
Information and Coding Theory Winter 2021

Lecture 3: January 19, 2021
Lecturer: Madhur Tulsiani

1 Shearer’s Lemma and Combinatorial Applications

The sub-additivity property of entropy lets us bound the entropy of the tuple (X1, . . . , Xn)
in terms of the individual entropies H(X1), . . . , H(Xn). Shearer’s lemma can be viewed
as a generalization of this statement which lets us obtain better bounds in case we can
estimate the entropy of subsets of random variables containing more than one random
variable.

Lemma 1.1 (Shearer’s Lemma). Let {X1, . . . , Xn} be a set of random variables. For any S ⊂ [n],
let us denote XS = {Xi : i ∈ S}. Let F ⊆ 2[n] be a collection of subsets of [n] with the property
that for all i ∈ [n], we have that |{S ∈ F | S 3 i}| ≥ t. Then

t · H(X1, . . . , Xn) ≤ ∑
S∈F

H(XS) .

We will actually prove a more general version of the lemma which can be stated in terms
of a distribution over subsets of [m] such that for each i ∈ [n], we have a lower bound on
the probability that a random subset from the distribution includes i. The lemma below
can easily be seen to imply the version above, by using the uniform distribution on the
collection F .

Lemma 1.2 (Shearer’s Lemma: distribution version). Let {X1, . . . , Xn} be a set of random
variables. For any S ⊂ [n], let us denote XS = {Xi : i ∈ S}. Let D be an arbitrary distribution
on 2[n] (set of all subsets of [n]) and let µ be such that ∀i ∈ [n] PS∼D [i ∈ S] ≥ µ. Then

µ · H(X1, . . . , Xn) ≤ E
S∼D

[H(XS)] .

Exercise 1.3. Check that Lemma 1.2 implies Lemma 1.1. Also check that both these lemmas imply
sub-additivity.

We now prove Lemma 1.2
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Proof: The proof of the lemma follows simply from the chain rule for entropy and the fact
that conditioning reduces entropy (on average).

E
S∼D

[H(XS)] = E
S∼D

[
∑
i∈S

H
(

Xi | XS∩[i−1]

)]
by Chain rule

≥ E
S∼D

[
∑
i∈S

H
(

Xi | X[i−1]

)]
H(Xi|XA) ≥ H(Xi|XB) for A ⊂ B

= E
S∼D

[
∑

i∈[n]
1{i∈S} · H

(
Xi | X[i−1]

)]
= ∑

i∈[n]
P

S∼D
[i ∈ S] · H

(
Xi | X[i−1]

)
≥ µ · ∑

i∈[n]
H
(

Xi | X[i−1]

)
= µ · H(X1, . . . , Xm)

We now consider some simple combinatorial applications of Shearer’s lemma.

1.1 Bounding volumes using projections

Consider a set of points S in (say) three dimensions, such that the projections in the xy, yz
and zx plain contain n1, n2 and n3 points respectively. How many points can there be in
the set S? Note that since many points in S can have the same projection on a plane, the
numbers n1, n2 and n3 can each be much smaller than |S|. However, since two different
points cannot have the same projection in all three planes, we know that each triple of
projections must determine a unique point. This gives

|S| ≤ n1 · n2 · n3 .

It turns out that we can significantly improve this bound using Shearer’s lemma. Let
(X, Y, Z) be a triple of random variables denoting the coordinates of a uniformly sam-
pled point from S. Thus, we have that H(X, Y, Z) = log |P|. Moreover, using Shearer’s
lemma, we also get that

2 · H(X, Y, Z) ≤ H(X, Y) + H(Y, Z) + H(Z, X) ,

since the family of pairs on the right includes each random variable twice. Also, since
(X, Y) denotes the projection of a random point from S in the xy plane, and total number of

2



projections is n1, we get that H(X, Y) ≤ log n1. Similarly, H(Y, Z) ≤ log n2 and H(Z, X) ≤
log n3. Combining these estimates gives

2 · log |S| ≤ log n1 + log n2 + log n3 ⇒ |P| ≤
√

n1 · n2 · n3 .

Note that there is nothing special about three dimensions. One can also prove the follow-
ing d-dimensional analogue using the same argument.

Proposition 1.4. Let S ⊆ Rd be a finite set of points in d dimensions, and let S1, . . . , Sd denote
the set of projections orthogonal to each of the d coordinate axes. Then we have

|S| ≤
(

d

∏
i=1
|Si|
)1/(d−1)

.

