From Weak to Strong LP Gaps for all CSPs

Mrinalkanti Ghosh
Madhur Tulsiani
TTI-Chicago
Max-k-CSP

- n Boolean variables.
- m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

\[x_1 \vee x_2 \vee x_3 \wedge x_4 \wedge \ldots\]

Max-Cut

\[x_1 \times x_2 \neq x_3 \times x_4 \neq \ldots\]

Fundamental class of optimization problems.
Max-k-CSP

- n Boolean variables.
Max-k-CSP

- n Boolean variables.
- m constraints (each on k variables)
Max-k-CSP
- n Boolean variables.
- m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT
\[x_1 \lor x_{22} \lor \overline{x}_{19} \]
\[x_3 \lor \overline{x}_9 \lor x_{23} \]
\[x_5 \lor \overline{x}_7 \lor \overline{x}_9 \]
\[\vdots \]

Max-Cut
\[x_1 \neq x_2 \]
\[x_2 \neq x_5 \]
\[x_3 \neq x_4 \]
\[\vdots \]
Max-k-CSP

- n Boolean variables.
- m constraints (each on k variables)
- Satisfy as many as possible.

Max-3-SAT

$$x_1 \lor x_2 \lor \overline{x}_{19}$$
$$x_3 \lor \overline{x}_9 \lor x_{23}$$
$$x_5 \lor \overline{x}_7 \lor \overline{x}_9$$
$$\vdots$$

Max-Cut

$$x_1 \neq x_2$$
$$x_2 \neq x_5$$
$$x_3 \neq x_4$$
$$\vdots$$

Fundamental class of optimization problems.
Max-k-CSP$_q$

- n variables taking values in $\mathbb{Z} = \{0, \ldots, q-1\}$.
- m constraints (each on k variables).
- Satisfy as many as possible.

Unique Games

- For a graph, given:
 - Set of colors: $\mathbb{Z} = \{0, \ldots, q-1\}$
 - Constraints: one for each edge $(u, v) \in E$
 - (u, v) or (v, u) or (u, v)
 - Each constraint is a bijection from \mathbb{Z} to \mathbb{Z}.

Can in fact consider difference equations

$$x_u - x_v = c_{uv} \pmod{q}$$
Max-k-CSP$_q$

- n variables taking values in $[q] = \{0, \ldots, q - 1\}$.
- m constraints (each on k variables)
- Satisfy as many as possible.
Max-k-CSP$_q$

- n variables taking values in $[q] = \{0, \ldots, q - 1\}$.
- m constraints (each on k variables)
- Satisfy as many as possible.

Unique Games

For a graph, given:
- Set of colors: $[q]$
- Constraints: one for each edge $(u, v) \in E$

$$(u, v) = \begin{cases} (u, v) & \text{or} & (u, v) & \text{or} \\ (u, v) & \text{or} & (u, v) & \text{or} \end{cases}$$
Max-k-CSP$_q$

- n variables taking values in $[q] = \{0, \ldots, q - 1\}$.
- m constraints (each on k variables)
- Satisfy as many as possible.

Unique Games

- For a graph, given:
 - Set of colors: $[q]$
 - Constraints: one for each edge $(u, v) \in E$

\[(u,v) = \begin{cases}
 u & \text{or} \\
 v & \text{or} \\
 v & \text{or} \\
\end{cases} \]

- Each constraint is a bijection from $[q]$ to $[q]$.
Can in fact consider difference equations

\[x_u - x_v = c_{uv} \pmod{q}\]
Max-k-CSP$_q(f)$

- Characterized by $f : [q]^k \to \{0, 1\}$.

Max-k-CSP$_{q}(f)$

- Characterized by $f : [q]^k \rightarrow \{0, 1\}$.

- Each constraint is of the form

\[C_i \equiv f(x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k}) \]

for $i_1, \ldots, i_k \in [n]$ and $b_{i,1}, \ldots, b_{i,k} \in [q]$. (addition is mod q)
Max-k-CSP$_q(f)$

- Characterized by $f : [q]^k \rightarrow \{0, 1\}$.

