A Characterization of Strong Approximation Resistance

Madhur Tulsiani
TTI Chicago

Joint work with
Subhash Khot and Pratik Worah

Algorithm

zero-sum game

Hardness

value = 0
Max-k-CSP

- Boolean variables, \(m \) constraints (each on \(k \) variables)
- Satisfy as many as possible.

Max-3-SAT

\[x_1 \lor x_2 \lor x_3 \lor \ldots \]

Max-Cut

\[x_1 x_2 x_3 x_4 \ldots \]
Max-k-CSP

- n Boolean variables, m constraints (each on k variables)
Max-k-CSP

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

\[
x_1 \lor x_{22} \lor \overline{x}_{19} \\
x_3 \lor \overline{x}_9 \lor x_{23} \\
x_5 \lor \overline{x}_7 \lor \overline{x}_9 \\
\vdots
\]

One of the most fundamental classes of optimization problems.
Max-k-CSP

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

\[
x_1 \lor x_{22} \lor \overline{x}_{19}
\]
\[
x_3 \lor \overline{x}_9 \lor x_{23}
\]
\[
x_5 \lor \overline{x}_7 \lor \overline{x}_9
\]
\[\vdots\]

Max-Cut

[Diagram of a graph with vertices labeled $x_1, x_2, x_3, x_4, x_5, x_6, x_7$ connected by edges.]
Max-k-CSP

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

\[
\begin{align*}
x_1 & \lor x_2 \lor \overline{x}_{19} \\
x_3 & \lor \overline{x}_9 \lor x_{23} \\
x_5 & \lor \overline{x}_7 \lor \overline{x}_9 \\
& \vdots
\end{align*}
\]

Max-Cut

\[
\begin{align*}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7
\end{align*}
\]

$\begin{align*}
x_1 & \not= x_2 \\
x_2 & \not= x_5 \\
x_3 & \not= x_4 \\
& \vdots
\end{align*}$
Max-k-CSP

- n Boolean variables, m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

\[
\begin{align*}
 x_1 & \lor x_{22} & \lor \bar{x}_{19} \\
 x_3 & \lor \bar{x}_9 & \lor x_{23} \\
 x_5 & \lor \bar{x}_7 & \lor \bar{x}_9 \\
 \vdots
\end{align*}
\]

Max-Cut

\[
\begin{align*}
 x_1 & \neq x_2 \\
 x_2 & \neq x_5 \\
 x_3 & \neq x_4 \\
 \vdots
\end{align*}
\]

One of the most fundamental classes of optimization problems.
Max-k-CSP

Max-3-XOR: Linear equations modulo 2 (in ±1 variables)
Max-k-CSP

Max-3-XOR: Linear equations modulo 2 (in ±1 variables)

\[
\begin{align*}
 x_5 \cdot x_9 \cdot x_{16} &= 1 \\
 x_6 \cdot x_{12} \cdot x_{22} &= -1 \\
 x_7 \cdot x_8 \cdot x_{15} &= -1 \\
 \vdots
\end{align*}
\]
Max-k-CSP

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

\[
\begin{align*}
 x_5 \cdot x_9 \cdot x_{16} &= 1 \\
 x_6 \cdot x_{12} \cdot x_{22} &= -1 \\
 x_7 \cdot x_8 \cdot x_{15} &= -1 \\
 \vdots
\end{align*}
\]

\[
\begin{align*}
 x_5 \cdot x_9 \cdot x_{16} &= 1 \\
 x_6 \cdot (-x_{12}) \cdot x_{22} &= 1 \\
 x_7 \cdot x_8 \cdot (-x_{15}) &= 1 \\
 \vdots
\end{align*}
\]
Max-k-CSP

Max-3-XOR: Linear equations modulo 2 (in ± 1 variables)

\[
\begin{align*}
 x_5 \cdot x_9 \cdot x_{16} &= 1 \\
 x_6 \cdot x_{12} \cdot x_{22} &= -1 \\
 x_7 \cdot x_8 \cdot x_{15} &= -1 \\
 &\vdots
\end{align*}
\]

