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ABSTRACT

Articulatory measurements have been used in a variety of
speech science and technology applications. These measure-
ments can be obtained with a number of technologies, such as
electromagnetic articulography and X-ray microbeam, typi-
cally involving pellets attached to individual articulators. Due
to limitations in the recording technologies, articulatory mea-
surements often contain missing data when individual pellets
are mis-tracked, leading to relatively high rates of loss inthis
expensive and time-consuming data source. We present an
approach to reconstructing such data, using low-rank matrix
factorization techniques combined with temporal smoothness
regularization, and apply it to reconstructing the missingen-
tries in the Wisconsin X-ray microbeam database. Our al-
gorithm alternates between two simple steps, each having a
closed form as the solution of a linear system. The algo-
rithm gives realistic reconstructions even when a majorityof
the frames contain missing data, improving over previous ap-
proaches to this problem in terms of both root mean squared
error and phonetic recognition performance when using the
reconstructions.

Index Terms— articulatory data, X-ray microbeam,
missing data, matrix factorization

1. INTRODUCTION

Articulatory measurements are a valuable resource for a
number of spoken language technology applications. For
example, in speech synthesis they have been used to gener-
ate speech from articulation [1, 2, 3]. They have been used
to train acoustic-to-articulatory inversion models with appli-
cation, for example, in speech recognition [4, 5, 6, 7]. In
speech recognition they have also been used for multi-view
acoustic feature learning [8, 9]. There are a number of ways
of simultaneously recording acoustic and articulatory data,
including X-ray microbeam [10], electromagnetic articulog-
raphy (EMA) [11], ultrasound [12], and magnetic resonance
imaging (MRI) [13].
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We are mainly concerned with articulatory measurements
corresponding to the spatial location of pellets attached to sev-
eral articulators, as in EMA and X-ray microbeam, and we
focus our efforts on data from the Universty of Wisconsin X-
ray microbeam database (XRMB) [10]. Due to limitations
of the recording technology, articulatory measurements of-
ten contain frames where one or more pellets’ coordinates are
missing. In the case of X-ray microbeam recordings, pellets
are often mis-tracked for a part of an utterance for roughly
50-500ms at a time [10] (see Fig. 1 (left) for sample mis-
track patterns). Since it is prohibitively expensive to record
perfectly clean articulatory measurements, such mis-tracked
records are left as is and only annotated as mis-tracked. The
runs of missing data are sufficiently long that reconstruction
via single-dimension interpolation is not feasible.

Although the overall proportion of missing data in a data-
base may be low, the proportion of affected frames is much
higher. The subset of XRMB used in this paper includes 47
speakers uttering 53 utterances. In this data set, 3.4% of the
entries are missing, yet 23.6% of the frames contain at least
one missing entry, and the proportions of missing data vary
greatly between speakers. Overall, XRMB is reported to have
about 35% affected utterances [10].

There have been several approaches applied to recon-
structing the missing entries of articulatory recordings.Ro-
weis [14] takes an approach based on probabilistic principal
component analysis which employs Expectation Maximiza-
tion (EM). Qin and Carreira-Perpñan [15] model the fully
observed frames with Gaussian mixtures and impute the
missing values based on conditional statistics of the missing
dimensions given the observed dimensions.

The task can be viewed as the problem of completing a
matrix from a few given entries. This is a fundamental prob-
lem with many applications in machine learning, computer
vision, network engineering, and data mining. Much interest
in matrix completion has been caused by recent theoretical
breakthroughs in compressed sensing [16, 17], as well as by
the celebrated Netflix challenge on practical prediction prob-
lems such as user ratings prediction [18, 19]. Many matrix
completion approaches assume that the underlying data ma-
trix is low-rank [16, 20, 21], as a simple way of constraining
the degrees of freedom in the model.