- Each constraint is of the form

$$C_i \equiv f (x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k})$$

for $i_1, \ldots, i_k \in [n]$ and $b_{i,1}, \ldots, b_{i,k} \in [q]$. (addition is mod q)

- **Max-3-SAT**: $f \equiv \text{OR}$. Each C_i is a clause. $b_{i,1} = 1$ if x_{i_1} is negated in clause C_i.
Max-k-CSP$_q(f)$

- Characterized by $f : [q]^k \rightarrow \{0, 1\}$.

- Each constraint is of the form

$$C_i \equiv f (x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k})$$

for $i_1, \ldots, i_k \in [n]$ and $b_{i,1}, \ldots, b_{i,k} \in [q]$. (addition is mod q)

- **Max-3-SAT**: $f \equiv \text{OR}$. Each C_i is a clause. $b_{i,1} = 1$ if x_{i_1} is negated in clause C_i.

- **Unique Games**: $f \equiv \text{EQUAL}$. For i^{th} constraint (u, v), let $i_1 = u$, $i_2 = v$ and let $b_{i,2} - b_{i,1} = c_{uv}$

$$x_u - x_u = c_{uv} \iff x_{i_1} + b_{i,1} = x_{i_2} + b_{i,2}.$$
Approximating Max-k-CSP$_q(f)$

Relax the problem of finding maximum fraction of constraints satisfiable.
Approximating Max-\(k\)-CSP\(_q(f)\)

Relax the problem of finding maximum fraction of constraints satisfiable.

\[\leq s \quad \quad > c \]
Relax the problem of finding maximum fraction of constraints satisfiable.

- **Goal**: Given f, characterize all pairs (s, c) for which the distinguishing problem can be solved.
Approximating Max-k-CSP$_q(f)$

Relax the problem of finding \textit{maximum fraction} of constraints satisfiable.

- \textbf{Goal}: Given f, characterize all pairs (s, c) for which the distinguishing problem can be solved.

- If for some $\gamma \leq 1$, all pairs $(\gamma \cdot c, c)$ can be solved, then can approximate within factor γ.
- Max-3-SAT [Håstad 97]: For all $\epsilon > 0$, distinguishing $(7/8 + \epsilon, 1 - \epsilon)$ is NP-hard ($s < 7/8$ is trivial).
- **Max-3-SAT [Håstad 97]**: For all $\epsilon > 0$, distinguishing $(7/8 + \epsilon, 1 - \epsilon)$ is NP-hard ($s < 7/8$ is trivial).

- **Unique Games Conjecture [Khot 02]**: For all $\delta, \epsilon > 0$, there exists q such that it is NP-hard to distinguish $(\delta, 1 - \epsilon)$ for UG with domain $[q]$.

\[\leq \delta \quad \text{and} \quad > 1 - \epsilon \]
- [Raghavendra 08]: For all q, for all f, if a basic SDP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, it is NP-hard to distinguish $(s + \epsilon, c - \epsilon)$ assuming the UGC.
- **[Raghavendra 08]:** For all q, for all f, if a basic SDP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, it is NP-hard to distinguish $(s + \epsilon, c - \epsilon)$ assuming the UGC.

- “All-or-nothing”: Either a simple algorithm (approximately solvable in almost linear time) can distinguish (s, c) or it is NP-hard to do so.
An ultimate result assuming the UGC

- [Raghavendra 08]: For all q, for all f, if a basic SDP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, it is NP-hard to distinguish $(s + \epsilon, c - \epsilon)$ assuming the UGC.

- “All-or-nothing”: Either a simple algorithm (approximately solvable in almost linear time) can distinguish (s, c) or it is NP-hard to do so.

- Equivalent to UGC (because UG is a 2-CSP).
An unconditional version for LPs

- For all q, for all f, if a basic LP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, no LP of any polynomial size in the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

- [CLRS 13] If no polysize LP in Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$ then no polysize extended formulation can distinguish $(s + 2\epsilon, c - 2\epsilon)$.

- "All-or-not-much" for LPs: If a simple (almost linear time) LP cannot do it, neither can any polysize LP extended formulation (captures all "natural" LPs).
- For all q, for all f, if a basic LP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, no LP of any polynomial size in the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

- [CLRS 13] If no polysize LP in Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$ then no polysize extended formulation can distinguish $(s + 2\epsilon, c - 2\epsilon)$.