Max-k-CSP(f): Given predicate $f: \{-1, 1\}^k \rightarrow \{0, 1\}$. Each constraint is f applied to some k (possibly negated) variables.
Max-k-CSP

Max-3-XOR: Linear equations modulo 2 (in \(\pm 1\) variables)

\[
\begin{align*}
&x_5 \cdot x_9 \cdot x_{16} = 1 \\
&x_6 \cdot x_{12} \cdot x_{22} = -1 \\
&x_7 \cdot x_8 \cdot x_{15} = -1 \\
&\vdots
\end{align*}
\]

Max-k-CSP\((f)\): Given predicate \(f : \{-1, 1\}^k \rightarrow \{0, 1\}\). Each constraint is \(f\) applied to some \(k\) (possibly negated) variables.

\[
C_i \equiv f (x_{i_1} \cdot b_1^{(i)}, \ldots, x_{i_k} \cdot b_k^{(i)})
\]
Approximating Max-k-CSP

Relax the problem of finding maximum fraction of constraints satisfiable.
Approximating Max-k-CSP

Relax the problem of finding \textbf{maximum fraction} of constraints satisfiable.

\[
\begin{align*}
\leq \theta & \quad \leq \theta \\
\quad & \quad > \gamma \cdot \theta \\
(\gamma \geq 1) & \quad > \gamma \cdot \theta
\end{align*}
\]
Approximating Max-k-CSP

Relax the problem of finding maximum fraction of constraints satisfiable.

- Can solve for all θ \implies Can approximate within factor γ. (\(\gamma \geq 1\))
Approximating Max-k-CSP

Relax the problem of finding maximum fraction of constraints satisfiable.

\[\leq \theta \quad \text{and} \quad > \gamma \cdot \theta \quad (\gamma \geq 1) \]

- Can solve for all \(\theta \) \(\implies \) Can approximate within factor \(\gamma \).
- Hard to solve for some \(\theta \) \(\implies \) Hard to approximate within factor \(\gamma \).
- Let $\rho(f) = \mathbb{E}_x[f(x)]$ be the fraction of constraints satisfied by a random assignment.
Approximation Resistance

- Let $\rho(f) = \mathbb{E}_x[f(x)]$ be the fraction of constraints satisfied by a random assignment.

- $\rho(3\text{-SAT}) = 7/8$, $\rho(3\text{-XOR}) = 1/2$
Approximation Resistance

- Let $\rho(f) = \mathbb{E}_x[f(x)]$ be the fraction of constraints satisfied by a random assignment.

- $\rho(3\text{-SAT}) = 7/8$, $\rho(3\text{-XOR}) = 1/2$

- f is approximation resistant if it is (NP/UG-) hard to distinguish

\[
\leq \rho(f) + \epsilon \quad \quad \geq 1 - \epsilon
\]
Approximation Resistance

- Let $\rho(f) = \mathbb{E}_x[f(x)]$ be the fraction of constraints satisfied by a random assignment.

- $\rho(3\text{-SAT}) = 7/8$, $\rho(3\text{-XOR}) = 1/2$

- f is **approximation resistant** if it is (NP/UG-) hard to distinguish

\[
\leq \rho(f) + \epsilon \quad \geq 1 - \epsilon
\]

- Captures the notion of when is it hard to do better than a random assignment.
(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.
(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.
(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.

- [ST 06*, Chan 12]: If $f^{-1}(1)$ corresponds to a “nice” subspace of \mathbb{F}_2^k (AND of XORs).
(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.

- [ST 06*, Chan 12]: If \(f^{-1}(1) \) corresponds to a "nice" subspace of \(\mathbb{F}_2^k \) (AND of XORs). (Uniform distribution on \(f^{-1}(1) \) is a balanced and pairwise independent distribution on \(\{-1, 1\}^k \))
(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.

- [ST 06*, Chan 12]: If $f^{-1}(1)$ corresponds to a “nice” subspace of \mathbb{F}_2^k (AND of XORs). (Uniform distribution on $f^{-1}(1)$ is a balanced and pairwise independent distribution on $\{-1,1\}^k$)

- [AM 09*]: If there exists any balanced and pairwise independent distribution on $\{-1,1\}^k$ supported on $f^{-1}(1)$.
(Sufficient) Conditions for Approximation Resistance

- [Håstad 01]: k-SAT and k-XOR are approximation resistant.

