Homework 3

Due: February 28, 2021

Note: You may discuss these problems in groups. However, you must write up your own solutions and mention the names of the people in your group. Also, please do mention any books, papers or other sources you refer to. It is recommended that you typeset your solutions in $E T_{E} X$.

1. Loaded dice.

[3+4=7 points]

Consider the following game played using a dice: a single dice is rolled and we gain a dollar if the outcome is $2,3,4$ or 5 , and lose a dollar if it's 1 or 6 .
(a) What is our expected gain assuming all outcomes in $\{1,2,3,4,5,6\}$ are equally likely.
(b) Find the maximum entropy distribution over the universe $\mathcal{X}=\{1,2,3,4,5,6\}$ such that the expected gain is at least α (say α is greater than the expected gain for the uniform distribution).
2. Exponential families and maximum entropy.

$$
\text { [3+3+2=8 points }]
$$

In the class, we proved that for a linear family defined as

$$
\mathcal{L}=\left\{P \mid \sum_{x \in \mathcal{X}} P(x) \cdot f_{i}(x)=\underset{x \sim P}{\mathbb{E}}\left[f_{i}(x)\right]=\alpha_{i}, \forall i \in[k]\right\}
$$

the maximum entropy distribution P^{*} is of the form

$$
P^{*}(x)=\exp \left(\lambda_{0}+\sum_{i \in[k]} \lambda_{i} \cdot f_{i}(x)\right)
$$

where $\lambda_{0}, \ldots, \lambda_{k}$ are chosen so that

$$
\sum_{x \in \mathcal{X}} P^{*}(x)=1 \quad \text { and } \quad \sum_{x \in \mathcal{X}} P^{*}(x) \cdot f_{i}(x)=\alpha_{i} \forall i \in[k] .
$$

In this exercise, we consider the converse. Let $f_{1}, \ldots, f_{k}: \mathcal{X} \rightarrow \mathbb{R}$ be any functions and Q be any a distribution of the form

$$
Q(x)=\exp \left(\lambda_{0}+\sum_{i \in[k]} \lambda_{i} \cdot f_{i}(x)\right)
$$

and let $\alpha_{1}, \ldots, \alpha_{k}$ be defined as

$$
\alpha_{i}:=\sum_{x \in \mathcal{X}} Q(x) \cdot f_{i}(x)=\underset{x \sim Q}{\mathbb{E}}\left[f_{i}(x)\right] .
$$

We now consider the linear family defined by f_{1}, \ldots, f_{k} and $\alpha_{1}, \ldots, \alpha_{k}$.

$$
\mathcal{L}=\left\{P \mid \sum_{x \in \mathcal{X}} P(x) \cdot f_{i}(x)=\underset{x \sim P}{\mathbb{E}}\left[f_{i}(x)\right]=\alpha_{i}, \forall i \in[k]\right\}
$$

Thus, \mathcal{L} is the family of distributions which have the same expected value for the "statistics" f_{1}, \ldots, f_{k}, as the distribution Q. We will show that Q is indeed the maximum entropy distribution in the family \mathcal{L} (this is a generalization of the often stated fact that the Gaussian distribution has the highest entropy among all distributions with the same covariance).
(a) Show that

$$
H(Q)=-\frac{1}{\ln 2} \cdot\left(\lambda_{0}+\sum_{i \in[k]} \lambda_{i} \cdot \alpha_{i}\right)
$$

(b) Show that for any distribution $P \in \mathcal{L}$, we have

$$
D(P \| Q)=H(Q)-H(P) .
$$

(c) Deduce that Q is the maximum entropy distribution in the family \mathcal{L}.
3. Minimax rates for denoising.
[$3 \times 5=15$ points]
We consider the problem of learning a function $f:[0,1] \rightarrow \mathbb{R}$, given noisy samples. For this problem, we will also assume that the function is L-Lipschitz i.e., for any $x_{1}, x_{2} \in[0,1]$, we have

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq L \cdot\left|x_{1}-x_{2}\right|
$$