- For all q, for all f, if a basic LP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, no LP of any polynomial size in the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

- [CLRS 13] If no polysize LP in Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$ then no polysize extended formulation can distinguish $(s + 2\epsilon, c - 2\epsilon)$.

- “All-or-not-much” for LPs: If a simple (almost linear time) LP cannot do it, neither can any polysize LP extended formulation (captures all “natural” LPs).
Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

Image from [Fiorini-Rothvoss-Tiwari 2011]

Size equals $\#$ variables $+$ $\#$ constraints.

- Optimize objective $\langle w_\Phi, x \rangle$ (depending on Φ) over P.

Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- Introduce additional variables y. Optimize over polytope $P = \{x \mid \exists y \text{ } Ex + Fy = g, y \geq 0\}$.

Image from [Fiorini-Rothvoss-Tiwari 2011]
Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- Introduce additional variables y. Optimize over polytope

$$ P = \{x \mid \exists y \ Ex + Fy = g, y \geq 0\}.$$

Image from [Fiorini-Rothvoss-Tiwari 2011]
Extended formulations

- Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- Introduce additional variables y. Optimize over polytope $P = \{ x \mid \exists y \ E x + F y = g, y \geq 0 \}$.

Size equals $\text{#variables} + \text{#constraints}$.

Image from [Fiorini-Rothvoss-Tiwari 2011]
Extended formulations

- Defined by a **feasible polytope** P, and a way of **encoding** instances Φ as a (linear) objective function w_Φ.

- Introduce additional variables y. Optimize over polytope $P = \{x \mid \exists y \ Ex + Fy = g, y \geq 0\}$.

Size equals $\#\text{variables} + \#\text{constraints}$.

- Optimize objective objective $\langle w_\Phi, x \rangle$ (depending on Φ) over P.

Image from [Fiorini-Rothvoss-Tiwari 2011]
The Sherali-Adams hierarchy (t levels)
The Sherali-Adams hierarchy (\(t\) levels)

Variables: For \(|S| \leq t\) and \(\alpha \in [q]^S\) define \(X_{(S,\alpha)}\). Supposed to be

\[
X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\(\approx\) Probability that vars in \(S\) assigned according to \(\alpha\)
The Sherali-Adams hierarchy \((t \text{ levels})\)

Variables: For \(|S| \leq t\) and \(\alpha \in [q]^S\) define \(X_{(S,\alpha)}\). Supposed to be

\[
X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\(\approx\) Probability that vars in \(S\) assigned according to \(\alpha\) (you wish!)
The Sherali-Adams hierarchy \((t\text{ levels})\)

Variables: For \(|S| \leq t\) and \(\alpha \in [q]^S\) define \(X_{(S,\alpha)}\). Supposed to be

\[
X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\(\approx\) Probability that vars in \(S\) assigned according to \(\alpha\) (you wish!)

Consistency: For all \(j \notin S\), \(\sum_{b \in [q]} X_{(S\cup\{j\}, \alpha \circ b)} = X_{(S,\alpha)}\)
The Sherali-Adams hierarchy (t levels)

Variables: For \(|S| \leq t\) and \(\alpha \in [q]^S\) define \(X_{(S,\alpha)}\). Supposed to be

\[
X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\(\approx \) Probability that vars in \(S\) assigned according to \(\alpha\) (you wish!)

Consistency: For all \(j \notin S\), \(\sum_{b \in [q]} X_{(S \cup \{j\}, \alpha \circ b)} = X_{(S,\alpha)}\)

Linear Program: For variables \(X_{(S,\alpha)} \in [0, 1]\) satisfying consistency

Maximize \(\frac{1}{m} \cdot \sum_{C_i} \sum_{\alpha \in [q]^{S_{C_i}}} X_{(S_{C_i},\alpha)} \cdot f (\alpha_{i_1} + b_{i,1}, \ldots, \alpha_{i_k} + b_{i,k})\)

(\(S_{C_i}\) denotes set of variables in constraint \(C_i\).)
But what does it all mean??

Variables: For $|S| \leq t$ and $\alpha \in [q]^S$ define $X_{(S,\alpha)}$. Supposed to be

$$X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}$$

\approx Probability that vars in S assigned according to α
But what does it all mean??