- [Hast 05]: Out of 400 predicates on 4 variables, classified 79 to be approximation resistant and 275 to be not so.

- [ST 06∗, Chan 12]: If $f^{-1}(1)$ corresponds to a “nice” subspace of \mathbb{F}_2^k (AND of XORs). (Uniform distribution on $f^{-1}(1)$ is a balanced and pairwise independent distribution on $\{-1,1\}^k$)

- [AM 09∗]: If there exists any balanced and pairwise independent distribution on $\{-1,1\}^k$ supported on $f^{-1}(1)$.

- [AK 13∗]: Characterization when f is even and instance is required to be k-partite.
- f is approximation resistant if it is (NP/UG-) hard to distinguish

\[\leq \rho(f) + \epsilon \quad \geq 1 - \epsilon \]

- When is hard to do anything different from a random assignment.
- Equivalent to approximation resistance for odd predicates. Almost all previous results prove strong approximation resistance.
- f is approximation resistant if it is (NP/UG-) hard to distinguish

\[\leq \rho(f) + \epsilon \quad \text{and} \quad \geq 1 - \epsilon \]

- f is strongly approximation resistant if it is (NP/UG-) hard to distinguish

\[[\rho(f) - \epsilon, \rho(f) + \epsilon] \quad \text{and} \quad \geq 1 - \epsilon \]
Strong Approximation Resistance

- f is approximation resistant if it is (NP/UG-) hard to distinguish
 \[\leq \rho(f) + \epsilon \quad \geq 1 - \epsilon \]

- f is strongly approximation resistant if it is (NP/UG-) hard to distinguish
 \[[\rho(f) - \epsilon, \rho(f) + \epsilon] \quad \geq 1 - \epsilon \]

- When is it hard to do anything different from a random assignment.
Strong Approximation Resistance

- f is approximation resistant if it is (NP/UG-) hard to distinguish

$$\leq \rho(f) + \epsilon \quad \geq 1 - \epsilon$$

- f is strongly approximation resistant if it is (NP/UG-) hard to distinguish

$$\left[\rho(f) - \epsilon, \rho(f) + \epsilon \right] \quad \geq 1 - \epsilon$$

- When is it hard to do anything different from a random assignment.

- Equivalent to approximation resistance for odd predicates. Almost all previous results prove strong approximation resistance.
A partial characterization by [Rag 08] and [RS 09]

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.
A partial characterization by [Rag 08] and [RS 09]

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.

- [RS 09]: $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.
A partial characterization by [Rag 08] and [RS 09]

- **[Rag 08*]**: \(f \) is approximation resistant iff \(\forall \epsilon > 0 \) there exists a \(1 - \epsilon \) vs. \(\rho(f) + \epsilon \) integrality gap instance for a certain SDP.

- **[RS 09]**: \(1 - \epsilon \) vs. \(\rho(f) + \epsilon \) integrality gap instance for above SDP needs to have size at most \(\exp(\exp(1/\epsilon)) \).

- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.
A partial characterization by [Rag 08] and [RS 09]

- [Rag 08*]: \(f \) is approximation resistant iff \(\forall \epsilon > 0 \) there exists a \(1 - \epsilon \) vs. \(\rho(f) + \epsilon \) integrality gap instance for a certain SDP.

- [RS 09]: \(1 - \epsilon \) vs. \(\rho(f) + \epsilon \) integrality gap instance for above SDP needs to have size at most \(\exp(\exp(1/\epsilon)) \).

- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.

- But what properties of \(f \) give rise to gap instances?
A partial characterization by [Rag 08] and [RS 09]

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.

- [RS 09]: $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.

- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.

- But what properties of f give rise to gap instances?

- Is it just properties of f or is the topology of the instance also important?
A partial characterization by [Rag 08] and [RS 09]

- [Rag 08*]: f is approximation resistant iff $\forall \epsilon > 0$ there exists a $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for a certain SDP.

