Dense Subsets of Pseudorandom Sets

O. Reingold1 \hspace{1cm} L. Trevisan2 \hspace{1cm} M. Tulsiani2 \hspace{1cm} S. Vadhan3

1Weizmann Institute

2UC Berkeley

3Harvard University
Theorem (Szemerédi 1975)

Any set of A of δN integers in $\{1, \ldots, N\}$ contains a length k-AP if N is large enough.
Theorem (Szemerédi 1975)

Any set of A of δN integers in $\{1, \ldots, N\}$ contains a length k-AP if N is large enough.

Theorem (Green-Tao 2004)

The set of primes in $\{1, \ldots, N\}$ contains a length k-AP if N is large enough.
Progressions in Subsets of Integers

Theorem (Szemeredi 1975)

Any set of A of δN integers in $\{1, \ldots, N\}$ contains a length k-AP if N is large enough.

Theorem (Green-Tao 2004)

The set of primes in $\{1, \ldots, N\}$ contains a length k-AP if N is large enough.

Green-Tao showed that a property of dense subsets of the integers (having progressions) also holds for the primes.
Thm 1 There is a pseudorandom set $R \subseteq \{1, \ldots, N\}$ such that primes have constant density in R.
Thm 1 There is a pseudorandom set $R \subseteq \{1, \ldots, N\}$ such that primes have constant density in R.
The Green-Tao Proof

Thm 1 There is a pseudorandom set $R \subseteq \{1, \ldots, N\}$ such that primes have constant density in R.

Thm 2 If R is a pseudorandom subset of $\{1, \ldots, N\}$ and if D is a dense subset i.e. $|D| \geq \delta R$, then D contains a length k-AP.

![Diagram showing $R \subseteq \{1, \ldots, N\}$ with $2, 3, 5, \ldots$ contained within R.]
The Green-Tao Proof

Thm 1 There is a pseudorandom set $R \subseteq \{1, \ldots, N\}$ such that primes have constant density in R.

Thm 2 If R is a pseudorandom subset of $\{1, \ldots, N\}$ and if D is a dense subset i.e. $|D| \geq \delta R$, then D contains a length k-AP.
Proof of Theorem 2

If D is a dense in a pseudorandom set R ($|D| \geq \delta |R|$), then there is a dense model set M ($|M| \geq \delta N$) indistinguishable from D.

“A dense subset of a pseudorandom set has a dense model.” Can we prove this in general?
Proof of Theorem 2

- If D is a dense in a pseudorandom set R ($|D| \geq \delta |R|$), then there is a dense model set M ($|M| \geq \delta N$) indistinguishable from D.

- M must contain length k-APs (Szemeredi). So does D.
If D is a dense in a pseudorandom set R ($|D| \geq \delta|R|$), then there is a dense model set M ($|M| \geq \delta N$) indistinguishable from D.

M must contain length k-APs (Szemeredi). So does D.

“A dense subset of a pseudorandom set has a dense model.” Can we prove this in general?
A finite universe X (e.g. $\{1, \ldots, N\}$, $\{0, 1\}^n$).

A family of distinguishers $\mathcal{F} = \{f : X \rightarrow \{0, 1\}\}$ (e.g. Circuits of size s).
Abstracting out...

- A finite universe X (e.g. $\{1, \ldots, N\}, \{0, 1\}^n$).
- A family of distinguishers $\mathcal{F} = \{ f : X \rightarrow \{0, 1\} \}$ (e.g. Circuits of size s).
- Distributions A and B are ϵ-indistinguishable by \mathcal{F} if
 \[\forall f \in \mathcal{F} \left| \mathbb{E}_f(A) - \mathbb{E}_f(B) \right| \leq \epsilon \]

 R is ϵ-pseudorandom if R is ϵ-indistinguishable from U_X (uniform on X).
A finite universe X (e.g. $\{1, \ldots, N\}, \{0, 1\}^n$).

A family of distinguishers $\mathcal{F} = \{f : X \rightarrow \{0, 1\}\}$ (e.g. Circuits of size s).

Distributions A and B are ϵ-indistinguishable by \mathcal{F} if

$$\forall f \in \mathcal{F} \, |\mathbb{E}f(A) - \mathbb{E}f(B)| \leq \epsilon$$

R is ϵ-pseudorandom if R is ϵ-indistinguishable from U_X (uniform on X).

