1. **More on linear codes.** Recall that a linear code $C : \mathbb{F}_p^k \to \mathbb{F}_p^n$ was specified by a generator matrix G such that $\forall x \in \mathbb{F}_p^k, C(x) = Gx$. The parity-check matrix was a matrix H such that the columns of H^T form a basis for the null-space of G^T. Prove the following facts about linear codes.

(a) Prove that for a linear code C, the distance $\Delta(C)$ can be written as

$$\Delta(C) = \min_{z \in C \setminus \{0^n\}} \text{wt}(z),$$

where 0^n denotes the all-zero vector in \mathbb{F}_p^n and $\text{wt}(z)$ denotes the number of non-zero entries in z.

(b) Let $n = 2^r - 1$ for some integer r. Recall that the general Hamming code (over the field \mathbb{F}_2) is defined by the parity-check matrix $H \in \mathbb{F}_2^{n-k} \times n$ where the i^{th} column of H is given by the number i written in binary using r bits (take the top entry to be the most significant bit and the bottom entry to be the least significant bit). Find the message length, block length and the distance for this code.

(c) For a linear code C with generator matrix G and parity-check matrix H, it’s dual code C^\perp is defined as a code with generator matrix H^T. Prove that G^T is a parity-check matrix for C^\perp. Find the message length, block length and distance for the dual code of the Hamming code defined above.

2. **Codes and pseudorandomness.** In this problem, we will use codes to construct pseudorandom objects known as t-wise independent distributions. Let $C : \mathbb{F}_2^k \to \mathbb{F}_2^n$ be a linear code with distance $\Delta(C) = d$, and let $H \in \mathbb{F}_2^{(n-k) \times n}$ be the parity-check matrix of this code.
(a) First consider \(z \) uniformly distributed in \(\mathbb{F}_2^{n-k} \). Using the fact that \(z \) is a random binary string of length \(n - k \), prove that for any \(a \in \mathbb{F}_2^{n-k} \setminus \{0^{n-k}\} \)

\[
\mathbb{E}_{z \in \mathbb{F}_2^{n-k}} [(-1)^{a \cdot z}] = 0 \quad \text{where} \quad a \cdot z = a^T z = \sum_{i=1}^{n-k} a_i z_i \mod 2.
\]

(b) Prove that the code can be used to extend this property of the uniform distribution over length \(n - k \) strings, to a distribution over \(n \) bits i.e., we can “stretch” the pseudorandomness. Consider the distribution obtained by choosing \(z \in \mathbb{F}_2^{n-k} \) at random and taking \(x = H^T z \). Note that \(x \in \mathbb{F}_2^n \). Prove that for any \(b \in \mathbb{F}_2^n \setminus \{0^n\} \) with \(\text{wt}(b) < d \), we have

\[
\mathbb{E}_{z \in \mathbb{F}_2^{n-k}} [(-1)^{b \cdot x}] = \mathbb{E}_{z \in \mathbb{F}_2^{n-k}} [(-1)^{b \cdot (Hz)}] = 0.
\]

Such distributions are called \((d-1)\)-wise independent distributions on \(n \) bits, since they “look like” the uniform distributions as long as one looks at at most \((d-1)\) bits at a time.

(c) Show that the Hamming code can be used to produce a 2-wise independent distribution on \(n = 2^r - 1 \) bits, starting with the uniform distribution on just \(r \) bits.

3. Scrambled Reed-Solomon Codes [due to Venkat Guruswami]. Let \(\{a_1, \ldots, a_n\} \) be distinct elements of \(\mathbb{F}_p \) used to define a Reed-Solomon code \(C : \mathbb{F}_p^k \rightarrow \mathbb{F}_p^n \). Assume that \(k < n/6 \). Recall that a message \((m_0, \ldots, m_{k-1})\) is encoded by thinking of it as a polynomial \(P(X) = \sum_{i=0}^{k-1} m_i \cdot X^i \) and sending \((P(a_1), \ldots, P(a_n))\). For the following parts, assume the fact (used in class) that for a bivariate polynomial \(Q(X, Y) \), we can find all its factors of the form \(Y - f(X) \).

(a) Suppose we sent two codewords according to the polynomials \(P \) and \(P' \) (of degree \(k - 1 \)) but they got mixed up. Thus, we now have two lists \((b_1, \ldots, b_n)\) and \((c_1, \ldots, c_n)\) and we know for each \(i \in [n] \)

\[
either P(a_i) = b_i \text{ and } P'(a_i) = c_i \quad \text{or} \quad P(a_i) = c_i \text{ and } P'(a_i) = b_i.
\]

Note that each coordinate could be independently scambles i.e., it may happen that for some \(i \), \(P(a_i) = b_i \) and \(P'(a_i) = c_i \) and for some \(j \neq i \), \(P(a_i) = c_j \) and \(P'(a_j) = b_i \). Also, we don’t know which is the case for which coordinate \(i \). Give an algorithm to find both \(P \) and \(P' \). [Hint: First find \(P + P' \) and \(P \cdot P' \).]
(b) Now, suppose that instead of getting both the values $P(a_i)$ and $P'(a_i)$ for each i, we only got one value β_i, such that for each i we either have $\beta_i = P(a_i)$ or $\beta_i = P'(a_i)$. Again, it might happen that for some i, $\beta_i = P(a_i)$ while for some other $j \neq i$, $\beta_j = P'(a_j)$ and we don’t know which is the case for which i. However, we are given the promise that

$$\frac{n}{3} \leq \left| \{ i \in [n] \mid \beta_i = P(a_i) \} \right| \leq \frac{2n}{3} \quad \text{and} \quad \frac{n}{3} \leq \left| \{ i \in [n] \mid \beta_i = P'(a_i) \} \right| \leq \frac{2n}{3}.$$

Give an algorithm to find both P and P'.

3