This can also be used to bound the volume of a body B in d dimensions in terms of the
(d− 1)-dimensional volumes of its projections. One can consider the body to be a union of
axis parallel cubes, with a point at the center of each cube. Then, a limiting argument com-
bined with the above estimate gives the following result known as the Loomis-Whitney
inequality.

Proposition 1.5 (Loomis-Whitney inequality). Let B ⊆ Rd be a measurable body and let
B1, . . . , Bd denote its projections orthogonal to each of the coordinate axes. Then, we have

Vold(B) ≤
(

d

∏
i=1

Vold−1(Bi)

)1/(d−1)

.

1.2 Counting graph homomorphisms

Shearer’s lemma can be used to give an estimate of the number of ways of “embedding”
a small graph G into a large graph H. For two graphs G : (VG, EG) and H = (VH, EH), an
embedding (also called a homomorphism) of G in H is defined as a function f : VG → VH
such that for all (u, v) ∈ EG, we have ( f (u), f (v)) ∈ VH. Note that the definition does not
prevent the image of non-edge pairs in EG from being edges in EH.

We will show an upper bound on the maximum number of embeddings for a graph G
into any H with at most m edges. For now, let us take G to be the 5-cycle with vertex set
{1, 2, 3, 4, 5}. Consider any graph H with at most m edges and let F = (F(1), . . . , F(5)) be
a collection of random variables denoting an embedding of G chosen uniformly from the
set of all embeddings. Using Shearer’s lemma, we can write

2 · H(F(1), . . . , F(5)) ≤ H(F(1), F(2)) + H(F(2), F(3)) + · · ·+ H(F(5), F(1)) .
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Since {1, 2} is an edge in G, the pair (F(1), F(2)) must correspond to an (ordered) edge in
H. Since the number of edges in H is at most m, we get that H(F(1), F(2)) ≤ log(2m).
Using the same bound for all terms on the right, we get

H(F(1), . . . , F(5)) ≤ 5
2
· log(2m) ,

which gives a bound of (2m)5/2 on the number of embeddings.

Exercise 1.6. Check that the exponent of 5/2 in the above bound is tight.

The above method can also be used to give a tight estimate for any graph G (of constant
size). In general, the exponent depends on a parameter known as the fractional independent
set number of G. I will divide this proof in a few parts and add this as an extra problem in
the homework. The solution to this problem need not be submitted.

The proof, along with many other combinatorial applications can also be found in the
surveys by Radhakrishnan [Rad03] and [Gal14]. A generalization of Shearer’s lemma was
also used in the paper by Friedgut [Fri04] that we discussed in the previous lecture.

2 Mutual Information

The mutual information is a quantity which measures the amount of dependence between
two random variables. Unlike correlation, which defines the random variables to take
values in the same space, the mutual information can be defined for any two random
variables. The mutual information between two random variables X and Y is defined by
the formula

I(X; Y) = H(X)− H(X|Y)

Using the chain rule for entropy, we can see that

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y) .

We can use the first two expressions to observe that I(X; Y) ≥ 0 and the last one to observe
that I(X; Y) = I(Y; X).

Example 2.1. Consider the random variable (X, Y) with X ∨ Y = 1, X ∈ {0, 1} and Y ∈ {0, 1}
such that:

(X, Y) =


10 w.p 1/3
01 w.p 1/3
11 w.p 1/3
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Then, we can calculate the entropy and mutual information as follows:

H(X) = H(Y) =
1
3

log 3 +
2
3

log
3
2

= log 3− 2
3

H(X, Y) = log 3

I(X; Y) = H(X) + H(Y)− H(X, Y) = log 3− 4
3

Conditioning on a third random variable Z, we can also define the conditional mutual
information I(X; Y|Z) as

I(X; Y|Z) := E
z
[I(X|Z = z; Y|Z = z)]

= E
z
[H(X|Z = z)− H(X|Y, Z = z)]

= H(X|Z)− H(X|Y, Z) .

Consider the following example of three random variables.

Example 2.2. Consider the random variable (X, Y, Z), X ∈ {0, 1}, Y ∈ {0, 1} and Z = X ⊕ Y
such that:

(X, Y, Z) =


000 w.p 1/4
011 w.p 1/4
101 w.p 1/4
110 w.p 1/4

We can check that in this case, X, Y are independent and thus I(X; Y) = 0. However,

I(X : Y|Z) = E
z
[I(X|Z = z; Y|Z = z)]

=
1
2

I(X|Z = 0; Y|Z = 0) +
1
2

I(X|Z = 1; Y|Z = 1)

=
1
2

log 2 +
1
2

log 2 = 1

The above example illustrates that unlike entropy, it is not true that conditioning (on aver-
age) decreases the mutual information. In the above example, while I(X; Y) = 0, we have
I(X; Y|Z) = 1 which is in fact the maximum possible.