Note that without any such assumptions, it hard to learn f in a meaningful way even if there is no noise: given the value of f at a few sample points, we have no information about the value of f at other points in the interval.
(a) Let a sample Y be of the form

$$
Y=f(X)+G
$$

where $X \in[0,1]$ is chosen uniformly at random, and $G \sim N\left(0, \sigma^{2}\right)$ is a onedimensional Gaussian random variable (independent of X) with mean 0 and
variance σ^{2}. Note that given a value x for the random variable X, Y is simply a Gaussian with mean $f(x)$ and variance σ^{2}.
Also, note that the distribution of (X, Y) depends on the function f. We denote this distribution as by P_{f}. Show that for two functions f and g,

$$
D\left(P_{f} \| P_{g}\right)=\frac{\|f-g\|_{2}^{2}}{2 \ln 2 \cdot \sigma^{2}} \quad \text { where } \quad\|f-g\|_{2}^{2}=\int_{0}^{1}|f(x)-g(x)|^{2} d x .
$$

(Hint: Consider the density for Y.)
(b) Consider the problem of finding an "estimator" for the function f given n samples (of the form (X, Y)) from the distribution P_{f} i.e., we consider the family

$$
\Pi=\left\{P_{f} \mid f:[0,1] \rightarrow \mathbb{R} \text { is L-Lipschitz }\right\}
$$

and the property $\theta\left(P_{f}\right)=f$. We consider the loss function

$$
\ell(f, g):=\|f-g\|_{2}^{2}=\int_{0}^{1}|f(x)-g(x)|^{2} d x
$$

Let $\left\{f_{a}\right\}_{a \in S}$ be a collection of L-Lipschitz functions such that for any two $a, b \in S$, we have

$$
2 \delta \leq\left\|f_{a}-f_{b}\right\|_{2} \leq 8 \delta
$$

Show that the minimax loss for n samples is lower bounded as

$$
\mathcal{M}_{n}(\Pi, \ell) \geq \delta^{2} \cdot\left(1-\frac{\left(32 \delta^{2} n\right) /\left(\sigma^{2} \cdot \ln 2\right)+1}{\log |S|}\right)
$$

(c) We will now construct such a family of functions using the "bump" functions $B_{\varepsilon}:[-1,1] \rightarrow \mathbb{R}$ defined as

$$
B_{\varepsilon}(x)= \begin{cases}L \cdot(\varepsilon-|x|) & |x| \leq \varepsilon \\ 0 & \text { otherwise }\end{cases}
$$

Note that this function is bump around the origin of width 2ε. Show that $B(x)$ is L-Lipschitz and (assuming $\varepsilon<1$)

$$
\int_{-1}^{1}\left(B_{\varepsilon}(x)\right)^{2} d x=\frac{2 \varepsilon^{3} L^{2}}{3}
$$

(d) Let $z_{1}, \ldots, z_{m} \in(\varepsilon, 1-\varepsilon)$ be a set of points which are at least 2ε apart. For a set $S \subseteq\{0,1\}^{m}$, define the function f_{a} for each $a \in S$ as

$$
f_{a}=\sum_{i=1}^{m} a_{i} \cdot B_{\varepsilon}\left(x-z_{i}\right),
$$

f_{a} is a collection of (non-intersecting) bumps around points z_{i} depending on which positions i have $a_{i}=1$. Show that if $d_{H}(a, b)$ denotes the Hamming distance between a and b, then

$$
\left\|f_{a}-f_{b}\right\|_{2}^{2}=\frac{2 \varepsilon^{3} L^{2}}{3} \cdot d_{H}(a, b)
$$

(e) Assume that there exists a set $S \subseteq\{0,1\}^{m}$ such that $|S| \geq 2^{m / 8}$ and $d_{H}(a, b) \geq$ $m / 8$ for all $a, b \in S$ (note that this is just a good code). Use this to show that there exists a constant c_{0} such that

$$
\mathcal{M}_{n}(\Pi, \ell) \geq c_{0} \cdot\left(\frac{\sigma^{2} \cdot L}{n}\right)^{2 / 3}
$$

This bound is known to be tight for Lipschitz functions.