- [RS 09]: $1 - \epsilon$ vs. $\rho(f) + \epsilon$ integrality gap instance for above SDP needs to have size at most $\exp(\exp(1/\epsilon))$.

- Above argument also works for strong approximation resistance. Gives a recursively enumerable condition.

- But what properties of f give rise to gap instances?

- Is it just properties of f or is the topology of the instance also important? (Hint: Just f)
The Austrin-Mossel condition in a new language

- For a distribution μ on $\{-1, 1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

$$
\zeta_i = \mathbb{E}_{x \sim \mu}[x_i] \quad \zeta_{ij} = \mathbb{E}_{x \sim \mu}[x_i \cdot x_j]
$$
The Austrin-Mossel condition in a new language

- For a distribution μ on $\{-1, 1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k + \binom{k}{2}}$ denote the vector of first and second moments

$$
\zeta_i = \mathbb{E}_{x \sim \mu}[x_i] \quad \zeta_{ij} = \mathbb{E}_{x \sim \mu}[x_i \cdot x_j]
$$

- Let $C(f)$ be the convex polytope

$$
C(f) = \left\{ \zeta(\mu) \mid \mu \text{ is supported on } f^{-1}(1) \right\}.
$$
The Austrin-Mossel condition in a new language

- For a distribution μ on $\{-1, 1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

\[\zeta_i = \mathbb{E}_{x \sim \mu}[x_i] \quad \zeta_{ij} = \mathbb{E}_{x \sim \mu}[x_i \cdot x_j] \]

- Let $C(f)$ be the convex polytope

\[C(f) = \left\{ \zeta(\mu) \mid \mu \text{ is supported on } f^{-1}(1) \right\}. \]

- [AM 09*]: f is (strongly) approximation resistant if $0 \in C(f)$.
The Austrin-Mossel condition in a new language

- For a distribution μ on $\{-1, 1\}^k$, let $\zeta(\mu) \in \mathbb{R}^{k+\binom{k}{2}}$ denote the vector of first and second moments

$$\zeta_i = \mathbb{E}_{x \sim \mu}[x_i] \quad \zeta_{ij} = \mathbb{E}_{x \sim \mu}[x_i \cdot x_j]$$

- Let $C(f)$ be the convex polytope

$$C(f) = \left\{ \zeta(\mu) \mid \mu \text{ is supported on } f^{-1}(1) \right\}.$$

- [AM 09*]: f is (strongly) approximation resistant if $0 \in C(f)$.

- Our condition is in terms of existence of a measure Λ on $C(f)$ with certain symmetry properties.
Transformations of a measure Λ on $C(f)$

- Each $\zeta \in C(f)$ can be transformed by:
Transformations of a measure Λ on $C(f)$

- Each $\zeta \in C(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π

\[
(\zeta_\pi)_i = \zeta_{\pi(i)} \quad (\zeta_\pi)_{ij} = \zeta_{\pi(i)\pi(j)}
\]
Transformations of a measure \(\Lambda \) on \(C(f) \)

- Each \(\zeta \in C(f) \) can be transformed by:
 - Permuting the underlying \(k \) variables by a permutation \(\pi \)
 \[
 (\zeta_\pi)_i = \zeta_{\pi(i)} \quad (\zeta_\pi)_{ij} = \zeta_{\pi(i)\pi(j)}
 \]
 - Multiplying each variable \(x_i \) by a sign \(b_i \in \{-1, 1\} \)
 \[
 (\zeta_b)_i = b_i \cdot \zeta_i \quad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}
 \]
Transformations of a measure Λ on $C(f)$

- Each $\zeta \in C(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π
 \[
 (\zeta_\pi)_i = \zeta_{\pi(i)} \quad (\zeta_\pi)_{ij} = \zeta_{\pi(i)\pi(j)}
 \]
 - Multiplying each variable x_i by a sign $b_i \in \{-1, 1\}$
 \[
 (\zeta_b)_i = b_i \cdot \zeta_i \quad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}
 \]
 - Projecting ζ to coordinates corresponding to a subset $S \subseteq [k]$.
Transformations of a measure Λ on $C(f)$

- Each $\zeta \in C(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π
 \[(\zeta_\pi)_i = \zeta_{\pi(i)} \quad (\zeta_\pi)_{ij} = \zeta_{\pi(i)\pi(j)}\]
 - Multiplying each variable x_i by a sign $b_i \in \{-1, 1\}$
 \[(\zeta_b)_i = b_i \cdot \zeta_i \quad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}\]
 - Projecting ζ to coordinates corresponding to a subset $S \subseteq [k]$.

