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1 Sparse mean estimation

We will conclude our discussion of minimax rates, with this final example of estimating
the mean, when we are given the additional condition that the mean is a sparse vector.
Consider the set of normal distributions, where the mean has only one non-zero coordinate.

Π =
{

N(µ, Id) | µ ∈ Rd, ‖µ‖0 ≤ 1
}

.

Let θ(P) = Ex∼P [x] be the mean, and let `(θ̂, θ) =
∥∥∥θ̂ − θ

∥∥∥2

2
as before. From the previous

examples, it seems like the empirical mean estimator is always the best one, and the role
of information theory is primarily for proving lower bounds. However, it can also serve as
a guide for the right bound to aim for. For this problem, it will be much easier to prove a
lower bound. We will then show an estimator which matches this bound.

1.1 Lower bound

Let V = {e1, . . . , ed} be the set of standard basis vectors in Rd. Consider the set of dis-
tributions Pv = N(

√
2δ · v, Id) for all v ∈ V . Note that the means µv =

√
2δ · v satisfy

‖µv1 − µv2‖ = 2δ for all v1 6= v2. Using the bound from the previous lecture, we get

Mn(Π, `) ≥ δ2 ·
(

1 − n ·Ev1,v2∈V [D(Pv1‖Pv2)] + 1
log |V|

)
≥ δ2 ·

(
1 −

n ·
(
4δ2/(2 ln 2)

)
+ 1

log d

)

≥ c · log d
n

,

for an appropriate constant c > 0, using a choice of δ2 = c′ · log d
n . We will now show that

this lower bound is actually tight.
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1.2 Upper bound

The optimal estimator for the above problem actually extends the definition of the mean as
the minimizer of the total square distance (from the sample points). Recall the following.

Exercise 1.1. Let x1, . . . , xn ∈ Rd. Then the empirical mean η = 1
n ·∑

n
i=1 xi satisfies

n

∑
i=1
‖xi − η‖2

2 = inf
v∈Rd

{
n

∑
i=1
‖xi − v‖2

2

}
.

Given a sequence of samples x = (x1, . . . , xn), let the η denote the empirical mean

η :=
1
n
·

n

∑
i=1

xi .

As we saw above, the empirical mean is the minimizer of the least square distance. How-
ever, it is not sparse. We take our estimator µ̂ to only consist of the largest entry (in absolute
value) of η, and set all other entries to zero i.e.,

µ̂j :=

{
ηj if j = argmaxk∈[d] |ηk|
0 otherwise

.

Note that the above definition does not make sense if the the coordinate maximizing |ηk| is
not unique. In such a case, we arbitrarily pick one of the maximizing coordinates. Check
that this definition is a constrained version of the above definition for empirical mean.
While the empirical mean η is the minimizer over all of Rd, of the average squared distance
from the sample points, the estimator above is the minimizer over all sparse vectors.

Exercise 1.2. Check that for µ̂ defined as above

n

∑
i=1
‖xi − µ̂‖2

2 = inf
‖v‖0≤1

{
n

∑
i=1
‖xi − v‖2

2

}
.

While we will use the above estimator, the operation of picking the largest coordinate does
not combine well with analytic expressions such as expectation etc. For this reason, we will
use the empirical mean η as an intermediate object in the analysis. We need the following
basic properties

Proposition 1.3. Let x ∼ (N(µ, Id))
n be a sequence of n independent samples, and let η =

1
n ·∑

n
i=1 xi be the empirical mean. Then η− µ is distributed according to the Gaussian distribution

N
(
0, 1

n · Id
)
.
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Proof: Since different coordinates are independent in each of x1, . . . , xn, they are also
independent in δ− µ. For any single coordinate j ∈ [d], we have

(η − µ)j =
1
n

n

∑
i=1

(xi − µ)j .

By definition of (x1, . . . , xn), each term (xi − µ)j is independently distributed according
to N(0, 1). Since a linear combination of independent Gaussians is still a Gaussian, and
variances add for independent variables, we get

Var
[
(η − µ)j

]
=

1
n2

n

∑
i=1

Var
[
(xi − µ)j

]
=

1
n2 · n =

1
n

.

Combined with E [xi − µ] = 0, this completes the proof.

Corollary 1.4. Let x = (x1, . . . , xn) ∼ (N((µ, Id))
n as above. Then,

P
[
∃j ∈ [d]

∣∣µj − ηj
∣∣ ≥ t

]
≤ 2d · exp

(
−nt2/2

)
.

