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1 Fano’s inequality

We first prove an important inequality that lets us understand how well can some “ground
truth” random variable X be predicted based on some observed data Y. We state the
inequality in the language of Markov chains, which we saw before in the context of data
processing inequality. We will denote the Markov chain as X → Y → X̂. We can think
of X as the choice of an unknown parameter from some finite set X . We think of Y as the
“data” generated from this, say a sequence independent samples. Finally, we think of X̂
as a “guess” for X, which depends only on the data. Fano’s inequality is concerned with
the probability of error in the guess, defined as pe = P

[
X̂ 6= X

]
. We have the following

statement

Lemma 1.1 (Fano’s inequaity). Let X → Y → X̂ be a Markov chain, and let pe = P
[
X̂ 6= X

]
.

Let H2(pe) denote the binary entropy function computed at pe. Then,

H2(pe) + pe · log (|X | − 1) ≥ H(X|X̂) ≥ H(X|Y) .

Proof: We define a binary random variable, which indicates an error i.e

E :=

1 if X̂ 6= X

0 if X̂ = X

The bound in the ineuality then follows from considering the undertainty that still remains
after our prediction, i.e., the entroy H(X, E|X̂).

H(X, E|X̂) = H(X|X̂) + H(E|X, X̂) = H(X|X̂) ,

since H(E|X, X̂) = 0 (why?) Another way of computing this entropy is

H(X, E|X̂) = H(E|X̂) + H(X|E, X̂)

= H(E|X̂) + pe · H(X|E = 1, X̂) + (1− pe) · H(X|E = 0, X̂)

≤ H(E) + pe · H(X|E = 1, X̂)

≤ H2(pe) + pe · log (|X | − 1) .

Comparing the two expressions then proves the claim.
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Fano’s inequality provides a useful way of lower bounding the error of a predictor, partic-
ularly in the case when |X | > 2. As we will see later, in the case when |X | = 2, we will be
able to obtain better bounds using the concept of KL-divergence considered later.

2 Graph Entropy

We now consider an application of mutual information, using the concept of Graph En-
tropy defined by Körner [Kör73], and later used by Newman and Wigderson [NW95] for
certain circuit (formula) lower bound problems. This also provides an example of the sce-
nario we discussed in the previous lecture, when the mutual information I(X; Y is being
optimized over our choice of random variables X, Y, rather than being computed for given
random variables.

Given a graph G = (V , E), we define the graph entropy H(G) as

min
X,Y

I(X; Y)

s. t. X is uniformly distributed over V
Y is an independent set in G containing X

Note that while the concept is called “entropy”, we are defining it as a mutual informa-
tion. The name entropy comes from the original definition related to the best (asymptotic)
transmission rate for a random variable distributed over the vertices of the graph, when
we are required to use different symbols for vertices connected by edges (but not neces-
sarily otherwise). It can be proved that this asymptotic limit comes out to be equal to the
mutual information above, and we will use this version of the definition. Also, while the
graph entropy can be defined with respect to any distribution P on the vertex set V , we
will restric our discussion to the uniform distribution. Let us check a couple of examples.

Example 2.1 (Complete graph). Let Kn denote the complete graph on n vertices. Then H(Kn) =
log n. This follows from the fact that any independent set is of size at most one, and thus, we must
have Y = X. This gives

I(X; Y) = H(X)− H(X|Y) = log n− 0 = log n .

Also note that log n is the maximum possible value for a graph with |V| = n.

Example 2.2 (Bipartite graph). Let G be a bipartite graph, with n1 vertices on one side and n2
vertices on the other. Then, for any vertex v, all the vertices on the side of v form an indepdent set
containing v. If X is a uniformly random vertex, and Y equals all the vertices on the side of X, then

I(X; Y) ≤ H(Y) =
n1

n1 + n2
· log

(
n1 + n2

n1

)
+

n2

n1 + n2
· log

(
n1 + n2

n2

)
≤ 1 .

Since H(G) is the minimum of I(X; Y) over all (X, Y), we get that H(G) ≤ 1.

2



Exercise 2.3. Let α(G) denote the size of the maximum independent set in a graph G. Prove that
H(G) ≥ log

(
n

α(G)

)
.

An important property of graph entropy that we need, is that it is sub-additive under union
of edges.

Proposition 2.4 (Sub-additivity of graph entropy). Let G1 = (V , E1) and G2 = (V , E2) be
two graphs, and let G = (V , E1 ∪ E2), which we denote by G = G1 ∪ G2. Then,

H(G) = H(G1 ∪ G2) ≤ H(G1) + H(G2) .