The typical pattern of missing articulatory data is quite
different from that in other domains such as user ratings in
recommender systems, which have a very high missing data
proportion. More importantly, articulatory measurements
have a sequential structure: We know the time ordering of the
recordings, and that the trajectories of articulators should vary
smoothly over time due to physical constraints. Therefore,
it is natural to combine matrix completion techniques with
temporal smoothness constraints for reconstructing missing
articulatory data. In the following, we present one such
approach and reconstruct all missing measurements simulta-
neously for each speaker (without adaptation), making use of
both fully observed and partially observed frames. In the re-
mainder of the paper, we introduce our approach and give an
optimization procedure, discuss closely related approaches,
and demonstrate our approach in terms of reconstruction error
and speech recognition using reconstructed measurements.

2. SMOOTHED LOW-RANK
MATRIX COMPLETION

In the following, we denote byX = [x1, . . . ,xN ] ∈ R
D×N

the articulatory measurements overN successive frames,
where each column of the matrix corresponds to theD = 16
dimensional articulatory measurements in a time frame. In
our case there are 100 frames per second (downsampled from
the original XRMB frame rate). LetM ∈ R

D×N be a binary
matrix withMij = 1 if Xij is observed and0 otherwise, for
i = 1, . . . , D, j = 1, . . . , N .

We denote by⊙ the element-wise multiplication between
two matrices, and by⊗ the Kronecker (“outer”) product. We
useMi (Mj) to indicate thei-th row (j-th column) of the ma-
trix M, diag (v) the diagonal matrix with elements of vector
v on the diagonal, and vec(V) the vector obtained by con-
catenating the columns of matrixV.

2.1. Objective function
In low-rank matrix completion, we approximate the under-
lying data matrixX as the multiplication of two matrices,
X ≈ UV

⊤, whereU ∈ R
D×k, V ∈ R

N×k, and k <

max{D, N} so that the approximation is low-rank. Equiva-
lently, each frame is approximated as a linear combination of
k basis vectors (columns ofU). On the one hand, we would
like the approximation to be as close to the observed entries
as possible, i.e.,

∣

∣Xij − (UV
⊤)ij

∣

∣ should be small ifXij is
not missing. On the other hand, we want the trajectory to
be smooth over time, i.e., the difference between successive
frames‖xi+1 − xi‖ should be small. This suggests a smooth-
ness penalty
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But sinceX is not fully observed, we shall instead impose the
smoothness penalty on the low-rank approximation. Combin-
ing the two intuitions gives the following objective function:

min
U,V

∥

∥M ⊙ (X − UV
⊤)

∥

∥

2

F
+ λ(‖U‖2

F + ‖V‖2

F )

+γ tr
(

UV
⊤
LVU

⊤
)

, (2)

where‖·‖F is the Frobenius norm andλ, γ > 0 are trade-
off parameters for theL2 and smoothness penalties respec-
tively. TheL2 term functions like a Gaussian prior onU and
V, and also helps avoid numerical instability as described in
Section 2.2. Once the factors(U,V) are obtained by solving
(2), the missing entries ofX are filled with the corresponding
entries ofUV

⊤.
Without the smoothness penalty (i.e.,γ = 0), the above

objective reduces to one that is widely used in the matrix com-
pletion and collaborative filtering literature and leads tothe
alternating least squares (ALS) minimization algorithm [18].
This approach has been very successful for recommender sys-
tems, where it is widely believed that there are only a few
latent factors that contribute to the user ratings.

2.2. Optimization
The objective function is convex and quadratic inU if V is
fixed and vice versa. This naturally leads to alternating opti-
mization on the two sets of variables. Compared to [18], the
added smoothness penalty term complicates the optimization,
but we still have a closed-form solution for each step.
U-step For fixedV, we compute the gradient of the objec-
tive (2) with respect toU and set it to zero to obtain the fol-
lowing linear system:

(M ⊙ (UV
⊤ − X))V + λU + γU(V⊤

LV) = 0.