Proof: Using the standard Gaussian tail bound, we know that for y ∼ N(0, σ2), we have

P [|y| ≥ t] ≤ 2 · exp
(
−t2/(2σ2)

)
.

Using Proposition 1.3 for each coordinate ηj− µj, and taking a union bound over all j ∈ [d]
gives the desired bound.

Recall the our goal is to bound the expected loss Ex∼(N(µ,Id))n

[
‖µ− µ̂(x)‖2

2

]
. Using the

above, we can first prove a tail bound: the probability that the loss is too large, is small.

Claim 1.5. For the estimator µ̂ as above

P [‖µ− µ̂‖2 ≥ t] ≤ 2d · exp
(
−nt2/18

)
.

Proof: We will prove that

‖µ− µ̂‖2 ≥ t ⇒ ∃j ∈ [d]
∣∣ηj − µj

∣∣ ≥ t/3 .

Using this, together with Corollary 1.4 will prove the claim. Recall that both µ and µ̂ have
at most one non-zero coordinate. If µ = 0 and µ̂j 6= 0, then we must have

∣∣µ̂j
∣∣ = ∣∣ηj − µj

∣∣ ≥
t. The case when µ̂ = 0 can be handled similarly.

If µ 6= 0, then let unique the non-zero coordinate be 1 (without loss of generality) i.e.,
|µ1| > 0. If µ̂1 6= 0, then we again have

|µ1 − η1| = |µ1 − µ̂1| = ‖µ− µ̂‖2 ≥ t ,
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and we are done. So let’s assume µ̂1 = 0 and µ̂j 6= 0 for some j > 1. Since we must have
µ̂j = ηj in this case, we have

|µ1|+
∣∣ηj
∣∣ = |(µ− µ̂)1|+

∣∣(µ− µ̂)j
∣∣ ≥ ‖µ− µ̂‖2 ≥ t .

Also, since ηj must be the largest coordinate in absolute value, we have∣∣ηj
∣∣ ≥ |η1| ≥ |µ1| − |µ1 − η1| .

Adding the above inequalities gives

|µ1 − η1|+ 2 ·
∣∣ηj
∣∣ = |µ1 − η1|+ 2 ·

∣∣µj − ηj
∣∣ ≥ t .

Hence, either |µ1 − η1| ≥ t/3 or
∣∣µj − ηj

∣∣ ≥ t/3, which is what we wanted to prove.

We can now finish the computation of the expected loss, using the above tail bound. Using
s = t2 in the above bound, we can write it as

P
[
‖µ− µ̂‖2

2 ≥ s
]
≤ 2d · exp (−ns/18) .

This yields the following bound.

Claim 1.6. For the estimator µ̂ as above

E
x∼(N(µ,Id))n

[
‖µ− µ̂(x)‖2

2

]
= O

(
log d

n

)
.

Proof: We use the fact that for a non-negative random variable Z, E [Z] =
∫

s P [Z ≥ s].
Using this, we get

E
x∼(N(µ,Id))n

[
‖µ− µ̂(x)‖2

2

]
=

∫ ∞

0
P
[
‖µ− µ̂‖2

2 ≥ s
]

ds

=
∫ u

0
P
[
‖µ− µ̂‖2

2 ≥ s
]

ds +
∫ ∞

u
P
[
‖µ− µ̂‖2

2 ≥ s
]

ds

≤
∫ u

0
1 ds +

∫ ∞

u
2d · exp (−ns/18) ds

= u +
36d
n
· exp (−nu/18) .

Choosing u = c · log d
n for an appropriate constant c, then finishes the proof.
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2 I-Projections and applications

We will now talk more about finding a distribution in a set Π that minimizes D(P‖Q)
for a fixed distribution Q. We encountered this when discussing Sanov’s theorem and
hypothesis testing, and will now discuss its properties in some detail. When Q is the
uniform distribution on X . Then we also have,

D(P||Q) = log |X | − H(P)

Hence, in this case P∗ is a distribution that maximizes entropy. In general, when the given
information does not uniquely determine a distribution, we choose P∗ that maximizes
entropy. This can be thought of as picking P∗ in the set of distributions Π, subject to the
least amount of additional assumptions. This is sometimes called the Maximum Entropy
Principle. In this lecture, we will characterize the distributions obtained by minimizing
Kl-divergence (or maximizing entropy).

