone down dramatically, they are still 50% higher for non-canonically
pronounced words in a recent discriminatively trained recognizer [59]. Most speech recognition systems use context-
dependent (such as triphone) acoustic models to implicitly capture some of the pronunciation variations. However,
this approach may be insufficient for modeling pronunciation effects that involve more than a single phone and its
immediate neighbors, such as the rounding of [s] in strawberry. The work of Jurafsky et al. [45] suggests that
triphones are in general mostly adequate for modeling phone substitutions, but inadequate for handling insertions and
deletions.

There have been a number of approaches proposed for handling this variability in the context of phone-based
speech recognition. One approach, which was studied heavily especially in the 1990s but also more recently, is to
start with a dictionary containing canonical pronunciations and add to it those alternative pronunciations that occur
often in some database, or that are generated by deterministic or probabilistic phonetic substitution, insertion, and
deletion rules (e.g., [88, 80, 95, 91, 25, 83, 38]). Other approaches are based on alternative models of transformations
between the canonical and observed pronunciations, such as phonetic edit distance models [42] and log-linear models
with features based on canonical-observed phone string combinations [103]. Efforts to use such ideas in ASR systems
have produced performance gains, but not of sufficient magnitude to solve the pronunciation variation problem.

One often-cited problem is that with the introduction of additional pronunciations, confusability between words is
also introduced [23, 80]. This may be due to the large granularity of phone-level descriptions: An actual pronunciation
may contain a sound that is neither a dictionary phone nor an entirely different phone, but rather something intermedi-
ate [83], suggesting that a finer-grained level of representation may be needed. One way of introducing a finer-grained
representation is to represent words in terms of multiple streams of sub-phonetic features, rather than a single stream
of phones. This idea is supported by modern phonological theories such as autosegmental phonology [29] and artic-
ulatory phonology [14]. Many authors have pursued such approaches in one form or another [19, 22, 52, 79, 66, 60].
Early approaches used hidden Markov models (HMMs) in which each state corresponds to a combination of articula-
tory feature values [19, 22, 79]. The HMM state space is constructed by allowing features to evolve asynchronously
between phonetic targets, resulting in a very large state space. To control the size of the space, this work involved
constraining the models, for example by requiring that the features re-synchronize often (e.g. at phonetic targets).

In the work we review here, we have proposed explicit models of multiple streams of articulatory features, which
factor the large state space of articulatory configurations into models of inter-articulator asynchrony and articula-
tory substitution (e.g., reduction). The factorization of the joint articulatory feature distribution can be represented
via graphical models (in particular dynamic Bayesian networks) and requires fewer model parameters than if we
“compiled” the model into an HMM. Incorporating such models into complete recognizers is an important research
question that we do not address in this paper; instead, here we focus on evaluation of pronunciation models inde-
pendently of any particular recognizer. In prior work on new phone-based pronunciation models, the models were
evaluated through experiments with manual phonetic transcriptions. Similarly, here we describe experiments using
manual phonetic transcriptions converted to articulatory features. Section 4 provides more details on the evaluation
methods.

In the next section, we provide detailed motivating background and examples. The remainder of the paper presents
the proposed model (Section 3), along with a feature set based on articulatory phonology and the model representa-
tion in terms of dynamic Bayesian networks; summarizes a series of evaluations using perplexity and lexical access
accuracy as performance measures (Section 4); and gives a brief description of model variants and extensions of the
basic model that have been explored by ourselves and others (Section 5).

2. Motivation

We motivate our approach by considering in greater detail some prior work and relevant examples. We define a
pronunciation of a word as a representation of the way the word can be produced by a speaker, in terms of some set
of linguistically meaningful sub-word units. We distinguish between a word’s (i) underlying (or target or canonical)
pronunciations, the ones typically found in a dictionary and represented as strings of phonemes, and its (ii) surface



pronunciations, the ways in which a speaker may actually produce the word. While a given word usually has one
or a few underlying phonetic pronunciations, the same word may have dozens of surface phonetic pronunciations.
Table 1 shows canonical pronunciations for four words, along with all of their surface pronunciations that appear in
the portion of the Switchboard conversational database that has been manually transcribed phonetically [34]. The
data set is described further in Section 4.3. The surface pronunciations given here are somewhat simplified from the
original transcriptions for ease of reading; e.g., [dx] has been transcribed as [d] and [nx] as [n], and vowel nasalization
is not shown. The exact transcriptions are to some extent subjective.>? However, there are a few points about the data
in Table 1 that are clear:

e There is a large number of surface pronunciations per word, with most occurring only once in the data.

e The canonical pronunciation rarely appears in the transcriptions: It was not used at all in the two instances of
sense, eleven of probably, and five of everybody, and used four times out of 89 instances of dont.

e Many observed pronunciations differ grossly from the canonical one, with entire phones or syllables deleted (as
in probably — [p r ay] and everybody — [eh b ah iy]) or inserted (as in sense — [s eh n t s]).

e Many observed pronunciations are the same as those of other English words. For example, according to this
table, sense can sound like cents and sits; probably like pry; and don’t like doe, own, oh, done, a, new, tow, and
dote. In other words, it would seem that all of these word sets should be confusable.

These four words are not outliers: For words spoken at least five times in this database, the mean number of distinct
pronunciations is 8.8.°

[ word “ sense [ probably [ everybody [ don’t
canonical || sehns praabaxbliy ehvriybaadiy downt
surface sehnts (1) praabiy (2);pray (1); ehvraxbaxdiy (1) down (37); d ow (16); ow n (6); d ow n t (4);
sihts (1) prawluh (1); prahbiy (1); ehverbahdiy (1) dow t (3); d ah n (3); ow (3); n ax (3);
praaliy(l);praabuw (1); ehux b ax iy (1) daxn (2);ax (2); nuw (1); n (1); tow (1);
paabuhbliy (1); paaahiy (1) ehruw ay (1) dowaxn (l);del (1);dao (1);dah(1);
eh bahiy (1) dhown (1); duhn (1); ax ng (1)

Table 1: Canonical and observed surface pronunciations of four words in the phonetically transcribed portion of the Switchboard database [34].4
The number of times each observed pronunciation appears in the database is given in parentheses.