Recall that entropy provides theoretical limits on source coding, where the goal is to com-
press information when transmitting in a way such that whatever we send is received
without any error. The concept of mutual information provides limits on transmission,
when the transmission "channel" is noisy. We will discuss this in detail when we consider
error-correcting codes, but it is instructive to consider the following example known as the
"Binary Symmetric Chhannel".
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Exercise 2.3. Let X be a random variable supported on {0, 1}, and let Y be a "noisy" copy of X,
which is equal to X with probability 1− p, and has the opposite value (0 is X is 1, and 1 if X is 0)
with probability p. Calculate the maximum possible value of I(X; Y) over all possible distributions
for X. This is known as the capacity of the binary symmetric channel.

As in the case of entropy, mutual information also obeys a chain rule.

Lemma 2.4. I((X1, . . . , Xm); Y) = ∑m
i=1 I(Xi; Y|X1, . . . , Xi−1)

Proof: The chain rule for mutual information is a simple consequence of the chain rule
for entropy. We have

I((X1, . . . , Xm); Y) = H(X1, . . . , Xm)− H(X1, . . . , Xm|Y)

=
m

∑
i=1

H(Xi|X1, . . . , Xi−1)−
m

∑
i=1

H(Xi|Y, X1, . . . , Xi−1)

=
m

∑
i=1

[H(Xi|X1, . . . , Xi−1)− H(Xi|Y, X1, . . . , Xi−1)]

=
m

∑
i=1

I(Xi; Y|X1, . . . , Xi−1)

2.1 Data Processing Inequality

We consider a set of random variables in a particular relationship and its consequences
for mutual information. An ordered tuple of random variables (X, Y, Z) is said to form
a Markov chain, written as X → Y → Z, if X and Z are independent conditioned on Y.
Here, we can think of Y as being sampled given the knowledge of X, and Z being sampled
given the knowledge of Y (but not using the “history” about X).

Note that although the notation X → Y → Z (and also the above description) makes it
seem like this is only a Markov chain the forward order, the conditional independence
definition implies that if X → Y → Z is Markov chain, then so is Z → Y → X. This is
sometimes to written as X ↔ Y ↔ Z to clarify that the variables form a Markov chain
in both forward and backward orders. The following inequality shows that information
about the starting point cannot increase as we go further in a Markov chain.

Lemma 2.5 (Data Processing Inequality). Let X → Y → Z be a Markov chain. Then

I(X; Y) ≥ I(X; Z) .
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Proof: It is perhaps useful to consider a useful special case first: let Z = g(Y) be a function
of Y. Then it is easy to see that X → Y → g(Y) form a Markov chain. We can prove the
inequality in this case by observing that conditioning on Y is the same as conditioning on
Y, g(Y).

I(X; Y) = H(X)− H(X|Y)
= H(X)− H(X|Y, g(Y))
≥ H(X)− H(X|g(Y)) = I(X; g(Y)) .

The first two lines of the above proof amounted to the fact that

I(X; Y) = I(X; (Y, g(Y)) = I(X; (Y, Z)) .

However, this continues to be true in the general case, since

I(X; (Y, Z)) = I(X; Y) + I(X; Z|Y) = I(X; Y) ,

where the second term is zero due to the conditional independence. Hence, the proof for
the general case is the same and we have

I(X; Y) = I(X; (Y, Z))
= H(X)− H(X|Y, Z)
≥ H(X)− H(X|Z) = I(X; Z) .

The special case Z = g(Y) is also useful to define the concept of a “sufficient statistic”,
which is a function of Y that makes the data processing inequality tight.

Definition 2.6. For random variables X and Y, a function g(Y) is called a sufficient statistic (of
Y) for X if I(X; Y) = I(X; g(Y)) i.e., g(Y) contains all the relevant information about X.

Exercise 2.7.

X =

{
p1 w.p. 1/2
p2 w.p. 1/2

Let Y be a sequence of n tosses of a coin with probability of heads given by X. Let g(Y) be the
number of heads in Y. Prove I(X; Y) = I(X; g(Y)).
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