Variables: For $|S| \leq t$ and $\alpha \in [q]^S$ define $X_{(S,\alpha)}$. Supposed to be

$$X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}$$

\approx Probability that vars in S assigned according to α
Variables: For $|S| \leq t$ and $\alpha \in [q]^S$ define $X_{(S,\alpha)}$. Supposed to be

$$X_{(S,\alpha)} = \begin{cases} 1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\ 0 & \text{otherwise} \end{cases}$$

\approx Probability that vars in S assigned according to α
But what does it all mean??

Variables: For $|S| \leq t$ and $\alpha \in [q]^S$ define $X_{(S, \alpha)}$. Supposed to be

$$X_{(S, \alpha)} = \begin{cases} 1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\ 0 & \text{otherwise} \end{cases}$$

\approx Probability that vars in S assigned according to α

Solution to LP defines local distributions consistent on intersections.

Distribution on $[q]^S$

Distribution on $[q]^T$
But what does it all mean??

Variables: For $|S| \leq t$ and $\alpha \in [q]^S$ define $X_{(S,\alpha)}$. Supposed to be

$$X_{(S,\alpha)} = \begin{cases}
1 & \text{if all variables in } S \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}$$

\approx Probability that vars in S assigned according to α

- Solution to LP defines local distributions consistent on intersections.
- $n^{O(t)} \cdot q^t$ variables.
The basic LP

- Variables: For S_C, and $\alpha \in \{q\}$, define $X(S_C, \alpha)$. Supposed to be
 $X(S_C, \alpha) = \begin{cases}
1 & \text{if all variables in } S_C \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}$

- Probability that vars in S_C assigned according to α

- Also define $X(j, b)$ for each $j \in \{n\}$, $b \in \{q\}$.

- Consistency: $\forall j \in S_C, \forall b \in \{q\}$,

 $\sum_{\alpha \in \{q\}} SC_i \alpha(j) = b \cdot X(S_C, \alpha) = X(j, b)$

$C_1C_2 - O(qk \cdot m + q \cdot n)$ variables.
The basic LP

- **Variables**: For S_{C_i} and $\alpha \in [q]^{S_{C_i}}$ define $X_{(S_{C_i},\alpha)}$. Supposed to be

$$X_{(S_{C_i},\alpha)} = \begin{cases}
1 & \text{if all variables in } S_{C_i} \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}$$

$$\approx \text{Probability that vars in } S_{C_i} \text{ assigned according to } \alpha$$

Also define $X_{(j,b)}$ for each $j \in [n], b \in [q]$.

$$O(qk \cdot m + q \cdot n)$$ variables.
The basic LP

- **Variables:** For S_{C_i} and $\alpha \in [q]^{S_{C_i}}$ define $X_{(S_{C_i}, \alpha)}$. Supposed to be

\[
X_{(S_{C_i}, \alpha)} = \begin{cases}
1 & \text{if all variables in } S_{C_i} \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\[
\approx \text{ Probability that vars in } S_{C_i} \text{ assigned according to } \alpha
\]

Also define $X_{(j, b)}$ for each $j \in [n], b \in [q]$.

- **Consistency:** $\forall j \in S_{C_i}, \forall b \in [q], \sum_{\alpha \in [q]^{S_{C_i}}} X_{(S_{C_i}, \alpha)} = X_{(j, b)}$
The basic LP

- Variables: For \(S_{c_i} \) and \(\alpha \in [q]^{S_{c_i}} \) define \(X(S_{c_i}, \alpha) \). Supposed to be

\[
X(S_{c_i}, \alpha) = \begin{cases}
1 & \text{if all variables in } S_{c_i} \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\[\approx \text{Probability that vars in } S_{c_i} \text{ assigned according to } \alpha \]

Also define \(X(j, b) \) for each \(j \in [n], b \in [q] \).