2.1. Phone-based pronunciation modeling in ASR

One approach used in ASR research for handling this variability is to start with a dictionary containing only
canonical pronunciations and add to it those alternate pronunciations that occur often in some database [91]. The
alternate pronunciations can be weighted according to the frequencies with which they occur in the data. By limiting
the number of pronunciations per word, we can ensure that we have sufficient data to estimate the probabilities, and
we can (to some extent) control the degree of confusability between words. However, this does not address the
problem of the many remaining pronunciations that do not occur with sufficient frequency to be counted. Perhaps
more importantly, for any reasonable-sized vocabulary and database, most words in the vocabulary will only occur
a handful of times, and many will not occur at all. For example, of the 29,695-word vocabulary of the Switchboard
database, 18,504 words occur fewer than five times. It is therefore infeasible to robustly estimate the probabilities of
most words’ pronunciations.

2 As noted by Johnson, “Linguists have tended to assume that transcription disagreements indicate ideolectal differences among speakers, or the
moral degeneracy of the other linguist.” [43]

3This is after dropping some diacritics and collapsing similar phone labels, reducing the phonetic label set from 396 to 179 distinct labels.
Before collapsing the labels, the mean number of distinct pronunciations for words spoken at least five times is 11.0.

“4Here and throughout, we use the ARPABET phonetic alphabet [85], with additional diacritics as needed.




However, many pronunciation variants are predictable. For example, we have seen that sense can be pronounced
[s eh n ts]. In fact, there are many words that show a similar pattern of epenthetic stop insertion: defense — [d ih
eh n ts], prince — [p rih n t s], insight — [ith n t s ay t], and so on. These can be generated by a phonetic rewrite
rule, ¢ = t/ n _s, read “The empty string (¢) can become ¢ in the context of an n on the left and s on the right.”
Many pronunciation phenomena are described well by rules of the form p; — p, / ¢; - ¢,, where py, p», ¢;, and ¢, are
phonetic labels or strings. Such rules have been documented in the linguistics, speech science, and speech technology
literature (e.g., [39, 84, 54, 50, 71]) and are the basis for another phone-based pronunciation modeling approach:
One or a few main pronunciations are listed for each word, and a bank of rewrite rules is used to generate additional
pronunciations. The rules can be pre-specified [38] or learned from data [23], and their firing probabilities can also
be learned [86]. A related approach is to learn, for each phoneme, a decision tree representing a detailed set of rules
for predicting the phoneme’s surface pronunciation depending on context [81, 25]. This approach alleviates the data
sparseness issue mentioned above: Instead of observing many instances of each word, we need only observe many
instances of words susceptible to the same rules. But data sparseness still remains an issue: There are many possible
phonetic contexts to consider, and many of them occur very rarely.

There is also the additional challenge of confusability, as mentioned before and studied by others previously [23,
80, 24]. While word confusions may be disambiguated by a language model, previous work has shown that it is not
always enough to alleviate the problem [30]. The issue of confusability could be alleviated by using a finer-grained
phonetic labeling of the observed pronunciations. For example, a more detailed transcription of the two instances
of sense above is [s eh,n t s] and [s ih,t s], indicating that the two vowels were nasalized, a common phenomenon
for vowels occurring before nasal consonants. Similarly, don’t — [d ow t] is more finely transcribed [d ow,t]. This
labeling makes it clear that that what seems like a nasal consonant deletion in don 't is not a deletion at all; rather, the
nasalization feature surfaces on the vowel preceeding the nasal consonant. With this labeling, the second instance of
sense is no longer confusable with sits, and don’t is no longer confusable with dote. (The first sense token, however,
is still confusable with cents.)* Next we consider an alternative fine-grained representation provided by sub-phonetic
features.

2.2. Sub-phonetic feature-based representations

Returning to the two examples of sense above, it is useful to consider the process by which the [t] in these
productions comes about. In order to produce an [n], the speaker must make an alveolar closure with the tongue tip,
as well as lower the velum to allow airflow to the nasal cavity. To produce the following [s], the tongue closure is
slightly released, and voicing and nasality are turned off. If the voicing and nasality are turned off before the tongue
closure is released, this results in a segment of the speech signal with no voicing or nasality but with complete tongue
tip closure; this configuration of articulators happens to be the same one used in producing a [t]. The second example
of sense is characterized by more extreme asynchrony: Nasality and voicing are turned off even before the complete
tongue closure is made, leaving no [n] and only a [t].

Such observations motivate a representation of pronunciations using, rather than a single stream of phonetic labels,
multiple streams of sub-phonetic features such as nasality, voicing, and closure degrees. Tables 2—4 show such a
representation of the canonical pronunciation of sense and of the observed pronunciations [s eh,n t s] and [s ih,t s].
Deviations from the canonical values are marked (*). In Table 3, all of the feature values are produced faithfully, but
with some asynchrony in the timing of feature changes. In Table 4, most feature values are produced canonically,
except for slightly different amounts of tongue opening accounting for the observed [ih,]. This contrasts with the
phonetic representation, in which half of the phones are different from the canonical pronunciation.

This representation allows us to account for the three phenomena seen in these examples—vowel nasalization,
[t] insertion, and [n] deletion—with the single mechanism of asynchrony, between voicing and nasality on the one
hand and the tongue features on the other. don’t — [d ow,t] is similarly accounted for, as is the common related
phenomenon of epenthetic [p] insertion in words like warmth — [w ao r m p th].

The feature-based representation may also allow us to better handle the sense/cents confusability. By ascribing the
[t] to part of the [n] closure gesture, this analysis predicts that a [t] inserted in this environment will be shorter than

“In this discussion we are not directly addressing the issue of which confusability is important to eliminate, and which is already handled by
the language model. We are considering all potential confusability between words. A study of the detailed interaction between the language model
and confusability is outside the scope of this paper.



a “true” [t]. This, in fact, appears to be the case in at least some contexts [99]. This implies that we may be able to
distinguish sense — [s eh,n t s] from cents based on the duration of the [t], without an explicit model of epenthetic [t]
duration.