Proof: Let (X, Y1) and (X, Y2) be pairs of random variables achieving H(G1) and H(G2)
(note that in both cases X is a uniform vertex from V). We can define (why?) a joint
distribution on the tuple (X, Y1, Y2) such that Y1 and Y2 are independent conditioned on
any value of X. Take this to be the joint distribution of the tuple (X, Y1, Y2) and let Y =
Y1 ∩ Y2. Note that if Y1, Y2 are independent sets containing X in G1 and G2 respectively,
then Y1 ∩Y2 is an indepdent set in G, containing X. This gives,

H(G1 ∪ G2) ≤ I(X; Y)
≤ I(X; (Y1, Y2)) (data processing inequality)
= H(Y1, Y2)− H(Y1, Y2 | X)

= H(Y1, Y2)− H(Y1 | X)− H(Y2 | X) (conditional independence)
≤ H(Y1) + H(Y2)− H(Y1 | X)− H(Y2 | X) (sub-additivity of entropy)
= H(G1) + H(G2) ,

which proves the claim.

2.1 Covering the complete graph with bipartite graphs

The properties of graph entropy considered so far can be used to provide a very simple
answer to the following combnatorial question: what is the minimum number of bipartite
graphs G1, . . . , Gr such that their edges cover all the edges of the complete graph i.e.,

Kn = G1 ∪ · · · ∪ Gr .

Note that just counting edges does not give a very strong bound since Kn has n(n− 1)/2
edges, while even a single bipartite graph can have n2/4 edges. On the other hand, graph
entropy will yield a (tight!) boound of log n. This also proves a special case of the formula-
size lower bounds considered by Newman and Wigderson [NW95], when considering∨∧∨

formulas (three alternating layers of OR, AND, and OR gates, with AND gates hav-
ing fan-in 2) for the threshold function checking ∑n

i=1 xi ≥ 2. Take a look at the paper for
more details.
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Back to the case of graphs, when Kn = G1 ∪ · · · ∪ Gr, we have

log n = H(Kn) ≤ H(G1) + · · ·+ H(Gr) ≤ r ,

where we used the bounds on the graph entropy of complete and bipartite graphs, as
computed earlier.

Exercise 2.5. Prove that the above bound is tight. In particular, when n is a power of 2, find a
covering of Kn with log n bipartite graphs (Hint: Think of each vertex as a (log n)-bit string).

3 Kullback Leibler divergence

The Kullback-Leibler divergence (KL-divergence), also known as relative entropy, is a
measure of how different two distributions are. Note that here we will talk in terms of
distributions instead of random variables, since this is how KL-divergence is most com-
monly expressed. It is of course easy to think of a random variable corresponding to a
given distribution and vice-versa. We will use capital letters like P(X) to denote a distri-
bution for the random variable X and lowercase letters like p(x) to denote the probability
for a specific element x.

Let P and Q be two distributions on a universe X , then the KL-divergence between P and
Q is defined as:

D(P||Q) := ∑
x∈U

p(x) log
(

p(x)
q(x)

)
Let us consider a simple example.

Example 3.1. Suppose X = {a, b, c}, and p(a) = 1
3 , p(b) = 1

3 , p(c) = 1
3 and q(a) = 1

2 ,
q(b) = 1

2 , q(c) = 0. Then

D(P||Q) =
2
3

log
2
3
+ ∞ = ∞ .

D(Q||P) = log
3
2
+ 0 = log

3
2

.

The above example illustrates two important facts: D(P||Q) and D(Q||P) are not necessar-
ily equal, and D(P||Q) may be infinite. Even though the KL-divergence is not symmetric,
it is often used as a measure of “dissimilarity” between two distribution. Towards this, we
first prove that it is non-negative and is 0 if and only if P = Q.

Lemma 3.2. Let P and Q be distributions on a finite universeX . Then D(P||Q) ≥ 0 with equality
if and only if P = Q.
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Proof: Let Supp(P) = {x | p(x) > 0}. Then, we must have Supp(P) ⊆ Supp(Q) if
D(P, Q) < ∞. We can then assume without loss of generality that Supp(Q) = X . Using
the fact the log is a (strictly) concave function, with Jensen inequality, we have:

D(P||Q) = ∑
x∈X

p(x) log
p(x)
q(x)

= ∑
x∈Supp(P)

p(x) log
p(x)
q(x)

= − ∑
x∈Supp(P)

p(x) log
q(x)
p(x)

≥ − log

 ∑
x∈Supp(P)

p(x) · q(x)
p(x)


= − log

 ∑
x∈Supp(P)

q(x)


≥ − log 1 = 0 .