- Consistency: \(\forall j \in S_{c_i}, \forall b \in [q], \sum_{\alpha \in [q]^{S_{c_i}}} X(S_{c_i}, \alpha) = X(j, b) \)
The basic LP

- **Variables:** For \(S_{C_i} \) and \(\alpha \in [q]^{S_{C_i}} \) define \(X(S_{C_i}, \alpha) \). Supposed to be

\[
X(S_{C_i}, \alpha) = \begin{cases}
1 & \text{if all variables in } S_{C_i} \text{ are assigned according to } \alpha \\
0 & \text{otherwise}
\end{cases}
\]

\[\approx \text{Probability that vars in } S_{C_i} \text{ assigned according to } \alpha \]

Also define \(X(j, b) \) for each \(j \in [n], b \in [q] \).

- **Consistency:** \(\forall j \in S_{C_i}, \forall b \in [q], \sum_{\alpha \in [q]^{S_{C_i}}} X(S_{C_i}, \alpha) = X(j, b) \)

- \(O(q^k \cdot m + q \cdot n) \) variables.
Inaccurate pictorial representations

SA hierarchy

Extended Formulations

Max-3-SAT [Sch 08]
Max-Cut [CMM 09]
Inaccurate pictorial representations

[CLRS 13]
[KMR 16]

SA hierarchy

Extended Formulations

Max-3-SAT [Sch 08]
Max-Cut [CMM 09]
[GT 16]
Basic LP
Inaccurate pictorial representations

SA hierarchy

Max-Cut [CMM 09]
Max-3-SAT [Sch 08]

[CLRS 13]
[KMR 16]

Extended Formulations
Inaccurate pictorial representations

Max-Cut [CMM 09]
Max-3-SAT [Sch 08]
[GT 16]

[CLRS 13]
[KMR 16]

Extended Formulations

Basic LP
SA hierarchy
An “All or not-much” phenomenon

- [Ghosh T 16]: For all q, for all f, if basic LP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, no LP given by $t = O_\epsilon \left(\frac{\log n}{\log \log n} \right)$ levels of the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.
An “All or not-much” phenomenon

- [Ghosh T 16]: For all q, for all f, if basic LP cannot distinguish (s, c) for $\text{Max}-k\text{-CSP}_q(f)$, then for all $\epsilon > 0$, no LP given by $t = O_\epsilon \left(\frac{\log n}{\log \log n} \right)$ levels of the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

- Using [CLRS 13, KMR 16]: For all $\epsilon > 0$, no extended formulation of size $\exp \left(O_\epsilon \left(\frac{(\log n)^2}{(\log \log n)^2} \right) \right)$ can distinguish $(s + \epsilon, c - \epsilon)$.
An “All or not-much” phenomenon

- [Ghosh T 16]: For all q, for all f, if basic LP cannot distinguish (s, c) for Max-k-CSP$_q(f)$, then for all $\epsilon > 0$, no LP given by $t = O_\epsilon \left(\frac{\log n}{\log \log n} \right)$ levels of the Sherali-Adams hierarchy can distinguish $(s + \epsilon, c - \epsilon)$.

- Using [CLRS 13, KMR 16]: For all $\epsilon > 0$, no extended formulation of size $\exp \left(O_\epsilon \left(\frac{(\log n)^2}{(\log \log n)^2} \right) \right)$ can distinguish $(s + \epsilon, c - \epsilon)$.

- “Amplify” a hard instance for basic LP to a hard instance for Sherali-Adams.
What is a hard instance \((c = 1)\)

- \(\Phi_0\) is a \((c, s)\) hard instance of basic LP, for \(c = 1\) if
 - No assignment satisfies more than \(s\) fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.
 - Using \(\Phi_0\), create a (level-\(t\)) hard instance \(\Phi\) where
 - No assignment satisfies more than \(s\) fraction of constraints.
 - There exist local distributions on all subsets \(S\), \(|S| \leq t\), consistent on all intersections.
 - Distribution on \(S\) only supported on assignments satisfying (almost) all constraints in \(S\).
What is a hard instance \((c = 1)\)

- \(\Phi_0\) is a \((c, s)\) hard instance of basic LP, for \(c = 1\) if
 - No assignment satisfies more than \(s\) fraction of constraints.
What is a hard instance \((c = 1)\)

- \(\Phi_0\) is a \((c, s)\) hard instance of basic LP, for \(c = 1\) if
 - No assignment satisfies more than \(s\) fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

\[\begin{array}{c}
C_1 \quad \bullet \quad \bullet \quad \bullet \\
\quad \bullet \quad \bullet \quad \bullet \\
C_2
\end{array}\]
What is a hard instance $(c = 1)$