For closed convex set Π, such a P is called the I-projection of Q onto Π.

Definition 2.1. Let Π be a closed convex set of distributions over X . In addition, assume that
Supp(Q) = X . Then

ProjΠ(Q) := arg min
P∈Π

D(P‖Q) = P∗

Note that the assumption Supp(Q) = X above is without loss of generality since D(P‖Q) =
∞ for any P such that Supp(P) 6⊆ Supp(Q). Use the (strict) convexity of KL-divergence to
check the following.

Exercise 2.2. For a closed, convex set Π, the projection P∗ = ProjΠ(Q) exists and is unique.

It is immediate from definition that if P ∈ Π, then D(P‖Q) ≥ D(P∗‖Q). In fact, P∗ tells us
more. It also tells us how “far" P is away from Q in KL-divergence measure.

Theorem 2.3. Let P∗ = ProjΠ(Q). Then, for all P ∈ Π,

Supp(P) ⊆ Supp(P∗)
D(P‖Q) ≥ D(P‖P∗) + D(P∗‖Q)

Proof: Define Pt = tP + (1− t)P∗, where t ∈ [0, 1]. By minimality of P∗, it is clear that
D(Pt||Q)− D(P∗||Q) ≥ 0. By the mean value theorem, we also have that

0 ≤ 1
t
· (D(Pt‖Q)− D(P∗‖Q)) ≤ d

dt
D(Pt‖Q)

∣∣∣∣
t=t′∈[0,t]

Since t′ → 0 as t→ 0, we get

lim
t↓0

d
dt

D(Pt‖Q) ≥ 0 .
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We now compute d
dt D(Pt||Q).

d
dt

D(Pt‖Q) = ∑
x∈X

d
dt

pt(x) log
pt(x)
q(x)

+ ∑
x∈X

pt(x)
d
dt
(log pt(x)− log q(x))

Note that

d
dt

pt(x) = p(x)− p∗(x)

d
dt

log pt(x) =
1

ln 2
1

pt(x)
(p(x)− p∗(x))

Using these facts, we have

d
dt

D(Pt||Q) = ∑
x∈X

(p(x)− p∗(x)) log
pt(x)
q(x)

+ ∑
x∈X

1
ln 2

(p(x)− p∗(x))

= ∑
x∈X

(p(x)− p∗(x)) log
pt(x)
q(x)

Here, note that if (∃x) such that p(x) > 0 and p∗(x) = 0, then limt↓0
d
dt D(Pt‖Q) → −∞,

which contradicts the fact that d
dt D(Pt‖Q) ≥ 0. Hence, if p(x) > 0, then p∗(x) > 0 and

therefore, Supp(P) ⊆ Supp(P∗). This proves the first part of the theorem. Now we evalu-
ate d

dt D(Pt‖Q) at t = 0.

d
dt

D(Pt||Q)|t=0 = ∑
x∈X

p(x) log
p∗(x)
q(x)

− p∗(x) log
p∗(x)
q(x)

= ∑
x∈X

p(x) log
p∗(x)
q(x)

p(x)
p(x)

− D(P∗||Q)

= ∑
x∈X

p(x) log
p(x)
q(x)

− ∑
x∈X

p(x) log
p(x)
p∗(x)

− D(P∗||Q)

= D(P||Q)− D(P||P∗)− D(P∗||Q) ≥ 0

Hence, D(P||Q) ≥ D(P||P∗) + D(P∗||Q).

Consider the following example, which shows that the inequality can in fact be strict.

Exercise 2.4. Let X = {0, 1} and Π = {P : p(1) ≤ 1/2}. Let Q be defined as

Q =

{
1 with prob. 3/4
0 with prob. 1/4
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1. Show that

P∗ =

{
1 with prob. 1/2
0 with prob. 1/2

2. Show that D(P||Q) > D(P||P∗) + D(P∗||Q) for the above example.

Next, we show how to compute and characterize I-projections for some special sets of
distributions.

2.1 Linear families and I-projections

Definition 2.5. For any given real-valued functions f1, f2, ..., fk on X and α1, α2, ..., αk ∈ R, the
set

L =

{
P | ∑

x∈X
p(x) · fi(x) = E

x∼P
[ fi(x)] = αi, ∀i ∈ [k]

}
is called a linear family of distributions.

We show that for linear families, the inequality proved above, is in fact tight. Moreover,
the projection P∗ lies in the interior of the polytope defining L.