We can further decompose the linear system into ak × k sys-
tem for each rowi of U:

U
i
V

⊤diag
(

M
i
)

V+λU
i+γU

i(V⊤
LV)=X diag

(

M
i
)

V,

so that each row ofU can be solved in closed form as

U
i = X diag

(

M
i
)

V(V⊤ diag
(

M
i
)

V+λI+γV
⊤
LV)−1.

V-step For fixedU, we compute the gradient of the objec-
tive (2) with respect toV and set it to zero to obtain the fol-
lowing linear system:

(M⊤ ⊙ (VU
⊤ − X

⊤))U + λV + γLVU
⊤
U = 0. (3)

Without the smoothness penalty term,V can be obtained sim-
ilarly to U by solving ak× k system for each row separately.
However, the smoothness regularization couples rows ofV

together, i.e., for each rowj, the above system reduces to

V
j
U

⊤ diag (Mj)U + λV
i + γL

j
V(U⊤

U)

= (Xj)
⊤ diag (Mj)U,



where the last term on the left contains all rows ofV. Notice
that (3) is essentially a Sylvester equation for which iterative
solvers exist [22]. Alternatively, we could rewrite it as

(K + λI + γL ⊗ (U⊤
U)) · vec(V⊤) = vec(U⊤(M ⊙ X)),

where

K =







U
⊤ diag (M1)U

. . .
U

⊤ diag (MN)U






.

Therefore,V can still be obtained in closed form by solving
the aboveNK ×NK sparse linear system thanks to the spar-
sity in L.

The U/V-step of the algorithm clearly finds the unique
minimum given the other set of parameters and thus decreases
the overall objective. All matrices to be inverted are positive
semidefinite and in fact positive definite ifλ > 0. Thus using
a small positiveλ improves numerical stability for each step.
As initialization, we fill the missing entries with zeros and
compute the truncated SVD to obtainU andV.

3. RELATED WORK

Roweis described his algorithm for reconstructing missing
data as a modified EM algorithm for PCA [14, page 49]. The
algorithm can be viewed as alternating optimization of the
following objective:

min
X,U,V

∥

∥X− UV
⊤

∥

∥

2

F
(4)

The algorithm consists of:

• generalized E-step: for fixed basisU, compute the la-
tent representationV using partially observed dimen-
sions for each frame, and fill in the missing entries of
X with corresponding entries inUV

⊤.

• M-step: for fixedV, compute the basis of the prin-
cipal subspaceU by solving a linear systemU =
XV(V⊤

V)−1

Our approach is similar to this one when we do not use any
regularization (λ = γ = 0), but there are differences in the
optimization parameters and error function: Our approach
does not optimize overX while Roweis’ does; and Roweis’
algorithm requires filling in the missing entries inX at every
M-step, whereas in our approach we only fill them in once at
the end. However, the two approaches ultimately aim to min-
imize the same approximation error only at observed entries
during training, and both fill in the missing entries with cor-
responding entries ofUV

⊤. In our experience, our optimiza-
tion empirically converges much faster, presumably because
we take into account missing entries in both steps. Finally,
we find the regularization in our approach to be important for
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Fig. 1. XRMB data characteristics. Left: missing data
patterns for 6 utterances (white/black pixels denote ob-
served/missing entries); rows correspond to the 16 articu-
latory dimensions and columns correspond to time. Right:
percentage of total variance contained in the firstk principal
components for several speakers’ articulatory measurements.

better reconstruction, whereas Roweis’ approach does not in-
clude regularization.

In Qin and Carreira-Perpiñán’s approach [15], each frame
of articulatory data (16 dimensions) is modeled with a Gauss-
ian mixture model (GMM), and the missing entries are re-
constructed as the mean of the conditional distribution of
missing entries given the observed entries (which is again
a Gaussian mixture). The GMM parameters are learned on
fully observed frames, so the potentially useful information in
the large amount of partially observed frames is unused. The
approach cannot succeed when few fully observed frames
are available, and this is the case for several speakers in
XRMB; for example, speaker JW29 has only810 fully ob-
served frames out of51 608 frames in our data set, which is
insufficient to learn an accurate Gaussian mixture model.