This is an example of the more general idea that we should be able to avoid confusability by using a finer-
grained representation of observed pronunciations. The feature-based approach makes it possible to have a fine-
grained representation, without the explosion in model size that would result if we used a finer-grained phone set.
The epenthetic stop examples also suggest that pronunciation models should be sensitive to timing information. In
experiments with manual annotation, it has been found that inter-annotator agreement is higher when labeling features
than when labeling phones [57]; presumably this is because, whenever a speech sound is intermediate to two phones,
a phone-based representation forces labelers to choose between multiple labels that are equally poor descriptions of
the actual sound.

voicing off \ on off

nasality off \ on off

lips open

tongue body mid/uvular mid/palatal mid/uvular

tongue tip critical/alveolar | mid/alveolar | closed/alveolar \ critical/alveolar
| phone I s \ eh \ n \ s

Table 2: Canonical pronunciation of sense in terms of articulatory features.

voicing off on off

nasality off on off

lips open

tongue body mid/uvular mid/palatal mid/uvular

tongue tip critical/alveolar | mid/alveolar | closed/alveolar \ critical/alveolar

phone I s \ eh,, EN t* \ s

Table 3: Observed pronunciation #1 of sense in terms of articulatory features. Asterisks (*) indicate deviations from the baseform.

voicing off on off

nasality off on off

lips open

tongue body mid/uvular mid-narrow/palatal * mid/uvular

tongue tip critical/alveolar | mid-narrow/alveolar * | closed/alveolar \ critical/alveolar
phone I s ih,* \ t* \ s

Table 4: Observed pronunciation #2 of sense in terms of articulatory features. Asterisks (*) indicate deviations from the baseform.

This reasoning is in line with modern ideas in linguistics. The paradigm of a string of phonemes (plus possibly
rewrite rules) is characteristic of the generative phonology of the 1960s and 1970s (e.g., [16]). More recent linguistic
theories, under the general heading of non-linear or autosegmental phonology [29], have done away with the single-
string representation, opting instead for multiple tiers of features. An example of this is articulatory phonology [14],
which posits that most or all surface variation results from the relative timings of articulatory gestures, using a repre-
sentation similar to that of Tables 2—4. Articulatory phonology is a work in progress, but one that motivates ideas in
our and others’ work [66, 27].

The remaining sections review a line of research using this approach: An initial model with context-independent
substitutions [60, 61, 56], a more complex model with context sensitivity [9, 49, 46], evaluation via perplexity and
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(a) Context-independent model (b) Context-dependent model

Figure 1: DBNs representing a feature-based pronunciation model with two features and context-independent (left) or context-dependent (right)
substitution probabilities. These figures assume for simplicity that there is one baseform per word. Also, in the context-dependent model (b), the
word and transition variables have been excluded for visual clarity.

lexical access, and related work that has used our models for other tasks [92, 77, 78, 36, 58, 48].

3. Feature-based pronunciation modeling

Motivated by the observations of the previous section, this section describes the proposed approach of modeling
pronunciation variation in terms of the time course of multiple sub-phonetic features. The main components of
the model are (1) a baseform dictionary, defining the sequence of target values for each feature, from which the
surface realization can stray via the processes of (2) inter-feature asynchrony, in which different features proceed
through their trajectories at different rates, and (3) substitutions of individual feature values, which subsumes both
reductions and assimilations. Unlike in many phone-based models, we do not allow deletions or insertions of features,
instead accounting for apparent phone insertions or deletions as resulting from feature asynchrony or substitution. We
formalize the models as dynamic Bayesian networks (DBNs), a generalization of HMM:s that allows for natural and
parsimonious representations of multi-stream models. Figure 1 shows DBN representations for our models; they are
described in detail in the sections below.

We define an underlying pronunciation of a word in the usual way as a string of phonemes, or more generally a
string of phonetic units found in a baseform pronuncing dictionary.> We define surface pronunciations in a somewhat
unconventional way. In Section 2.2, we proposed a representation consisting of multiple streams of feature values,
as in Tables 2—4. We also mentioned, but did not formalize, the idea that the representation should be sensitive to
timing information, so as to take advantage of knowledge such as the tendency of epenthetic stops to be shorter than
non-epenthetic stops. To formalize this, we define a surface pronunciation as a time-aligned listing of all of the surface
feature values produced by a speaker. Such a representation might look like Table 4 with the addition of time stamps.
In practice, we assume that time is discretized into short frames, say of 10ms each as is typical in ASR.

3.1. Articulatory feature set

There is no standard feature set used in feature-based ASR research. One commonly used type of feature set is
based on the categories used in the International Phonetic Alphabet (IPA) [1] to distinguish phones, such as manner,

SBuilding a useful baseform dictionary is itself an interesting problem [55], and some recent work dispenses with the pre-built baseform
dictionary and instead learns all possible pronunciations from acoustic data [64]. For our purposes here we assume the baseforms are given.
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place, voicing, nasalization, rounding, and height and frontness for vowels. However, for some types of pronunciation
variation, this feature set does not seem well-suited. One example is the reduction of consonants to glides or vowel-
like sounds. For example, a /b/ with an incomplete closure may surface as an apparent [w]. Intuitively, there is only
one dimension of change, the reduction of the constriction at the lips. In terms of IPA-based features, however, this
would involve a large number of substitutions: The manner would change from stop to approximant, and the vowel
front/back and height features would change from nil to the appropriate values.

Motivated by such examples, we have used a feature set based on the vocal tract variables of Browman and
Goldstein’s articulatory phonology (AP) [14], shown in Table 5. We have informally assumed this type of features
in examples in previous sections. These features refer to the locations and degrees of constriction of the major
articulators in the vocal tract. The state space of this feature set consists of 41,472 combinations of feature values.
However, in practice we do not allow all of these combinations, due to constraints that we impose on the asynchrony
and substitutions in the model.

This feature set was developed with articulatory phonology as a starting point. However, since neither the entire
feature space nor a complete mapping from a phone set to feature values was available in the literature, we have filled
in gaps as necessary, using the guideline that the number of feature values should be kept as low as possible, while
differentiating between as many phones as possible. In constructing phone-to-feature mappings, we have consulted
the articulatory phonology literature [10, 11, 12, 13, 14], phonetics literature [54, 90], and X-ray tracings of speech
articulation [74]. Additional details about the features and a phone-to-feature mapping are given in [56].

In preliminary experiments comparing different feature sets in our pronunciation models, these articulatory fea-
tures outperformed IPA-style features [56].

| feature [ description values ‘
LIP-LOC lip location protruded, labial, dental
LIP-OPEN || degree of lip opening closed, critical, narrow, wide
TT-LOC tongue tip location inter-dental, alveolar, palato-alveolar, retroflex
TT-OPEN degree of tongue tip opening closed, critical, narrow, mid-narrow, mid, wide
TB-LOC tongue body location palatal, velar, uvular, pharyngeal
TB-OPEN degree of tongue body opening | closed, critical, narrow, mid-narrow, mid, wide
VELUM state of the velum (nasality) closed (non-nasal), open (nasal)
GLOTTIS state of the glottis (voicing) closed (glottal stop), critical (voiced), wide (voiceless)

Table 5: A feature set based on the vocal tract variables of articulatory phonology.