- For $S \subseteq [k]$, $\pi : S \rightarrow S$, $b \in \{-1, 1\}^S$, let $\Lambda_{S, \pi, b}$ denote the measure obtained by transforming each point in support of Λ as above.
Transformations of a measure Λ on $C(f)$

- Each $\zeta \in C(f)$ can be transformed by:
 - Permuting the underlying k variables by a permutation π
 \[(\zeta_\pi)_i = \zeta_{\pi(i)} \quad (\zeta_\pi)_{ij} = \zeta_{\pi(i)\pi(j)}\]
 - Multiplying each variable x_i by a sign $b_i \in \{-1, 1\}$
 \[(\zeta_b)_i = b_i \cdot \zeta_i \quad (\zeta_b)_{ij} = b_i b_j \cdot \zeta_{ij}\]
 - Projecting ζ to coordinates corresponding to a subset $S \subseteq [k]$.

- For $S \subseteq [k]$, $\pi : S \rightarrow S$, $b \in \{-1, 1\}^S$, let $\Lambda_{S,\pi,b}$ denote the measure obtained by transforming each point in support of Λ as above.

- If Λ is supported only on 0, then so is each $\Lambda_{S,\pi,b}$. If Λ is supported only on (say) $(1,\ldots,1)$ then $\Lambda_{[k],\text{id},b}$ is supported only on the point $(b_1, \ldots, b_k, b_1 \cdot b_2, \ldots, b_{k-1} \cdot b_k)$
Our Characterization

- Recall that \(f : \{-1, 1\}^k \rightarrow \{0, 1\} \) can be written as

\[
f(x) = \sum_{S \subseteq [k]} \hat{f}(S) \cdot \prod_{i \in S} x_i = \rho(f) + \sum_{t=1}^{k} \sum_{|S|=t} \hat{f}(S) \cdot \prod_{i \in S} x_i
\]
Our Characterization

- Recall that $f : \{-1, 1\}^k \rightarrow \{0, 1\}$ can be written as

$$f(x) = \sum_{S \subseteq [k]} \hat{f}(S) \cdot \prod_{i \in S} x_i = \rho(f) + \sum_{t=1}^{k} \sum_{|S|=t} \hat{f}(S) \cdot \prod_{i \in S} x_i$$

- [KTW 13*]: f is strongly approximation resistant if and only if there exists a measure Λ on $C(f)$ such that for all $t = 1, \ldots, k$

$$\sum_{|S|=t} \sum_{\pi : S \rightarrow S} \sum_{b \in \{-1, 1\}^S} \hat{f}(S) \cdot \left(\prod_{i \in S} b_i \right) \cdot \Lambda_{S, \pi, b} \equiv 0$$
- Recall that $f : \{-1, 1\}^k \rightarrow \{0, 1\}$ can be written as

$$f(x) = \sum_{S \subseteq [k]} \hat{f}(S) \cdot \prod_{i \in S} x_i = \rho(f) + \sum_{t=1}^{k} \sum_{|S|=t} \hat{f}(S) \cdot \prod_{i \in S} x_i$$

- [K_TW 13*]: f is strongly approximation resistant if and only if there exists a measure Λ on $C(f)$ such that for all $t = 1, \ldots, k$

$$\sum_{|S|=t} \sum_{\pi:S \rightarrow S} \sum_{b \in \{-1, 1\}^S} \hat{f}(S) \cdot \left(\prod_{i \in S} b_i \right) \cdot \Lambda_{S, \pi, b} \equiv 0$$