There are also several related matrix completion algo-
rithms from the machine learning literature. For example,
Candes and Tao [17] minimize the nuclear norm (sum of sin-
gular values) as a convex surrogate for rank. Jainet al. [21]
directly solve for a matrixX that agrees on observed entries
as much as possible, subject to the (nonconvex) constraint
rank(X) ≤ k. Keshavanet al. [20] proposed initializing
the solution using SVD after trimming (zeroing out rows and
columns with too few entries) the input matrix, followed by a
greedy minimization of the residual error.

The most important distinction between our approach and
the above related work is that we explicitly model the tem-
poral smoothness in our time series data whereas the above
approaches ignore sequential structure, and would produce
identical results even if the frames were shuffled.

4. EXPERIMENTAL RESULTS

4.1. Data
The XRMB database [10] consists of simultaneously recorded
speech and articulatory measurements from 47 American
English speakers (22 males, 25 females). Each speaker’s



Table 1. Missing data proportions for several speakers.

Speaker # Frames
Missing

Frames (%)
Missing

Entries (%)
JW11 54880 14.4 1.9
JW15 56849 78.0 10.7
JW29 51608 98.4 13.9
JW30 54809 20.6 3.4

recordings comprise approximately 20 minutes of read speech
including multi-sentence recordings, individual sentences,
isolated word sequences, and number sequences, as well as
non-speech oral motor tasks. We exclude utterances corre-
sponding to isolated words and oral motor tasks, leaving up
to 53 utterances per speaker. The utterance texts are identical
for all of the speakers; this is important in our evaluation,as
described below. The articulatory measurements are horizon-
tal and vertical displacements of 8 pellets on the speaker’s
tongue, lips, and jaw. We downsample the articulatory data
from an original rate of 145.6542 Hz to 100Hz to match the
frame rate of our acoustic features (mel-frequency cepstral
coefficients (MFCCs) computed every 10ms).

4.2. Validation of the low-rank assumption
We first select 6 speakers with< 1% missing entries and
< 5% missing frames, and plot the eigen-spectrum computed
by PCA on fully observed frames for each speaker in Fig-
ure 1 (right). It is clear that the eigen-spectrum decays quickly
such that the first few principal components contain most of
the total variance.

4.3. Reconstructing artificially blacked-out data
We then design a mechanism for testing our algorithm and
selecting hyperparameters (rankk, regularization parameters
λ and γ). We follow the previous work of [14] and [15]
and create artificially blacked-out entries that are held out for
training, and evaluate the reconstructions by computing the
errors at these ground-truth entries. We try to mimic the nat-
ural missing data pattern in XRMB by copying the patterns
from one speaker to another. For example, suppose speaker
JW29’s data contains missing entries; then we select a dif-
ferent speaker, JW13, whose articulatory measurements are
mostly complete, and remove entries from JW13’s data corre-
sponding to the ones missing from JW29, after linearly warp-
ing the two speakers’ data to the same length. After recon-
structing the artificially missing data of JW13, we evaluatethe
results by computing the root mean squared error (RMSE, in
millimeters) of the reconstructions at those entries that are ar-
tificially blacked-out for JW13. In the following, we transfer
the missing data patterns of source speakers{JW11, JW15,
JW29, JW30} to four target speakers{JW13, JW26, JW31,
JW45}. Table 1 shows the proportions of missing data for
the four source speakers. This problem setting is more chal-
lenging than that of [15], where several utterances from two

Table 2. Reconstruction errors (RMSE) obtained by different
algorithms for artificially blacked-out data.