3.2. A generative recipe

In this section, we describe a procedure for generating all of the possible surface pronunciations of a given word,
along with their probabilities. We denote the N features F 1< J < N. A T-frame surface pronunciation in terms of
these features is denoted Surf{ ,1<j<N,1<i<T,where Surf{ is the surface value of feature F/ in time frame i.

Each word has one or more phonetic baseforms, each of which is converted to a table of underlying feature
values using a phone-to-feature mapping table.® Dynamic phones consisting of more than one feature configuration
are divided into multiple segments: Stops are divided into closure + release, affricates into closure + frication, and
diphthongs into the beginning and ending configurations. The mapping from phones to feature values may be non-
deterministic in some cases. Table 6 shows a possible baseform for sense.

The top row of Table 6 is simply an index into the underlying phone sequence; it will be needed later in the
discussion of asynchrony. Note that it is assumed that all features have the same number of targets in a given word.
For example, lips is assumed to have four targets, although they are all identical. This means that, for each phone in
the baseform, and for each feature, there must be a span of time in the production of the word during which the feature
is “producing” that phone. This is a basic assumption that, in practice, amounts to a duration constraint and makes it
particularly easy to talk about feature asynchrony by referring to index differences.

6 A table used in our work can be obtained from [56].



index (position) [ 1 2 3 4

voicing off on on off
nasality off off on off
lips wide wide wide wide
tongue body mid/uvular mid/palatal mid/uvular .5 mid/uvular
mid/velar .5
tongue tip critical/alveolar | mid/alveolar | closed/alveolar | critical/alveolar
| phone [ s | eh | n |'s \

Table 6: A possible baseform and target feature values for the word sense. The target value for the feature tongue body for an [n] is mid/velar or
midfuvular with probability 0.5 each, and the remaining feature values are deterministic.

3.2.1. Asynchrony

We assume that in the first frame of a word, all of the features begin in index 1. Denoting the index, or position, of
feature j at time i Pos this means Pos = 1V.> In subsequent frames, each feature can either stay in the same state
or transition to the next one with some (p0551bly phone-dependent) transition probability. Features may transition at
different times, and this is what we refer to as feature asynchrony. We define the degree of asynchrony between two
features F/ and F* in a given time frame i as the absolute difference between their indices in that frame:

aSync{:k = IPos{ — Post|. (1)

Similarly, we define the degree of asynchrony between two sets of features F* and F? as the difference between the
means of their indices, rounded to the nearest integer:

aSync?® = round (Imean (Posf) — mean (PosﬁB ) I) , 2

where A and B are subsets of {1,...,N} and FUr2} = {F/i F)2 . }. More “synchronous” configurations may be
preferred, and there may be an upper bound on the degree of asynchrony We express this via a distribution over
the degree of asynchrony between features in each frame, p(aSync ) or feature sets, p(axSyncA ‘B). Given the index
sequence for each feature, the corresponding frame-by-frame sequence of target feature values, Tari’ ,1<i<T,is
drawn according to the baseform table (Table 6).

3.2.2. Substitution

A feature may fail to reach its target value, instead substituting another value. This may happen, for example, if a
constriction is reduced, or if a given feature value assimilates to neighboring values. One example of substitution is
sense — [s ih,t s]; a frame-by-frame representation is shown in Table 7. We model substitutions with a conditional
distribution over each surface feature value in a given frame, given its corresponding underlying value and other con-
text variables, p(Surf’ |Tar c] ), where c is a vector of context variables such as neighboring feature values. In initial
experiments looking at the separate effects of asynchrony and substitutions, we have found that substitutions alone
account for more conversational pronunciations than asynchrony alone, but both make a significant contribution [56].

3.2.3. Summary
To summarize the generative recipe, in this model a surface pronunciation of a given word is produced in the
following way:

1. Choose a baseform from the baseform dictionary.
2. For the chosen baseform, generate state sequences for all features, with probabilities given by the transition and
asynchrony probabilities.

SThis corresponds to the (strong) assumption that there is no cross-word asynchrony. Relaxing this assumption is in principle straightforward
but is a topic for future work.



frame [T [2 [3 1[4 1[5 6 [7 [8 [9 [i0]

voicing index (Pos) 1 1 2 3 3 3 4 4 4 4
voicing phone S S eh n n n S S S S
voicing (Tar) off | off | on on on on off | off | off | off

’ voicing (Surf) H off \ off \ on \ on \ on \ on \ off \ off \ off \ off ‘
nasality index (Pos) 1 1 2 3 3 3 4 4 4 4
nasality phone S S eh n n n S S S S
nasality (Tar) off | off | off on on on off | off | off | off
nasality (Surf) [ off Joff [of [on | on [on [off [off [off |off |
tongue body index (Pos) || 1 1 2 2 2 3 3 4 4 4
tongue body phone S S eh eh eh n n S S S
tongue body (Tar) m/u | m/u | m/p m/p m/p m/u | m/u | m/u | m/u | m/u

| tongue body (Surf) | mu [ mu | m-n/p [ m-n/p [ m-n/p [ mju [ mju | miu [ m/u [ m/u |
tongue tip index (Pos) 1 1 2 2 2 3 3 4 4 4
tongue tip phone S S eh eh eh n n S S S
tongue tip (Tar) cr/a | cr/a | m/a m/a m/a cl/a | cl/a | cr/a | cr/a | cr/a

| tongue tip (Surf) [ cr/a|cr/a | m-nja | m-n/a [ m-n/a | cl/a [ cl/a [ cr/a | cr/a | cr/a |

[ aSync™” o Jo Jo |1 |1 o J1 Jo Jo Jo |

’phone Hs \s \ih \ih,, \ih,, \n \t \s \s \s ‘

Table 7: Frame-by-frame sequences of index values, corresponding phones, underlying (Tar) and surface (Surf) feature values, and degrees of
asynchrony between A = {voicing, nasality} and B = {tongue body, tongue tip}, for a 10-frame production of sense. Where the underlying feature
value is non-deterministic, only one of the values is shown for ease of viewing. Bold-faced entries indicate feature value substitutions. The lips
feature has been left off and is assumed to be “wide” throughout. The bottom row shows the resulting phone transcription corresponding to these
feature values.

3. Given the generated index sequence, generate underlying feature values by drawing from the baseform feature
distributions at each index. (This is a deterministic lookup in the case of a single baseform.)
4. For each underlying feature value, generate a surface feature value by drawing from the substitution distribution.