- Φ_0 is a (c, s) hard instance of basic LP, for $c = 1$ if
 - No assignment satisfies more than s fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

- Using Φ_0, create a (level-t) hard instance Φ where
 - No assignment satisfies more than s fraction of constraints.
What is a hard instance \((c = 1)\)

- \(\Phi_0\) is a \((c, s)\) hard instance of basic LP, for \(c = 1\) if
 - No assignment satisfies more than \(s\) fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

- Using \(\Phi_0\), create a \((\text{level-}t)\) hard instance \(\Phi\) where
 - No assignment satisfies more than \(s\) fraction of constraints.
 - There exist local distributions on all subsets \(S, |S| \leq t\), consistent on all intersections.
What is a hard instance \((c = 1)\)

- \(\Phi_0\) is a \((c, s)\) hard instance of basic LP, for \(c = 1\) if
 - No assignment satisfies more than \(s\) fraction of constraints.
 - All local distributions on constraints are supported only on satisfying assignments.

- Using \(\Phi_0\), create a (level-\(t\)) hard instance \(\Phi\) where
 - No assignment satisfies more than \(s\) fraction of constraints.
 - There exist local distributions on all subsets \(S, |S| \leq t\), consistent on all intersections.
 - Distribution on \(S\) only supported on assignments satisfying (almost) all constraints in \(S\).
Intuition for the proof

- Use hard instance (say Φ_0) for basic LP as a “template” to produce a hard instance Φ for Sherali-Adams.
Intuition for the proof

- Use hard instance (say \(\Phi_0 \)) for basic LP as a “template” to produce a hard instance \(\Phi \) for Sherali-Adams.

- Instance \(\Phi \) looks “easily satisfiable” locally.
Intuition for the proof

- Use hard instance (say Φ_0) for basic LP as a “template” to produce a hard instance Φ for Sherali-Adams.

- Instance Φ looks “easily satisfiable” locally.

- Think of instance as (hyper)graph. Each constraint adds a hyperedge. Locally like (hyper)trees.
Intuition for the proof

- Use hard instance (say Φ_0) for basic LP as a “template” to produce a hard instance Φ for Sherali-Adams.

- Instance Φ looks “easily satisfiable” locally.

- Think of instance as (hyper)graph. Each constraint adds a hyperedge. Locally like (hyper)trees.

- Trees are easy.
The gap construction

- Will use \((s, c)\) hard instance \(\Phi_0\) for basic LP as template.
The gap construction

- Will use \((s, c)\) hard instance \(\Phi_0\) for basic LP as template.

- Consider a bucket of variables \(B_r\) for every variable \(x_r\) in \(\Phi_0\). \(|B_r| = n\).
The gap construction

- Will use \((s, c)\) hard instance \(\Phi_0\) for basic LP as template.

- Consider a bucket of variables \(B_r\) for every variable \(x_r\) in \(\Phi_0\). \(|B_r| = n\).

- Repeat \(m\) times:
 - Sample \(C \sim \Phi_0\). Let
 \[C \equiv f(x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k}). \]
The gap construction

- Will use \((s, c)\) hard instance \(\Phi_0\) for basic LP as template.

- Consider a bucket of variables \(B_r\) for every variable \(x_r\) in \(\Phi_0\). \(|B_r| = n\).

- Repeat \(m\) times:
 - Sample \(C \sim \Phi_0\). Let \(C \equiv f(x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k})\).
 - Pick \(j^{th}\) variable uniformly from bucket \(B_{ij}\). Let \(z_{ij}\) be the sampled variable from this bucket.
- Will use \((s, c)\) hard instance \(\Phi_0\) for basic LP as template.

- Consider a bucket of variables \(B_r\) for every variable \(x_r\) in \(\Phi_0\). \(|B_r| = n\).

- Repeat \(m\) times:
 - Sample \(C \sim \Phi_0\). Let \(C \equiv f(x_{i_1} + b_{i,1}, \ldots, x_{i_k} + b_{i,k})\).
 - Pick \(j^{th}\) variable uniformly from bucket \(B_{ij}\). Let \(z_{ij}\) be the sampled variable from this bucket.
 - Include constraint \(f(z_{i_1} + b_{i,1}, \ldots, z_{i_k} + b_{i,k})\).
- Fix an assignment \(\sigma \) to all vars in new instance \(\Phi \)
Proving soundness

- Fix an assignment σ to all vars in new instance Φ

- Let p_r be the empirical distribution on $[q]$ for variables in B_r.