A is δ-dense in B if

$$\mathbb{P}(A = x) \leq \frac{1}{\delta} \mathbb{P}(B = x)$$

(e.g. $B = U_X$, A uniform on $\delta|X|$ elements $\Rightarrow \mathbb{P}(A = x) = \frac{1}{\delta|X|}$).
What should a “Dense Model Theorem” be?

\[D \text{ is } \delta\text{-dense in } R, \ R \text{ is } \epsilon\text{-pseudorandom w.r.t } \mathcal{F}. \]

\[\Downarrow \]

There is \(M \) \(\delta\text{-dense in } U_X \), \(\epsilon\text{-indistinguishable from } D \) by \(\mathcal{F} \).
What should a “Dense Model Theorem” be?

\[D \text{ is } \delta\text{-dense in } R, \text{ } R \text{ is } \epsilon\text{-pseudorandom w.r.t } \mathcal{F}. \]
\[\Downarrow \]
\[\text{There is } M \text{ } \delta\text{-dense in } U_X, \text{ } \epsilon\text{-indistinguishable from } D \text{ by } \mathcal{F}. \]

equivalently,

\[\text{Every } M \text{ } \delta\text{-dense in } U_X \text{ is } \epsilon\text{-distinguishable from } D \text{ by } \mathcal{F} \]
\[\Downarrow \]
\[R \text{ is } \epsilon\text{-distinguishable from } U_X \text{ by } \mathcal{F}. \]
What should a “Dense Model Theorem” be?

- D is δ-dense in R, R is ϵ'-pseudorandom w.r.t \mathcal{F}'.
- There is M δ-dense in U_X, ϵ-indistinguishable from D by \mathcal{F}.

Equivalently,

- Every M δ-dense in U_X is ϵ-distinguishable from D by \mathcal{F}

 \Downarrow

- R is ϵ'-distinguishable from U_X by \mathcal{F}'.

Relation between (ϵ, ϵ') and $(\mathcal{F}, \mathcal{F}')$ depends on the reduction.
The Results

Theorem (Tao-Ziegler 2006)

Suppose for all \(M \) \(\delta \)-dense in \(U_X \), some function in \(\mathcal{F} \) \(\epsilon \)-distinguishes \(M \) and \(D \). Then, there is a function \(h : X \rightarrow \{0, 1\}^n \) of the form

\[
h(x) = g(f_1(x), \ldots, f_k(x)) \quad f_i \in \mathcal{F}, \quad k = \text{poly}(1/\epsilon, 1/\delta)
\]

s.t.

\[
|\mathbb{E} h(R) - \mathbb{E} h(U_X)| \geq \text{poly}(\epsilon, \delta)
\]
The Results

Theorem (Tao-Ziegler 2006)

Suppose for all M_δ-dense in U_X, some function in \mathcal{F}_ϵ-distinguishes M and D. Then, there is a function $h : X \to \{0, 1\}^n$ of the form

$$h(x) = g(f_1(x), \ldots, f_k(x)) \quad f_i \in \mathcal{F}, \quad k = \text{poly}(1/\epsilon, 1/\delta) \quad \exp(k) \text{ complexity}$$

s.t.

$$|\mathbb{E}h(R) - \mathbb{E}h(U_X)| \geq \text{poly}(\epsilon, \delta)$$
The Results

Theorem (Tao-Ziegler 2006)

Suppose for all M δ-dense in U_X, some function in \mathcal{F} ϵ-distinguishes M and D. Then, there is a function $h : X \rightarrow \{0, 1\}^n$ of the form

$$h(x) = g(f_1(x), \ldots, f_k(x)) \quad f_i \in \mathcal{F}, \quad k = \text{poly}(1/\epsilon, 1/\delta)$$

exp(k) complexity

s.t.

$$|\mathbb{E}h(R) - \mathbb{E}h(U_X)| \geq \text{poly}(\epsilon, \delta)$$

Theorem (RTTV 2007)

Suppose for all M δ-dense in U_X, some function in \mathcal{F} ϵ-distinguishes M and D. Then, there is a function $h : X \rightarrow \{0, 1\}^n$ of the form

$$h(x) = g(f_1(x), \ldots, f_k(x)) \quad f_i \in \mathcal{F}, \quad k = \text{poly}(1/\epsilon, \log 1/\delta)$$

O(k) complexity

s.t.

$$|\mathbb{E}h(R) - \mathbb{E}h(U_X)| \geq \Omega(\epsilon \delta)$$
The Proof

- Switching the quantifiers

\[\forall M \ \exists f \quad E_f(D) - E_f(M) \geq \epsilon \]
The Proof

Switching the quantifiers

$$\forall M \ \exists f \ \mathbb{E}f(D) - \mathbb{E}f(M) \geq \epsilon$$

$$\implies \exists \bar{f} \ \forall M \ \mathbb{E}\bar{f}(D) - \mathbb{E}\bar{f}(M) \geq \epsilon$$

where $\bar{f} : X \to [0, 1]$ is a convex combination of functions from \mathcal{F}.
Switching the quantifiers

\[\forall M \ \exists f \ \mathbb{E}f(D) - \mathbb{E}f(M) \geq \epsilon \]

\[\implies \exists \bar{f} \ \forall M \ \mathbb{E}\bar{f}(D) - \mathbb{E}\bar{f}(M) \geq \epsilon \]

where \(\bar{f} : X \to [0, 1] \) is a convex combination of functions from \(\mathcal{F} \).