3.3. Representation via dynamic Bayesian networks

The model we have described can be naturally represented as a DBN. Figure 1(a) shows a DBN representing our
model with two feature streams and with context-independent feature substitutions. In this article, we model each
word independently, although ultimately we should include context from the previous and following words as well.
In the model with context-independent substitutions, the variables at time frame i are as follows:

Word; — The current word at time i.

Transf — binary transition variable. Trans{ = 1 indicates that frame i is the last frame of the current state for feature
Jj.

Posf — index of feature j at time i. Pos{ = 1 Vj; in subsequent frames Posf = Posf if Transf = 0, and Posf +1
otherwise.

Tar‘l.i — underlying (target) value of feature j.
Surf{ — surface value of feature ;. p(Surf{ ITarij ) encodes allowed feature substitutions.

aSync‘;‘:B and checkSynC?:B represent the asynchrony model. aSynclA:B is drawn from an (unconditional) distribution
over the integers, while checkSyncf:B checks that the degree of asynchrony between A and B is in fact equal to
aSync?’B . To enforce this constraint, checkSynC?:B is always observed with value 1 and is given deterministi-

cally by its parents’ values: checkSynC?:B =1 < round (Imean (Posf) — mean (Pos? ) |) = aSyncf‘:B
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If we assume that the features always synchronize at the end of a word, then in the final frame we must enforce that all

features are exiting their final state. Cross-word asynchrony (as in “green beans” — [g riy m b iy n z]) and cross-word

coarticulation are also important, and can be incorporated into such a model, but as mentioned previously, we limit

the presentation to the case where asynchrony and conditioning contexts are restricted to be within word boundaries.
We can use standard DBN inference algorithms to answer such questions as:

e Decoding: Given a surface pronunciation (set of surface feature value sequences Surf})'), what is the most

likely word that generated them?

e Parameter learning: Given a training set of words and corresponding surface pronunciations, what are the best
settings of the conditional probability tables in the DBN?’

e Alignment: Given a word and a corresponding surface pronunciation, what are the most likely values of the
hidden variables Pos{ and Tar{ ? This is useful for analysis or qualitative evaluation.

Parameter learning can be done with a maximum-likelihood criterion via the Expectation-Maximization algorithm [17],
or with discriminative criteria (e.g., [75]).

3.4. Modeling context-dependent feature substitutions

Figure 1(b) shows a version of the model where the surface features depend on additional context variables besides
the target feature values. In this case the context variables are the previous and next target values of the feature
and the previous surface value (denoted Prev{ , Nextf and PrvSurf{ respectively), but many other context variables
are possible (refer to Section 4.2 for some examples). Dependencies between surface feature values can encode
smoothness constraints in the motion of articulators; and conditioning surface feature values on past or future target
values can model assimilation effects that are not accounted for by asynchrony. Analogously to previous work on
phone-based pronunciation models [80, 25], we can use decision trees to represent the context-dependent surface
feature distributions. In such a setup, we have a decision tree for every target feature value, with questions about the
context variables determining splits in the decision trees.

In addition to standard decision trees, we have also considered maximum-entropy models [5] of the surface feature
distributions [46]. These may be more robust since, unlike decision trees, their training is a convex optimization
problem and involves fewer tuning parameters. In this approach, we learn maximum-entropy predictors of the surface
feature values given the target and context variables, using target/context variable values as feature functions in the
predictors:

1
p(Surf|Tar,c; 1) = Z(Tar. <)
where c refers to all of the context variables, f;(-) are feature functions (in our case they are properties of the context
variables), A; are weights learned to maximize the conditional likelihood of the training data, and Z(Tar,c) is the
partition function.

In order to train either the decision trees or the maximum-entropy predictors, we need training data with all context
variables observed. For this purpose we have used alignments generated using a trained context-independent model,
similarly to the training of phone-based models such as those of Riley et al. [80].

K
exp Z/lkfk(Tar,c,Surf) , 3)
k=1

3.5. Related work

Besides the earlier motivating work mentioned in Section 1 [19, 22, 52, 79], the most closely related work to ours
is the recent work of Mitra et al. [66] on noise robustness with articulatory models. In their work, Mitra et al. define
a DBN with multiple streams of articulatory variables based on articulatory phonology. In their models, however,
there is no explicit modeling of inter-feature asynchrony or substitutions.® Markov et al. [62] also use DBNs with

"This assumes training data in the form of labeled surface feature values. If these are not available, but only acoustics are, training can be done
by combining the model with an acoustic observation model; this is outside the scope of this article.

SFor this reason we have not compared directly against this model in experiments. Since our experiments are based on manual transcriptions,
while their model accounts for a large amount of variation at the acoustic level, that model would perform unfairly poorly in our experiments.
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articulatory variables, but with no modeling of inter-frame dependencies. Some authors have explored DBN models
for the task of recognition of asynchronous articulatory features [96]. Other work has explored the use of multiple
asynchronous streams of variables other than sub-phonetic features, such as different streams of acoustic observations
or acoustic observations with the addition of an auxiliary variable [70, 89, 102, 101]. Finally, in linguistics and speech
science there have been several efforts to formalize models of multiple asynchronous tiers [41, 98] and a simulation
of articulatory phonology itself has now been implemented in a toolkit [68].

There has also been a great deal of work in speech recognition on acoustic observation models based on sub-
phonetic features and on feature classification [53, 65, 21, 26, 97, 51, 15, 67, 87]. Such methods can be combined
with articulatory feature-based pronunciation models to build complete speech recognizers. The outputs of feature
classifiers can be used as observations for surface feature variables, or alternatively the feature variables can be kept
hidden and inferred (or marginalized out) in recognition. In this article we focus on pronunciation modeling alone,
although the two topics are linked.

4. Evaluation using manual phonetic transcriptions

There are multiple ways of evaluating the proposed approach. For purposes of ASR, we could of course embed
the model in a complete recognizer. Sub-phonetic feature-based pronunciation models have indeed been evaluated
in complete ASR systems [18, 79, 66, 58], but always using a simplified pronunciation model for computational or
other reasons. It is also difficult to discern in such ASR experiments how much of the performance differences are
attributable to the new pronunciation model versus the corresponding new observation models. In the work reviewed
in this article, therefore, we have chosen to use “intrinsic” evaluation, external to any ASR system.

In the past, the value of new pronunciation models has been evaluated in a few “intrinsic” ways. For example,
an extensive study by Riley et al. [80] used the perplexity of the surface phone strings in a test set as a performance
criterion. Bates et al. [3] also used phone perplexity, as well as phonetic error rate and distance. We cannot use the
same phone perplexity measure, since our models do not produce a probability per surface phone label. Our models
do produce a per-frame probability of the surface form, so we use frame perplexity as one measure of performance.