- Concentration and union bound.
Proving soundness

- Fix an assignment σ to all vars in new instance Φ
- Let p_r be the empirical distribution on $[q]$ for variables in B_r.
- Let x_r be a var in constraint $C \in \Phi_0$. A random copy of C sees a value for this variable independently distributed with p_r.

$\begin{align*}
p_1 & \quad p_2 & \quad p_3 & \quad p_4 & \quad p_5
\end{align*}$
Proving soundness

- Fix an assignment σ to all vars in new instance Φ
- Let p_r be the empirical distribution on $[q]$ for variables in B_r.
- Let x_r be a var in constraint $C \in \Phi_0$. A random copy of C sees a value for this variable independently distributed with p_r.
- For a fixed σ,

$$\mathbb{E}_\Phi [\text{Fraction of sat. constraints in } \Phi]$$

equals fraction satisfied in Φ_0 by rounding each x_r independently from p_r ($\leq s$).
Proving soundness

- Fix an assignment σ to all vars in new instance Φ
- Let p_r be the empirical distribution on $[q]$ for variables in B_r.
- Let x_r be a var in constraint $C \in \Phi_0$. A random copy of C sees a value for this variable independently distributed with p_r.
- For a fixed σ,

$$\mathbb{E}_\Phi \left[\text{Fraction of sat. constraints in } \Phi \right]$$

equals fraction satisfied in Φ_0 by rounding each x_r independently from p_r ($\leq s$).
- Concentration and union bound.
- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

- Does not depend on choice of root.
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

- Does not depend on choice of root.

- May not be consistent between tree and disconnected sub-forest.
Propagation on trees

- Random hypergraphs have no cycles of size $O(\log n)$. Locally like trees.

- Each hyperedge e in a tree comes from a constraint in Φ_0. Comes with a given distribution on e (from basic LP).

- Propagate to child conditioned on parent. Can be done by consistency on variables (vertices).

- Does not depend on choice of root.

- May not be consistent between tree and disconnected sub-forest.

- Is consistent on a subtree.
Breaking up the graph

- **Idea:** Given set $S \subseteq V$, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.
Breaking up the graph

- Idea: Given set $S \subseteq V$, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.

- Propagate on each component tree.
Breaking up the graph

- **Idea:** Given set $S \subseteq V$, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.

- Propagate on each component tree.

- If $T \subseteq S$, components of T induced by S should be same as obtained by partitioning T.
Breaking up the graph

- **Idea**: Given set $S \subseteq V$, break S into low-diameter components. Connect all paths in each component - always a tree, never a forest.

- Propagate on each component tree.

- If $T \subseteq S$, components of T induced by S should be same as obtained by partitioning T.

- Cut only few edges.
Subset consistent partitioning schemes

- \([\text{CMM} 07]\): Define a metric \(\rho\) on random (hyper)graph \(H\)
 \[\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}\]
 \(\rho\) embeds in \(\ell_2\) on small sets (for small enough \(\mu\)).

- \([\text{CCGGP} 98]\): Low-diameter decomposition of \(\ell_2\) embedding.

- Easy to check partitioning is consistent on subsets.
Subset consistent partitioning schemes

- [CMM 07]: Define a metric ρ on random (hyper)graph H

$$\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}$$

ρ embeds in ℓ_2 on small sets S (for small enough μ).
Subset consistent partitioning schemes

- [CMM 07]: Define a metric ρ on random (hyper)graph H

$$
\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}
$$

ρ embeds in ℓ_2 on small sets S (for small enough μ).

- [CCGGP 98]: Low-diameter decomposition of ℓ_2 embedding.
Subset consistent partitioning schemes

- [CMM 07]: Define a metric ρ on random (hyper)graph H

$$\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}$$

ρ embeds in ℓ_2 on small sets S (for small enough μ).