Source Target Ref GMM
Ours

(λ = 0,
γ = 0)

Ours
(λ = 0)

Ours
(γ = 0) Ours

JW11

JW13 17.77 5.08 1.70 1.65 1.52 1.51
JW26 18.44 2.37 1.71 1.68 1.40 1.40
JW31 15.71 2.48 1.85 1.81 1.59 1.58
JW45 19.78 1.47 1.43 1.38 1.38 1.37

JW15

JW13 27.70 7.66 2.00 1.89 1.24 1.24
JW26 29.52 17.34 2.57 2.12 1.29 1.29
JW31 25.71 7.12 2.60 1.90 1.40 1.39
JW45 32.05 13.41 3.10 1.83 1.37 1.36

JW29

JW13 25.51 17.25 1.97 1.81 1.84 1.63
JW26 23.13 13.21 2.10 1.99 1.33 1.32
JW31 21.82 14.81 1.42 1.42 1.38 1.19
JW45 24.95 13.67 1.88 1.38 1.45 1.20

JW30

JW13 21.65 2.59 6.51 1.69 6.38 1.69
JW26 22.42 4.83 6.64 2.13 6.51 2.10
JW31 19.72 7.14 5.87 1.85 5.76 1.83
JW45 25.70 2.90 1.89 1.80 1.36 1.35

speakers with low missing data proportions were selected and
one pellet (2 out of 16 dimensions) at a time was blacked out
and reconstructed. In practice, the patterns of missing data
are very different between the pellets and there is much more
missing data for most speakers.

We reconstruct all utterances for each target speaker
at once, so all utterances share the same basisU, while
the smoothness penalty is only imposed within each ut-
terance. We do not run our algorithm on each utterance
separately as pellets are sometimes missing for entire utter-
ances, so there is insufficient information to reconstruct these
dimensions using a low-rank matrix factorization model.
We select 50% of the blacked-out entries as a tuning set
for hyper-parameter selection and the other 50% for test-
ing. Hyper-parameter selection is done via grid search
for rank k in {2, 4, 6, 8, 10, 12, 14, 16} and λ, γ in
{0, 10−2, 10−1, 1, 10, 102} for our algorithm. For compar-
ison, we have also implemented the Gaussian mixture model
(GMM) of [15]. For the GMM algorithm we tune the number
of Gaussian componentsM in {1, 2, 4, 8, 16, 32, 64} and
train with EM.

The test set RMSEs obtained for different (source, tar-
get) pairs are shown in Table 2. Results are also provided
for special cases of our algorithm: no regularization at all
(λ = 0, γ = 0, roughly corresponding to Roweis’ approach),
no L2 regularization (λ = 0), and no smoothness regulariza-
tion (γ = 0). As a reference, we show the RMSE obtained
by filling all missing entries with zeros, denoted Ref (this is
in fact the initialization for our algorithm).

From the results it is clear that regularization (L2 or
smoothness) improves performance, and the two regulariza-
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Fig. 2. Sample reconstructions of the horizontal (left) and
vertical (right) coordinates of the mandibular and mid-tongue
pellets. The GMM-based reconstructions are far beyond the
range of the pellet locations and are not shown.

tions are complementary. When no regularization is used, the
best reconstruction is obtained at a relatively low rank (4 or 6,
as Roweis suggested). With regularization, even better recon-
struction can be obtained by our algorithm at a higher rank.
We also note that GMMs work well when the missing propor-
tion is very low (e.g., when JW11 is the source speaker), in
which case the optimal number of Gaussian componentsM

is larger. But when most frames are missing, discarding those
frames entirely loses too much information, and the GMM
approach tends to select very smallM and perform poorly.

Figure 2 shows sample reconstructions of the mandibular
(MNm) and mid-tongue (T3) pellets for several utterances.
In this case the reconstructions were obtained with the opti-
mal hyperparameters (based on overall RMSE) when we re-
construct JW45’s data based on the missing data patterns of
JW29. In this experiment, only 1.6% of the total frames in-
clude the mandibular pellet, and the utterances shown in the
figure have this pellet missing entirely; the algorithms must
infer the missing entries from the few observations of this pel-
let and information from other pellets. In this very challeng-
ing condition, we are able to reconstruct well the rapidly os-

Table 3. Phonetic error rates (PER) of recognition using the
baseline features and concatenations of the baseline features
with reconstructed articulatory measurements.