For the case when D(P||Q) = 0, we note that this implies p(x) = p(x) ∀x ∈ Supp(P),
which in turn gives that p(x) = q(x) ∀x ∈ X .

Like entropy and mutual information, we can also derive a chain rule for KL-divergence.
Let P(X, Y) and Q(X, Y) be two distributions for a pair of variables X and Y. We then have
the following expression for D(P(X, Y)||Q(X, Y)).

Proposition 3.3 (Chain rule for KL-divergence). Let P(X, Y) and Q(X, Y) be two distributions
for a pair of variables X and Y. Then,

D(P(X, Y) ‖ Q(X, Y)) = D(P(X) ‖ Q(X)) + E
x∼P

[D(P(Y|X = x) ‖ Q(Y|X = x))]

= D(P(X) ‖ Q(X)) + D(P(Y|X) ‖ Q(Y|X))

Here P(X) and Q(X) denote the marginal distributions for the first variable, and P(Y|X =
x) denotes the conditional distribution of Y.

Proof: The proof follows from (by now) familiar manipulations of the terms inside the
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log function.

D(P(X, Y) ‖ Q(X, Y)) = ∑
x,y

p(x, y) log
p(x, y)
q(x, y)

= ∑
x,y

p(x)p(y|x) log
(

p(x)
q(x)

· p(y|x)
q(y|x)

)
= ∑

x
p(x) log

p(x)
q(x) ∑

y
p(y|x) + ∑

x
p(x)∑

y
p(y|x) log

p(y|x)
q(y|x)

= D(P(X) ‖ Q(X)) + ∑
x

p(x) · D(P(Y|X = x) ‖ Q(Y|X = x))

= D(P(X) ‖ Q(X)) + D(P(Y|X) ‖ Q(Y|X))

Note that if P(X, Y) = P1(X)P2(Y) and Q(X, Y) = Q1(X)Q2(Y), then D(P||Q) = D(P1||Q1)+
D(P2||Q2).

We note that KL-divergence also has an interesting interpretation in terms of source cod-
ing. Writing

D(P||Q) = ∑ p(x) log
p(x)
q(x)

= ∑ p(x) log
1

q(x)
−∑ p(x) log

1
p(x)

,

we can view this as the number of extra bits we use (on average) if we designed a code
according to the distribution P, but used it to communicate outcomes of a random variable
X distributed according to Q. The first term in the RHS, which corresponds to the average
number of bits used by the “wrong” encoding, is also referred to as cross entropy.

3.1 Total variation distance and Pinsker’s inequality

We can now relate KL-divergence to some other notions of distance between two proba-
bility distributions.

Definition 3.4. Let P and Q be two distributions on a finite universe X . Then the total-variation
distance or statistical distance between P and Q is defined as

δTV(P, Q) =
1
2
· ‖P−Q‖1 =

1
2
· ∑

x∈X
|p(x)− q(x)| .

The quantity ‖P−Q‖1 is referred to as the `1-distance between P and Q.
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The total variation distance of P and Q represents the maximum probability with which
any test can distinguish between the two distributions given one random sample. It may seem
that the restriction to one sample severely limits the class of tests, but we can always think
of an n-sample test for P and Q as getting one sample from one of the product distributions
Pn or Qn.

Let f : X → {0, 1} be any classifier, which given one sample x ∈ X , outputs 1 if the
guess is that the sample came from P, and 0 if the guess is that it came from Q. The
difference in its behavior over the two distributions can be measured by the quantity
(which can be thought of as the rate of true positive minus the rate of false positive)
|EP [ f (x)]−EQ [ f (x)]|. The following lemma bounds this in terms of the total variation
distance.

Lemma 3.5. Let P, Q be any distributions on X . Let f : X → [0, B]. Then∣∣∣∣EP [ f (x)]−E
Q
[ f (x)]

∣∣∣∣ ≤ B
2
· ‖P−Q‖1 = B · δTV(P, Q) .