- [CCGGP 98]: Low-diameter decomposition of ℓ_2 embedding.
Subset consistent partitioning schemes

- [CMM 07]: Define a metric \(\rho \) on random (hyper)graph \(H \)

\[
\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}
\]

\(\rho \) embeds in \(\ell_2 \) on small sets \(S \) (for small enough \(\mu \)).

- [CCGPGP 98]: Low-diameter decomposition of \(\ell_2 \) embedding.
Subset consistent partitioning schemes

- [CMM 07]: Define a metric ρ on random (hyper)graph H

$$\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}$$

ρ embeds in ℓ_2 on small sets S (for small enough μ).

- [CCGGP 98]: Low-diameter decomposition of ℓ_2 embedding.
Subset consistent partitioning schemes

- **[CMM 07]**: Define a metric ρ on random (hyper)graph H

$$\rho(u, v) \approx \sqrt{1 - \exp(-\mu \cdot d_H(u, v))}$$

ρ embeds in ℓ_2 on small sets S (for small enough μ).

- **[CCGGP 98]**: Low-diameter decomposition of ℓ_2 embedding.

- Easy to check partitioning is consistent on subsets.
The dimensionality problem

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d})$.

- For $|S| = t$, ℓ_2-embedding is in \mathbb{R}^t. Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O(\log n \log \log n)$.

- [JL 84]: Random Gaussian projection in $O(\log t)$ dimensions approximately preserves all distances with high probability.

- For sets S and T, can one consistently discard bad Gaussian projections?
The dimensionality problem

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d})$.

- For $|S| = t$, ℓ_2 embedding is in \mathbb{R}^t. Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O(\frac{\log n}{\log \log n})$.

- [JL 84]: Random Gaussian projection in $O(\log t)$ dimensions approximately preserves all distances with high probability.

- For sets S and T, can one consistently discard bad Gaussian projections?
The dimensionality problem

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d})$.

- For $|S| = t$, ℓ_2 embedding is in \mathbb{R}^t. Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O\left(\frac{\log n}{\log \log n}\right)$.

- [JL 84]: Random Gaussian projection in $O(\log t)$ dimensions approximately preserves all distances with high probability.
The dimensionality problem

- Low-diameter decomposition in \mathbb{R}^d cuts each edge with probability $O(\sqrt{\mu \cdot d})$.

- For $|S| = t$, ℓ_2 embedding is in \mathbb{R}^t. Probability of cutting an edge is $O(\sqrt{\mu \cdot t})$. Limits t to $O(\frac{\log n}{\log \log n})$.

- [JL 84]: Random Gaussian projection in $O(\log t)$ dimensions approximately preserves all distances with high probability.

- For sets S and T, can one consistently discard bad Gaussian projections?
Open Problems

- Extend the result to $\Omega(n)$ levels of the SA hierarchy. Will give a size bound of $\Omega(\exp(n^{O(1)}))$ on extended formulation size using [KMR16].
Open Problems

- Extend the result to $\Omega(n)$ levels of the SA hierarchy. Will give a size bound of $\Omega(\exp(n^{O(1)})$ on extended formulation size using [KMR16].

- “All-or-nothing” for SDP hierarchies. Would go a long way towards proving the UGC. Even results for specific CSPs would be interesting ($k \geq 3$?).
Open Problems

- Extend the result to $\Omega(n)$ levels of the SA hierarchy. Will give a size bound of $\Omega(\exp(n^{O(1)}))$ on extended formulation size using [KMR16].

- “All-or-nothing” for SDP hierarchies. Would go a long way towards proving the UGC. Even results for specific CSPs would be interesting ($k \geq 3$?).

- Perhaps in the worst case nothing does better than basic LP/SDP. Are there testable properties of the instance, under which it is better to use higher levels in the hierarchies.
THAT CHART EXPLAINED THE QUANTUM HALL EFFECT. NOW, IF YOU'LL BEAR WITH ME FOR A MOMENT, THIS NEXT GRAPH SHOWS RAINFALL OVER THE AMAZON BASIN...

IF YOU KEEP SAYING "BEAR WITH ME FOR A MOMENT", PEOPLE TAKE A WHILE TO FIGURE OUT THAT YOU'RE JUST SHOWING THEM RANDOM SLIDES.

Thank You

Questions?