- If $|S| = t$, then $\Lambda_{S, \pi, b}$ is a measure on $\mathbb{R}^{t+\binom{t}{2}}$. For each t, above expression is a linear combination of such measures.
Proof Structure

- No good \(\Lambda \) exists
- Good \(\Lambda \) exists

Standard PCP ideas

Hardness of zero-sum game

Algorithm hardness value > 0

Algorithm hardness value = 0
Proof Structure

No good \(\Lambda \) exists

Good \(\Lambda \) exists

Standard PCP ideas

Hardness
Proof Structure

- No good Λ exists
- Good Λ exists

For Good Λ exists:
- Algorithm
- Hardness: zero-sum game
- Value: > 0

For No good Λ exists:
- Algorithm
- Hardness: zero-sum game
- Value: $= 0$

Standard PCP ideas lead to Hardness.
Proof Structure

No good \(\Lambda \) exists

\[\text{Algorithm} \]
\[\text{zero-sum game} \]
\[\text{value} > 0 \]

Good \(\Lambda \) exists

\[\text{Algorithm} \]
\[\text{zero-sum game} \]
\[\text{value} = 0 \]

Standard PCP ideas

Hardness
Proof Structure

No good \(\Lambda \) exists

Good \(\Lambda \) exists

Standard PCP ideas

Hardness

Algorithm

zero-sum game

value > 0

Algorithm

zero-sum game

value = 0
Proof Structure

- **No good Λ exists**
 - Algorithm
 - Zero-sum game
 - Value > 0

- **Good Λ exists**
 - Algorithm
 - Zero-sum game
 - Value $= 0$

- Standard PCP ideas

- Hardness
The (infinite) two-player game

- Similar game also used by O’Donnell and Wu for Max-Cut.
The (infinite) two-player game

- Similar game also used by O’Donnell and Wu for Max-Cut.

- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $C(f)$ (corresponds to instance).
The (infinite) two-player game

- Similar game also used by O’Donnell and Wu for Max-Cut.

- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $C(f)$ (corresponds to instance).

- Algorithm player tries to round by first projecting to random d-dimensional Gaussian. Plays rounding strategy $\psi : \mathbb{R}^d \rightarrow \{-1, 1\}$. ($d = k + 1$ suffices)
The (infinite) two-player game

- Similar game also used by O’Donnell and Wu for Max-Cut.

- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $C(f)$ (corresponds to instance).

- Algorithm player tries to round by first projecting to random d-dimensional Gaussian. Plays rounding strategy $\psi : \mathbb{R}^d \to \{-1, 1\}$. ($d = k + 1$ suffices)

- Value $= |\rho(f) - \text{Expected fraction of constraints satisfied by } \psi|$
The (infinite) two-player game

- Similar game also used by O’Donnell and Wu for Max-Cut.

- Hardness player tries to design an integrality-gap instance. Each constraint has local distribution μ with moments given by $\zeta(\mu)$. Plays measure Λ on $C(f)$ (corresponds to instance).

- Algorithm player tries to round by first projecting to random d-dimensional Gaussian. Plays rounding strategy $\psi : \mathbb{R}^d \rightarrow \{-1, 1\}$. ($d = k + 1$ suffices)

- Value $= |\rho(f) - \text{Expected fraction of constraints satisfied by } \psi|$

- Value > 0 implies (a distribution over) rounding strategies which show that predicate is not strongly approximation resistant. (since every instance corresponds to a Λ)
Value of the game

- A random constraint in the instance corresponds to $\zeta \sim \Lambda$.
Value of the game

- A random constraint in the instance corresponds to $\zeta \sim \Lambda$.

- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ.
Value of the game

- A random constraint in the instance corresponds to $\zeta \sim \Lambda$.

- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ.

- Projecting gives Gaussians y_1, \ldots, y_k with correlation matrix corresponding to ζ ($y_1, \ldots, y_k \sim N(\zeta)$).
Value of the game

- A random constraint in the instance corresponds to $\zeta \sim \Lambda$.

- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ.

- Projecting gives Gaussians y_1, \ldots, y_k with correlation matrix corresponding to ζ ($y_1, \ldots, y_k \sim N(\zeta)$).