Lemma 2.6. Let L be a linear family given by

L =

{
P : ∑

x∈X
p(x) · fi(x) = αi, i ∈ [k]

}

and
⋃

P∈L Supp(P) = X . Let P∗ = ProjL(Q). Then, for all P ∈ L

1. There exists β > 0 such that for t ∈ [−β, 0], Pt = tP + (1− t)P∗ ∈ L.

2. D(P‖Q) = D(P‖P∗) + D(P∗‖Q)

Then the I-Projection P∗ of Q onto L satisfies the Pythagorean identity

D(P‖Q) = D(P‖P∗) + D(P∗‖Q)

Proof: Recall that Supp(P) ⊆ Supp(P∗) and pt(x) = t · p(x) + (1− t) · p∗(x). Since the
conditions defining L are linear, we have that for all t ∈ R and all i ∈ [k]

∑
x∈X

pt(x) · fi(x) = t · ∑
x∈X

p(x) · fi(x) + (1− t) · ∑
x∈X

p∗(x) · fi(x) = αi
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However, we may not have pt(a) ≥ 0 for all t < 0. We find a β > 0 such that for t ∈ [−β, 0]

pt(x) ≥ 0 ⇔ t(p(x)− p∗(x)) ≥ − p∗(x)

Note that above inequality clearly holds if p(x)− p∗(x) < 0. Now choose β such that

β = min
x:p(x)−p∗(x)>0

{ p∗(x)
p(x)− p∗(x)

}
Notice that β > 0 since Supp(P∗) ⊇ ∪P∈L Supp(P).

The above implies that d
dt D(Pt||Q)|t=0 = 0 by the minimality of P∗, which in turn implies

the equality D(P||Q) = D(P||P∗) + D(P∗||Q).

The above can also be used to show that the I-projection onto L is of a special form. To
describe this, we define the following family of distributions.

Definition 2.7. Let Q be a given distribution. For any given functions g1, g2, ..., gk on X , the set

EQ(g1, . . . , gk) :=

{
P | ∃λ1, . . . , λk ∈ R ∀x ∈ X , p(x) = c · q(x) · exp

(
k

∑
i=1

λigi(x)

)}

is called an exponential family of distributions.

We will show that P∗ = ProjL(Q) ∈ EQ( f1, ..., fk). We prove this for a linear family defined
by a single constraint. The proof for families with multiple constraints is identical. Let
f : X → R and let L be defined as

L =

{
P | ∑

x∈X
p(x) · f (x) = E

x∼P
[ f (x)] = α

}

The projection P∗ is the optimal solution to the convex program

minimize D(P‖Q)

subject to ∑
x∈X

p(x) · f (x) = α

∑
x∈X

p(x) = 1

p(x) ≥ 0 ∀x ∈ X .

For λ0, λ1 ∈ R, we write the Lagrangian as

Λ(P; λ0, λ1) = D(P‖Q) + λ0 ·
(

∑
x

p(x)− 1

)
+ λ1 ·

(
∑
x

p(x) · f (x)− α

)
.
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The problem above can be written in terms of the Lagrangian as

inf
P≥0

sup
λ0,λ1∈R

Λ(P; λ0, λ1) .

From Lemma 2.6, we know that P∗ lies in the relative interior of the polytope defining L.
Then, strong duality holds for the above program and we can write

inf
P≥0

sup
λ0,λ1∈R

Λ(P; λ0, λ1) = sup
λ0,λ1∈R

inf
P≥0

Λ(P; λ0, λ1) .

We now characterize the form of the optimal solution by considering the second (dual)
program. For a given value of λ0, λ1, we can find the optimal solution P∗ by setting the
derivative of Λ(P; λ0, λ1) with respect to p(x) to zero, for every x ∈ X . This gives

log
(

p∗(x)
q(x)

)
+

1
ln 2

+ λ0 + λ1 · f (x) = 0

Thus, we have for all a ∈ X

p∗(x) = q(x) · 2−λ0−λ1· f (x) .

The proof for linear families defined by multiple constraints is identical. The above also
shows that maximum entropy distributions subject to linear constraints, always belong to
an exponential family. Exponential families have many interesting applications, and more
material on these can be found in the survey by Jordan and Wainwright [WJ08]. A good
reference for looking up the convex-duality based arguments above, is Chapter 5 of the
excellent book by Boyd and Vandenberghe [BV04].
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