Proof:∣∣∣∣EP [ f (x)]−E
Q
[ f (x)]

∣∣∣∣ =

∣∣∣∣∣∑x∈X p(x) · f (x)− ∑
x∈X

q(x) · f (x)

∣∣∣∣∣
=

∣∣∣∣∣∑x∈X (p(x)− q(x)) · f (x)

∣∣∣∣∣
=

∣∣∣∣∣∑x∈X (p(x)− q(x)) ·
(

f (x)− B
2

)
+

B
2
·
(

∑
x∈X

p(x)− q(x)

)∣∣∣∣∣
≤ ∑

x∈X
|p(x)− q(x)| ·

∣∣∣∣ f (x)− B
2

∣∣∣∣
≤ B

2
· ‖P−Q‖1

Exercise 3.6. Prove that the above inequality is tight. What is the optimal classifier f ?

In many applications, we want to actually bound the `1-distance between P and Q but it’s
easier to analyze the KL-divergence. The following inequality helps relate the two.

Lemma 3.7 (Pinsker’s inequality). Let P and Q be two distributions defined on a universe X .
Then

D(P ‖ Q) ≥ 1
2 ln 2

· ‖P−Q‖2
1 .
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We will prove the inequality in two steps. Let us first consider a special case when X =
{0, 1} and P, Q are distributions as below

P =

{
1 w.p. p
0 w.p. 1− p

and Q =

{
1 w.p. q
0 w.p. 1− q

In this case, we have

D(P‖Q) = p · log
(

p
q

)
+ (1− p) · log

(
1− p
1− q

)
and ‖P−Q‖1 = 2 · |p− q| .

We will first prove Pinsker’s inequality for this special case.

Proposition 3.8 (Pinsker’s inequality for X = {0, 1}). Let P and Q be distributions as above.
Then,

p · log
(

p
q

)
+ (1− p) · log

(
1− p
1− q

)
≥ 2

ln 2
· (p− q)2 .

Proof: Let

f (p, q) := p · log
(

p
q

)
+ (1− p) · log

(
1− p
1− q

)
− 2

ln 2
· (p− q)2 .

We have,
∂ f
∂q

= − (p− q)
ln 2

(
1

q(1− q)
− 4
)

.

Since 1
q(1−q) − 4 ≥ 0 for all q, we have that ∂ f

∂q ≤ 0 when q ≤ p and ∂ f
∂q ≥ 0 when q ≥ p.

Moreover, f (p, q) = ∞ when q = 0 and f (p, q) = 0 when q = p. Thus, the function
achieves its minimum value at q = p and is always non-negative, which proves the desired
inequality.

We can now reduce the general case of Pinsker’s inequality, to the case of X = {0, 1}
considered above.

Proposition 3.9. Let P and Q be distributions on a finite set X . Then, there exist distributions
P′, Q′ on {0, 1} such that∥∥P′ −Q′

∥∥
1 = ‖P−Q‖1 and D(P‖Q) ≥ D(P′‖Q′)

Proof: Let A ⊂ X be
A = {x | p(x) ≥ q(x)} .
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and P′ and Q′ be

P′ :=


1 w.p. ∑

x∈A
p(x)

0 w.p. ∑
x/∈A

p(x)
and Q′ :=


1 w.p. ∑

x∈A
q(x)

0 w.p. ∑
x/∈A

q(x)

Then,

‖P−Q‖1 = ∑
x∈X
|p(x)− q(x)|

= ∑
x∈A

(p(x)− q(x)) + ∑
x/∈A

(q(x)− p(x))

=

∣∣∣∣∣∑x∈A
p(x)− ∑

x∈A
q(x)

∣∣∣∣∣+
∣∣∣∣∣
(

1− ∑
x∈A

p(x)

)
−
(

1− ∑
x∈A

q(x)

)∣∣∣∣∣
=
∥∥P′ −Q′

∥∥
1

To calculate the KL-divergence, we define a random variable Z (which is a function of X)
as

Z =

{
1 if x ∈ A
0 if x /∈ A

.

Since Z is a function of X, we can also think of the two distributions P and Q as joint
distributions for the random variables (X, Z). Also, note that the marginal distributions of
Z are P′ and Q′. Applying the chain rule for KL-divergence gives

D(P‖Q) = D(P(X, Z) ‖ Q(X.Z))
= D(P(Z) ‖ Q(Z)) + D(P(X|Z) ‖ Q(X|Z)
≥ D(P(Z) ‖ Q(Z))
= D

(
P′‖Q′

)
which completes the proof.

Finally, we can complete the proof of Pinkser’s inequality for the general case, by noting
that

D(P‖Q) ≥ D(P′‖Q′) ≥ 1
2 ln 2

·
∥∥P′ −Q′

∥∥2
1 =

1
2 ln 2

· ‖P−Q‖2
1 .
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