Method PER (%)
Baseline (MFCCs only) 31.1
GMM 22.0
Ours (λ = γ = 0) 20.4
Ours 20.0

cillating trajectories with low-rank matrix factorization, while
the regularized version improves over the unregularized ver-
sion. For the mid-tongue pellet, which is missing for only a
short duration, the unregularized algorithm works better,in-
dicating that the smoothness regularization selected globally
for all pellets is somewhat too strong for this particular pel-
let. However, T3 is somewhat of an outlier: looking at all
of the pellets individually, it is almost always the case that
our algorithm with some non-zero regularization outperforms
the unregularized version, and for some pellets the smoothing
and/or L2 regularization makes a very large difference.

4.4. Phonetic recognition with reconstructed data
Next, we consider what effect the differences in reconstruc-
tion performance may have on downstream tasks of interest.
Many have found that appending articulatory measurements
to acoustic features improves speech recognition performance
(e.g., [4]), and we test our reconstructions on this task.

First, we select the optimal hyperparameters for each
algorithm based on the average performance on all of the
above (source, target) pairs and use them to reconstruct all
of the data in our XRMB data set. There is a wide range of
hyper-parameter combinations at which our algorithm per-
forms similarly well, but we use (k = 6, λ = 1, γ = 1) for
our algorithm with full regularization andk = 4 for the un-
regularized (λ = γ = 0) special case. Since the performance
of the GMM approach varies a great deal depending on the
missing data proportion, we setM for each speaker to match
the source speaker from{JW11, JW15, JW29, JW30} with
the closest missing data proportion.

We use disjoint sets of 14/9/9 speakers for recognizer
training/tuning/testing. The recognizer is a basic 3-state left-
to-right monophone HMM-based model, where each state
has a GMM observation model with 32 components. The
baseline acoustic features are 13 MFCCs appended with first
and second derivatives. The articulatory measurements are
concatenated over a 7-frame window around each frame, and
their dimensionality is then reduced with PCA. Table 3 re-
ports the phone error rates (PER) obtained on the test speakers
when using only the baseline MFCCs and when appending
with reconstructed articulatory measurements produced by
different methods. As expected, appending the articulatory
data always improves recognition performance over the base-
line (up to 11% absolute and more than 33% relative). Our



smoothed low-rank reconstruction algorithm performs much
better than the GMM approach and slightly better than the
unregularized special case. The difference in performance
between our algorithm and its unregularized version is sig-
nificant at a level ofp < 0.01 according to a Matched Pair
Sentence Segment (Word Error) test [23].

5. FUTURE DIRECTIONS

We have proposed a simple algorithm for reconstructing miss-
ing articulatory measurements based on low-rank matrix com-
pletion and temporal smoothness regularization. It achieves
good reconstruction error compared to previous approaches,
and the reconstructed articulatory data improves the perfor-
mance of a phonetic speech recognizer.

There are several natural directions for future work. First,
the globally linear assumption underlying low-rank matrix
completion might be unrealistic, and one can instead model
the data as approximately lying on the union of multiple sub-
spaces [14], or on a low-dimensional nonlinear manifold [24,
25]. Second, we have not used the simultaneously recorded
acoustic data that is available in the XRMB data, which con-
tains complementary information that may be useful for re-
construction. Third, our smoothness penalty can be consid-
ered to be a simple dynamic model that encourages nearby
frames to be similar, and it is possible to extend it to richerdy-
namic models and to pellet-specific smoothing. Finally, our
approach does not handle the (infrequent) case of a pellet that
is missing from most or all of a speaker’s data; for this pur-
pose adaptation approaches can be considered for applying
one speaker’s reconstruction model to another speaker [26].
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