A second type of evaluation we use is via a lexical access task, that is classification of a word’s identity given its
surface phonetic transcription. We compared our feature-based models to a phonetic baseline model based on the one
of Riley et al. [80], described below.

4.1. Data

In the experiments described in this section, we used data from the Switchboard Transcription Project (STP) [34], a
subset of the Switchboard conversational speech database [28] that has been manually labeled at a fine phonetic level,
including various diacritics, and phonetically time-aligned. This dataset provides a set of examples of conversational
surface pronunciations, which we convert to frame-by-frame articulatory feature transcriptions via a mapping from
the STP phone set to our feature set. All of our experiments have been done on the “train-ws96-i” subset of the
STP transcriptions, excluding partial words, words whose transcriptions contain non-speech noise, and words whose
baseforms are four phones or shorter (where stops, affricates, and diphthongs are considered two phones each). The
length restriction is intended to exclude words that are so short that most of their pronunciation variation is caused by
neighboring words. The resulting data set contains 3343 single-word tokens excised from continuous conversational
utterances.

Since the surface pronunciations are transcribed phonetically in this data, we may not be able to exploit the
full power of the feature-based model in this evaluation. For example, partially nasalized vowels, incomplete stop
closures, and anticipatory rounding are handled by the model but are missing from the phonetic transcriptions. This
may be addressed in the future by either manual articulatory transcription efforts [57] or automatic forced articulatory
transcription [77].

4.2. Evaluation via frame perplexity [9, 49]

Since the feature-based model is inherently frame-based, we measure the frame-level perplexity. We therefore
also trained frame-level phonetic decision trees as a baseline for this evaluation. In these experiments, the STP
excised word data described above is split into a 2942-word (~90,000-frame) train set, 165-word development set,
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and 236-word test set (see [56, 9] for more details). The goal is to measure how well a model predicts a test set of
surface pronunciations. Let the surface phone label at time frame i be P; and the corresponding N-feature vector be
{Surfil, R Surffv } = Surf ,IZN . To evaluate our models, we align the test data (using the context-independent model),
i.e. we find the most probable values of all hidden variables given the word and the surface labels, and then compute
the frame-level perplexity of the test set:

1
~7 2, log p(Pilc)
t

perp(Py,...,Pr) =2 “)

where there are T frames in the test data and ¢, refers to the context variables. In this expression, p(P;lc,) is computed
from either phonetic or feature-based decision trees, via p(P;lc;) = H?’z I p(Surff IC{ ).

| Type of context model | Phone-based | Feature-based |
Context-independent 3.65 2.57
Basic context-dependent 2.52 2.15
Basic context-dep. + previous distinct surface value 1.64 1.79
Basic context-dep. + prev. surf. + distance 2.08 1.69
Cross-feature context-dep. + prev. surf. N/A 1.57
Cross-feat. context-dep. + prev. surf. + phone context N/A 1.52

Table 8: Test set perplexities for various models (from [9]). In the context-independent model, the surface label depends only on its current target
value. Basic context-dependent also includes a dependency on the next and previous distinct target values. Distance refers to the distance in frames
to the next/previous distinct target value, providing a model of inertia. In cross-feature models, the context includes the target and surface values
for all features, not just the one being predicted. Context dependency across feature streams (the last two rows) can not be applied to phone-based
models, corresponding to the “N/A” entries in the table.

Building a separate decision tree for each articulatory feature produces poor results, presumably because the
assumption of independence between the features is too strong. Instead, we “bundle” the features into three streams
that should be more independent, which yields much better results: all tongue features (19 possible underlying values,
and therefore 19 trees); glottis and velum (3 trees); and lip opening (4 trees). These bundles were chosen because there
is typically very little asynchrony among the features within each bundle, but more so in between bundles. Figure 4.2
shows a (highly pruned) example decision tree for the Glottis-Velum feature tier, corresponding to the case where the
target value is voiced (VD) and non-nasal (N-N). This tree shows that the current sound is more likely to be nasalized
if the following target is a nasal than if it is a non-nasal, and even more likely to be nasalized if the previous surface
sound was also nasal.

Table 8 shows the frame perplexities for various models. For most sets of context variables, the feature-based
models outperform the phone-based ones. The best perplexities are obtained by including cross-feature context. It
can be difficult to interpret the importance of perplexity differences, so next we consider evaluation through lexical
access performance.

4.3. Evaluation via lexical access [60, 61, 56, 46]

In the lexical access task we address the question: If we knew the true sequences of surface feature values Surf{ Vi, j
for a word, how well could we guess the identity of the word? In this case, the “true” surface feature values are derived
from the STP phonetic transcriptions, by assuming a deterministic mapping from surface phones to surface feature
values. The task then consists of introducing these surface feature values as observations of S = Surf/Vi, j in the
DBN for each word, and finding the word with maximum posterior probability, p(wi|S), 1 < k < V, where V is the
vocabulary size. Given a test set of words with their observed surface feature values, we measure the lexical access
error rate of the model as the percentage of the test words that are predicted incorrectly.

In these experiments the parameter learning is done via maximum likelihood using the EM algorithm, given the
training set of observed word/surface feature pairs. All DBN inference and parameter learning is done using the
Graphical Models Toolkit (GMTK) [7, 6]. The maximum-entropy models are trained using the Maximum Entropy
Modeling Toolkit [100]. We enforce two hard constraints on asynchrony:
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GVTar-Next

VL/N-N | VD/N | VD/N-N
(0.02%) | (0.6%) | (99.38%)
. / \
GVSurf-Curr GVSurf-Prev
VL/N-N | VD/N-N VD/N | VD/N-N
0.1%) | (99.9%) (6.4%) | (93.6%)
N‘V \q
GVSurf-Curr GVSurf-Curr
VD/N | VD/N-N VD/N | VD/N-N
(0.5%) | (99.5%) (45.2%) | (55.8%)

Figure 2: An example decision tree learned for the Glottis-Velum feature tier, when the current target value is VD/N-N. The Glottis tier takes values
of voiced (VD) or voiceless (VL) and the Velum tier’s values are either non-nasal (N-N) or nasal (N).

1. The lips can desynchronize from the tongue by up to one state: p(aSynciL:T > 1) = 0. Lip-tongue asynchrony
can account for effects such as vowel rounding in the context of a labial consonant. We ignore for now longer-
distance lip-tongue asynchrony effects, such as the rounding of [s] in strawberry.