Proof: min-max.
The Proof

- **Switching the quantifiers**

\[
\forall M \exists f \quad \mathbb{E}f(D) - \mathbb{E}f(M) \geq \epsilon
\]

\[\implies \exists \bar{f} \quad \forall M \quad \mathbb{E}\bar{f}(D) - \mathbb{E}\bar{f}(M) \geq \epsilon\]

where \(\bar{f} : X \to [0, 1]\) is a convex combination of functions from \(\mathcal{F}\).

Proof: min-max.

- **Getting a threshold distinguisher**

\[\mathbb{E}\bar{f}(D) - \mathbb{E}\bar{f}(M) \geq \epsilon\]

\[\implies \exists t \in (0, 1) \quad \mathbb{P}(\bar{f}(D) \geq t) - \mathbb{P}(\bar{f}(M) \geq t) \geq \epsilon\]
The Proof

- **Switching the quantifiers**

 \[\forall M \; \exists f \; \mathbb{E}f(D) - \mathbb{E}f(M) \geq \epsilon \]

 \[\implies \exists \bar{f} \; \forall M \; \mathbb{E}\bar{f}(D) - \mathbb{E}\bar{f}(M) \geq \epsilon \]

 where \(\bar{f} : X \rightarrow [0, 1] \) is a convex combination of functions from \(\mathcal{F} \).

 Proof: min-max.

- **Getting a threshold distinguisher**

 \[\mathbb{E}\bar{f}(D) - \mathbb{E}\bar{f}(M) \geq \epsilon \]

 \[\implies \exists t \in (0, 1) \quad \mathbb{P}(\bar{f}(D) \geq t) - \mathbb{P}(\bar{f}(M) \geq t) \geq \epsilon \]

 Proof: \(\mathbb{E}Z \) is the average of \(\mathbb{P}(Z \geq t) \) over \(t \in (0, 1) \).
The Proof

- Switching the quantifiers

\[
\forall M \ \exists f \ \mathbb{E}f(D) - \mathbb{E}f(M) \geq \epsilon
\]

\[
\implies \ \exists \tilde{f} \ \forall M \ \mathbb{E}\tilde{f}(D) - \mathbb{E}\tilde{f}(M) \geq \epsilon
\]

where \(\tilde{f} : X \rightarrow [0, 1] \) is a convex combination of functions from \(\mathcal{F} \).

Proof: min-max.

- Getting a threshold distinguisher

\[
\mathbb{E}\tilde{f}(D) - \mathbb{E}\tilde{f}(M) \geq \epsilon
\]

\[
\implies \ \exists \ t \in (0, 1) \ \mathbb{P}(\tilde{f}(D) \geq t) - \mathbb{P}(\tilde{f}(M) \geq t) \geq \epsilon
\]

Proof: \(\mathbb{E}Z \) is the average of \(\mathbb{P}(Z \geq t) \) over \(t \in (0, 1) \).

In fact,

\[
\exists t \ \mathbb{P}(\tilde{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\tilde{f}(M) \geq t) \geq \epsilon/2
\]
Using the distinguisher for R
Using the distinguisher for R

Let S be the set of $\delta|X|$ elements where \bar{f} is maximized.

$$\mathbb{P}(\bar{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_S) \geq t) \geq \epsilon/2$$

$$\implies \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2$$
The Proof (contd...)

- **Using the distinguisher for** R

Let S be the set of $\delta |X|$ elements where \bar{f} is maximized.

\[
\mathbb{P}(\bar{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_S) \geq t) \geq \epsilon/2
\]

\[
\implies \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2
\]
Using the distinguisher for R

Let S be the set of $\delta|X|$ elements where \bar{f} is maximized.

$$\mathbb{P}(\bar{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_S) \geq t) \geq \epsilon/2$$

$$\Rightarrow \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2$$
Using the distinguisher for R

Let S be the set of $\delta|X|$ elements where \bar{f} is maximized.

\[
\mathbb{P}(\bar{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_S) \geq t) \geq \epsilon/2
\]

\[
\Rightarrow \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2
\]
Using the distinguisher for R

Let S be the set of $\delta|X|$ elements where \bar{f} is maximized.

\[\mathbb{P}(\bar{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_S) \geq t) \geq \epsilon/2 \]

\[\Rightarrow \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2 \]
Using the distinguisher for R

Let S be the set of $\delta|X|$ elements where \bar{f} is maximized.

\[
\mathbb{P}(\bar{f}(D) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_S) \geq t) \geq \epsilon/2
\]

\[
\implies \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon \delta/2
\]
The Proof (almost done now...)