- Expected fraction of constraints satisfied

$$\mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[f(\psi(y_1), \ldots, \psi(y_k)) \right]$$

$$= \rho(f) + \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right]$$
Value of the game

- A random constraint in the instance corresponds to $\zeta \sim \Lambda$.

- When Algorithm player tries to round SDP solution, for she sees vectors with inner products according to ζ.

- Projecting gives Gaussians y_1, \ldots, y_k with correlation matrix corresponding to ζ ($y_1, \ldots, y_k \sim N(\zeta)$).

- Expected fraction of constraints satisfied

$$
\mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[f(\psi(y_1), \ldots, \psi(y_k)) \right]
$$

$$
= \rho(f) + \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right]
$$

- Value

$$
\left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|.
$$
Obtaining conditions on Λ when value = 0

- Value $= \left| E_{\zeta \sim \Lambda} E_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|$.
Obtaining conditions on Λ when value $= 0$

- Value $= |\mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim \mathcal{N}(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right]|$.

- There exists (distribution over) Λ which gives value 0 for all ψ.
Obtaining conditions on Λ when value = 0

- Value $= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|$.

- There exists (distribution over) Λ which gives value 0 for all ψ.

- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ.

- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda S, \pi, b$ w.r.t. some Gaussian densities.

- Need to conclude integrals are zero only if the corresponding linear combinations are 0. Degree t coefficients give condition at level t.

- Bulk of the work in analyzing sequence of finite games and coefficients of corresponding polynomials.
Obtaining conditions on Λ when value $= 0$

- Value $= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|$.

- There exists (distribution over) Λ which gives value 0 for all ψ.

- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ.

- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda_{S, \pi, b}$ w.r.t. some Gaussian densities.
Obtaining conditions on Λ when value $= 0$

- Value $= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim N(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|$.

- There exists (distribution over) Λ which gives value 0 for all ψ.

- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ.

- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda_{S, \pi, b}$ w.r.t. some Gaussian densities.

- Need to conclude integrals are zero only if the corresponding linear combinations are 0. Degree t coefficients give condition at level t.

Obtaining conditions on Λ when value $= 0$

- Value $= \left| \mathbb{E}_{\zeta \sim \Lambda} \mathbb{E}_{y_1, \ldots, y_k \sim \mathcal{N}(\zeta)} \left[\sum_{S \neq \emptyset} \hat{f}(S) \cdot \prod_{i \in S} \psi(y_i) \right] \right|$.

- There exists (distribution over) Λ which gives value 0 for all ψ.

- Value can be viewed as a polynomial in the infinitely many variables $\psi(y)$ for $y \in \mathbb{R}^d$ which is zero for all assignments ψ.

- All coefficients must be 0. Coefficients are linear combinations of integrals of $\Lambda_{S, \pi, b}$ w.r.t. some Gaussian densities.

- Need to conclude integrals are zero only if the corresponding linear combinations are 0. Degree t coefficients give condition at level t.

- Bulk of the work in analyzing sequence of finite games and coefficients of corresponding polynomials.
Concluding Remarks

- We also characterize
 - Approximation resistance for odd predicates (including threshold functions passing through origin).
 - Approximation resistance for k-partite instances (all predicates).
 - Sherali-Adams LP gaps for $\omega(1)$ levels (all predicates).
Concluding Remarks

- We also characterize
 - Approximation resistance for odd predicates (including threshold functions passing through origin).
 - Approximation resistance for k-partite instances (all predicates).
 - Sherali-Adams LP gaps for $\omega(1)$ levels (all predicates).

- **Problem**: The characterization is recursively enumerable, but is it decidable? Can Λ always be finitely supported?
Concluding Remarks

- We also characterize
 - Approximation resistance for odd predicates (including threshold functions passing through origin).
 - Approximation resistance for k-partite instances (all predicates).
 - Sherali-Adams LP gaps for $\omega(1)$ levels (all predicates).

- **Problem**: The characterization is recursively enumerable, but is it decidable? Can Λ always be finitely supported?

- **Problem**: Strong Approximation Resistance vs. Approximation Resistance.
Thank You

Questions?