2. The glottis/velum must be within 2 states of the tongue and lips: p(aSyan"T;GV > 2) = 0. This accounts for

longer-distance effects, such as long-range nasalization as in trying — [t r ay,n] (where the nasalized [ay] is

two phones away from the nasal in the underlying pronunciation).

In addition, we set many of the substitution probabilities to zero, based on the assumption that features will not stray
too far from their intended values.

We compare our models to a baseline phonetic pronunciation model built according to the specification in [80].
The phonemic transcriptions were aligned with the hand-labeled phonetic transcriptions from STP to give phoneme-
to-phone correspondences which were then used to build phonetic decision tree models. The phonemes were each rep-
resented as a six-element feature vector: (type of phoneme (vowel,consonant,silence), consonant-manner, consonant-
place, vowel-manner, vowel-place, nasalized or not nasalized). The decision tree questions were based on these
features. As in [80], we also allowed for deletion of phonemes in context. The context for the decision trees includes
three neighbouring phonemes on either side and the distance of the phoneme from the word boundary on either side,
as in [80].

The pronunciation models in these experiments used a 3328-word vocabulary, consisting of the 3500 most likely
words in the “Switchboard I” training set [28], excluding partial words, non-speech, and words for which we did not
have baseform pronunciations.

Figure 3 shows the lexical access error rates of the context-dependent phonetic baseline and of several feature-
based models, in a 5-fold experimental setup with 2000 words in each fold’s training set and about 670 words in the
development and test sets.

The main result here is that the context-dependent feature-based models outperform the context-dependent pho-
netic baseline, despite the fact that the phonetic baseline uses a longer context window (three previous/following
phones) and additional context variables, and despite the fact that the phonetic labeling of the data favors a phonetic
model. These improvements in performance are statistically significant according to McNemar’s test [20] at p < 0.01.
A context-independent feature-based model, however, is insufficient to beat the phonetic baseline. Finally, there is less
variability in error rates across folds for the context-dependent feature-based models than for the phone-based model.
Context-dependent models based on decision trees and maximum-entropy models perform comparably—the decision
tree models slightly outperform the maximum-entropy models, but not significantly so—but the maximum-entropy
models require much less tuning to obtain good performance so they may be preferable overall.
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5-fold cross—validation (CV) error rates on CV test sets
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Figure 3: Lexical access error rates. CI is a context-independent feature-based model. CD_Phone is the context-dependent phone baseline model.
CD_Feat is a basic context-dependent feature-based model using decision trees, where the context variables are only the previous and next tar-
get values of each feature. CD_prSurf also includes the previous distinct surface value as a context variable. CD_ME and CD_prME are the
corresponding maximum entropy models without and with the previous surface feature value context.

For a more detailed look, it is also informative to consider not only the error rate but also the rank of the correct
word. The correct word may not be top-ranked because of true confusability with other words; it is then instructive
to compare different systems as to their relative rankings of the correct word. In a real-world connected speech
recognition scenario, confusable words may be disambiguated based on the linguistic and phonetic context. The role
of the pronunciation model is to give as good an estimate as possible of the goodness of fit of each word to the
observed signal. Figure 5 shows the cumulative distribution function of the correct word’s rank for the same feature-
based and phone-based models as in Figure 3, for one of the five folds. This plot is equivalent to the r-best oracle
accuracy for varying r; the previously reported error rate is given by the first point on the plot for each model. This
figure demonstrates that, not only are the context-dependent feature-based models better than the phonetic baseline in
terms of 1-best accuracy, they are also markedly better in terms of r-best accuracy for r > 1. In fact, the phone-based
model tapers off at <85% r-best accuracy even for very high r, while the best feature-based models quickly reach
about 95% r-best accuracies. Note that, due to zero probabilities in each model, there are some words that fall outside
the r-best list for any r, no matter how large. For example, the articulatory models have limits on asynchrony and
allowed substitutions, and the phone-based models do not allow all substitutions. However, this does not detract from
the overall trend in relative performance of the models, which is visible even for very low r where this “ceiling effect”
is not reached.

4.4. Examples

In order to get a qualitative sense of whether a model is behaving reasonably, we can look at the most likely
settings for the hidden variables given a word and its surface realization, which we refer to as an alignment. This is
the multi-stream analogue of a phonetic alignment, and is the model’s best guess for how the surface pronunciation
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ALV RET ALV TarTTtoc ALV RET ALV TarTT-Loc
ALV RET P-A ALV Surfrrtoc ALV F-A ALV Surfrrtoc
(a) everybody — [ehr uw ay] (b) instruments — [ih,s tcl ch em ih,n s]

Figure 4: Spectrogram, phonetic transcription, and partial alignment for two example words from the STP data set. Each “baseform phone” tier
gives the baseform pronunciation aligned to the Pos sequence above it. Abbreviations of feature values are as given in Table 5.

was generated. Figures 4(a) and 4(b) show spectrograms and the most likely sequences of some of the model variables
for two example words, everybody — [eh r uw ay] and instruments — [ih,s tcl ch em ih,n s]. Multiple frames with
identical variable values have been merged for visual clarity.

Considering first the analysis of everybody, it suggests that (i) the deletion of the [v] is caused by the substitution
critical — wide in the LIP-OPEN feature, and (ii) the [uw] comes about through a combination of asynchrony and
substitution: The lips begin to form the closure for the [b] while the tongue is still in position for the [iy], and the lips
do not fully close but reach only a narrow constriction. Turning to the example of instruments, the apparent deletion
of the first [n] and nasalization of both [ih]s is explained by asynchrony between the velum and other features. The
replacement of /t r/ with [ch] is described as a substitution of a palato-alveolar TT-LOC for the underlying alveolar
and retroflex values. We cannot be certain of the correct analyses, but these analyses seem reasonable given the
phonetic transcriptions.

It is also instructive to consider examples that different models recognize correctly/incorrectly. For example, the
context-independent feature-based model fails to recognize the examples favorite — [f ey v er t] and twenty — [t w
eh n iy]. In the case of twenty, the canonical pronunciation is /t w eh n t iy/. In this surface realization, the stop is
nasalized, and in this case there is insufficient oral pressure built up to cause a burst when the stop is released. This
is captured by the context-dependent distribution of the tongue tip feature, which goes directly from a closure to the
following vowel in the context of a nasal.