- Getting few functions (Chernoff bound)

 \(\bar{f} \) is a distribution over functions such that

 \[
 \mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2
 \]

 Sample \(k = \text{poly}(1/\epsilon, \log 1/\delta) \) functions \(f_1, \ldots, f_k \)

 \[
 \mathbb{P} \left(\frac{\sum f_i(R)}{k} \geq t + \epsilon/4 \right) - \mathbb{P} \left(\frac{\sum f_i(U_X)}{k} \geq t + \epsilon/4 \right) \geq \epsilon\delta/4
 \]
The Proof (almost done now...)

- **Getting few functions (Chernoff bound)**

 \bar{f} is a distribution over functions such that

 $$\mathbb{P}(\bar{f}(R) \geq t + \epsilon/2) - \mathbb{P}(\bar{f}(U_X) \geq t) \geq \epsilon\delta/2$$

 Sample $k = \text{poly}(1/\epsilon, \log 1/\delta)$ functions f_1, \ldots, f_k

 $$\mathbb{P} \left(\frac{\sum f_i(R)}{k} \geq t + \epsilon/4 \right) - \mathbb{P} \left(\frac{\sum f_i(U_X)}{k} \geq t + \epsilon/4 \right) \geq \epsilon\delta/4$$

- Note that we combine f_1, \ldots, f_k only as a linear threshold function. **Complexity = $O(k)$**.
The Green-Tao proof (Iterative Partitioning)

- Partition X into pieces.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Green-Tao proof (Iterative Partitioning)

1. Partition X into pieces.

2. To get M, pick whole pieces according to density of D in the piece.
Partition X into pieces.

To get M, pick whole pieces according to density of D in the piece.

If D is distinguishable from M, then can refine partition.

Use pseudorandomness of R to bound number of steps.
Smuggling techniques in the other direction

- We adapt the Green-Tao proof technique to prove Impagliazzo’s hardcore lemma:

 If function $f : X \rightarrow \{0, 1\}$ is hard to compute correctly on more than $1 - \delta$ fraction of inputs from X then there is a set $H \subseteq X$, $|H| \geq \delta|X|$ such that f is “very hard” to compute on H.

Iterative partitioning gives a circuit for computing H.

We adapt the Green-Tao proof technique to prove Impagliazzo's hardcore lemma:

If function $f : X \rightarrow \{0, 1\}$ is hard to compute correctly on more than $1 - \delta$ fraction of inputs from X then there is a set $H \subseteq X$, $|H| \geq \delta|X|$ such that f is “very hard” to compute on H.

Iterative partitioning gives a circuit for computing H.
Further questions

- All this is good in theory... but how can it be applied?
Further questions

- All this is good in theory... but how can it be applied?
 - Pseudoentropy \Leftrightarrow density in a pseudorandom distribution.
Further questions

- All this is good in theory... but how can it be applied?
 - Pseudoentropy \iff density in a pseudorandom distribution.
 - New proof of regularity lemma for subgraphs of expanders.
Further questions

- All this is good in theory... but how can it be applied?

 - Pseudoentropy ⇔ density in a pseudorandom distribution.

 - New proof of regularity lemma for subgraphs of expanders.
 - Uniform distribution on edges of the complete graph.
 - Expanders are pseudorandom w.r.t. cuts.

- And?

- Other applications of “ergodic arguments” in complexity theory?
Further questions

- All this is good in theory... but how can it be applied?
 - Pseudoentropy \Leftrightarrow density in a pseudorandom distribution.
 - New proof of regularity lemma for subgraphs of expanders.
 - Uniform distribution on edges of the complete graph.
 - Expanders are pseudorandom w.r.t. cuts.
 - And?
Further questions

All this is good in theory... but how can it be applied?

- Pseudoentropy \Leftrightarrow density in a pseudorandom distribution.
- New proof of regularity lemma for subgraphs of expanders.
 - Uniform distribution on edges of the complete graph.
 - Expanders are pseudorandom w.r.t. cuts.

And?

Other applications of “ergodic arguments” in complexity theory?