5. Extensions

The models described in this article, or variations on these models, have been extended in various ways and
applied to other tasks. First, the experimental results in this article were obtained with generative models trained via
maximum likelihood. In related work, we have developed an approach for discriminative training of the models, by
converting the DBNSs to finite-state transducers and learning their arc weights discriminatively, for improved lexical
access performance [47]. Another discriminative approach is to use the models to define feature functions in a log-
linear classifier. This approach has been applied in a discriminative whole-word model for lexical access, leading
to large improvements over the lexical access results reviewed here [92]; however, such whole-word models are less
straightforward to extend to end-to-end recognition since they cannot be incorporated into frame-based recognition
models. A related model has also been used to define feature functions in a discriminative keyword spotter, showing
improvement over a phone-based model in conversational speech in a low-data setting [78].
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Figure 5: Empirical cumulative distribution functions of the correct word’s rank. The model name abbreviations are as in Figure 3.

As mentioned previously, this type of model has been used in end-to-end speech recognition experiments, although
with highly constrained versions of the models (with greatly restricted or eliminated substitution models). Extension to
full speech recognition could be done by first predicting articulatory feature values and then using them as observations
in the pronunciation model. Such hard decisions are likely to introduce additional errors. Instead, the articulatory
features can be kept as hidden variables, and the distribution of the acoustic observations can be modeled as a Gaussian
mixture [58] or indirectly in a hybrid approach [35]. With the dramatic recent improvements in hybrid models using
deep neural networks [40], this approach should be revisited.

The same kind of model has been used in visual and audio-visual speech recognition [36, 82], with improvements
found in lipreading performance. In the case of audio-visual speech, the model provides an account of the well-known
phenomenon of audio-video asynchrony [69, 32, 31, 37] as the result of asynchrony between visible (e.g., lip opening)
and non-visible (e.g., nasality, back articulations of the tongue) articulatory gestures. For example, anticipatory lip
rounding can make it appear that the visual signal is “ahead” of the acoustic signal, whereas in fact it is the lips that
are ahead of the other articulators.

Finally, pronunciation models can be used for a variety of other applications. One example is the development of
“word neighborhood density” measures, which are used in psycholinguistics work to predict human word recognition
performance [2] and to analyze speech recognition performance [30]. In recent work we have used the articulatory
feature-based models presented here, converted to finite-state transducers, to define word neighborhoods by finding
the nearest neighbors of a given word in terms of transducer edit distance. Word neighborhoods defined in this way
outperform phone-based neighborhood measures as predictors of ASR errors [48].

6. Conclusion

This article has reviewed our work on a flexible model class that explicitly accounts for articulatory asynchrony
and substitution effects in pronunciation variation. We have argued, and have found in initial experiments, that the
proposed articulatory feature set (as opposed to, for example, [PA-based features) is not an arbitrary choice but an
important one for modeling pronunciation variation. The graphical model formulation—as opposed to “compiling” the
model into an HMM-allows us to implement such models with minimal assumptions and to take advantage of the
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parsimony of the factored state space. Our main findings from frame perplexity and lexical access experiments are
that

e Feature-based pronunciation models of the type we have developed outperform comparable phone-based mod-
els in most cases, in terms of both frame perplexity and lexical access performance.

o Context-dependent surface feature models outperform context-independent ones. Maximum-entropy and deci-
sion tree-based models perform comparably, but maximum-entropy models are easier to train and tune.

¢ In context-dependent models, it is helpful to combine the feature tiers into “bundles” of highly interdependent
feature subsets; without this we do not obtain improved perplexities over the phonetic baselines.

We have also reviewed extensions of our models to allow for discriminative training and for application to speech
recognition, lipreading and audio-visual speech recognition, spoken term detection, and speech recognition error
prediction. There are still many opportunities for future work on properly integrating such a pronunciation model
into a speech recognizer or other downstream tasks. For example, the relationship between the pronunciation model
and acoustic model requires further study: Should the acoustic model be factored into multiple terms for the different
articulators? Should there be a separate factor for each bundle? How much of the variation should be accounted
for by the acoustic model versus the pronunciation model? Discriminative training is likely to be a big part of such
integration, considering that we do not know what the “perfect” feature set and model structure are.

The models presented in this paper can be improved in a number of ways. Studies of pronunciation variation in
the ASR literature suggest some useful contextual factors that we have not yet used in our models, such as prosodic
and position-dependent factors. For example, Greenberg et al. have studied pronunciation variation as a function of
the position of a phone within a syllable, and found that the codas of syllables are far more likely to be realized non-
canonically [33]. Other prior work [73] has suggested that there is a “hidden mode” or speaking style that may vary
during the course of an utterance, which may be useful to model as well. Finally, a number of authors have shown that
pronunciation variants depend on contextual factors such as nearby disfluencies (e.g., hesitations), word predictability,
utterance position, and speaking rate [4, 24, 25]. In addition, incorporating cross-word context is important and in
principle straightforward in our models, but we have thus far ignored cross-word effects on both asynchrony and
substitutions.

We have also assumed that the distribution of asynchrony is symmetrical: The probability of feature i being ahead
of feature j by a certain amount is the same as that of j being ahead of i. There are common examples of variation
that cause us to doubt this assumption. For example, pre-nasalization of vowels appears to be more common than
post-nasalization [14]. The existence of attested phenomena such as football — [f uh b ao 1] [34] but not, as far as we
know, of haptic — [h ae p ih k] implies that tongue-lip asynchrony may also be asymmetric. Asymmetric asynchrony
can be added to the model by allowing the aSync variables to take on both positive and negative values. This has
begun to be explored in some related work [76, 93] but deserves more attention in future work.

Browman and Goldstein use evidence from linguistic and articulatory data to devise specific ordering constraints
among their vocal tract variables [14]. We have thus far also used such considerations in deciding on the constraints
used in our experiments. However, in the absence of conclusive data on all variables of interest, it would be useful to
investigate automatically learning certain aspects of the model, such as the feature bundles and asynchrony constraints.
For example, the feature bundles could be automatically discovered from forced alignments with an “unbundled”
model. The optimal structure of the model for ASR purposes may differ from a linguistically faithful model. For this
purpose discriminative training approaches [8, 47], or using our models to define features in discriminative log-linear
models [78, 92], may be fruitful.

The type of model we have proposed may also have applications in speech analysis, for both scientific exploration
and more immediate applications. One possible use of the model would be to make automatic articulatory transcrip-
tions of large amounts of recorded speech, to allow the study of articulation phenomena on a larger scale than is
possible with existing corpora [77]. For example, we could learn the relative timing of articulatory gestures, therefore
contributing to the theory of articulatory phonology.
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