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1 Convexity of KL-divergence

Before we consider applications, let us prove an important property of KL-divergence. We
prove below that D (P ‖ Q), when viewed as a function of the inputs P and Q, is jointly
convext in both it’s inputs i.e., it is convex in the input (P, Q) when viewed as a tuple.

Proposition 1.1. Let P1, P2, Q1, Q2 be distributions on a finite universe X , and let α ∈ [0, 1].
Then,

D (α · P1 + (1− α) · P2 ‖ α ·Q1 + (1− α) ·Q2) ≤ α · D (P1 ‖ Q1) + (1− α) · D (P2 ‖ Q2) .

Proof: For this proof, we will use an inequality called the log-sum inequality, the proof of
which is left is an exercise. The inequality states that for a1, a2, b1, b2 ≥ 0

(a1 + a2) · log
(

a1 + a2

b1 + b2

)
≤ a1 · log

(
a1

b1

)
+ a2 · log

(
a2

b2

)
Using the above inequality, we can bound the LHS as

D (α · P1 + (1− α) · P2 ‖ α ·Q1 + (1− α) ·Q2)

= ∑
x∈X

(α · p1(x) + (1− α) · p2(x)) · log
(

α · p1(x) + (1− α) · p2(x)
α · q1(x) + (1− α) · q2(x)

)
≤ ∑

x∈X
α · p1(x) · log

(
α · p1(x)
α · q1(x)

)
+ (1− α) · p2(x) · log

(
(1− α) · p2(x)
(1− α) · q2(x)

)
= α · D (P1 ‖ Q1) + (1− α) · D (P2 ‖ Q2) .

Exercise 1.2 (Log-sum inequality). Prove that for a1, a2, b1, b2 ≥ 0

(a1 + a2) · log
(

a1 + a2

b1 + b2

)
≤ a1 · log

(
a1

b1

)
+ a2 · log

(
a2

b2

)
.
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2 Distinguishing two coins

We will now use Pinsker’s inequality to derive a lower bound on the number of sam-
ples needed to distinguish two coins with slightly differing biases. You can use Chernoff
bounds to see that this bound is optimal. The optimality will also follow from a much
more general result known as Sanov’s theorem which we will derive later. Suppose we are
given one of the following two coins (think of 1 as “heads” and 0 as “tails”):

P =

{
1 w.p. 1

2

0 w.p. 1
2

and Q =

{
1 w.p. 1

2 + ε

0 w.p. 1
2 + ε

Suppose we have an algorithm T(x1, x2, ...xn)→ {0, 1} that takes the output of n indepen-
dent coin tosses, and makes a decision about which coin the tosses came from. Suppose
that T outputs 0 to indicate the coin with distribution P and 1 to indicate the coin with
distribution Q. Let us say that T identifies both coins with probability at least 9/10, i.e.,

P
x∈Pn

[T(x) = 0] ≥ 9
10

and P
x∈Qn

[T(x) = 1] ≥ 9
10

The goal is to derive a lower bound for n. We will be able to derive a lower bound without
knowing anything about T. We first rewrite the above conditions as

E
x∈Pn

[T(x)] ≤ 1
10

and E
x∈Qn

[T(x)] ≥ 9
10

,

which gives

E
x∈Qn

[T(x)]− E
x∈Pn

[T(x)] ≥ 8
10

⇒ ‖Pn −Qn‖1 ≥
8
5

,

using the fact that the total variation distance upper bounds the distinguishing probability
of the best distinguisher. Using the chain rule for KL-divergence and Pinsker’s inequality,
we get

n · D (P ‖ Q) = D (Pn ‖ Qn) ≥ 1
2 ln 2

·
(

8
5

)2

⇒ n ≥ 1
2 ln 2 · D (P ‖ Q)

·
(

8
5

)2

Finally, it remains to give an upper bound on D (P ‖ Q), which can be obtained by writing
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it out as

D (P ‖ Q) =

(
1
2

)
· log

(
1/2

1/2 + ε

)
+

(
1
2

)
· log

(
1/2

1/2− ε

)
=

(
1
2

)
· log

(
1

1− 4ε2

)
=

1
2 ln 2

· ln
(

1 +
4ε2

1− 4ε2

)
≤ 1

2 ln 2
· 4ε2

1− 4ε2 ≤
8ε2

2 ln 2

(
using 1 + z ≤ ez, ε ≤ 1

4

)
Plugging in this upper bound, we get

n ≥ 1
2 ln 2 · D(P‖Q)

·
(

8
5

)2

≥ 1
8ε2 ·

(
8
5

)2

≥ 8
25ε2 .

Exercise 2.1. Prove using Chernoff bounds that O(1/ε2) samples are enough to distinguish the
two coins.

Exercise 2.2. How many samples are needed in the case when one coin comes up heads with prob-
ability p = ε and the other with probability q = 2ε?

Note that while in the above application, we chose to use D (P ‖ Q) to bound ‖P−Q‖1, we
could also have used D (Q ‖ P) instead, since ‖P−Q‖1 is a symmetric distance function.
You can check that in the above case, the two bounds are quite similar. In general, we can
always use the stronger bound

min {D (P ‖ Q) , D (Q ‖ P)} ≥ 1
2 ln 2

· ‖P−Q‖2
1 .

3 Lower bounds for bandit problems

Bandit problems are a common way of modeling decision making under partial informa-
tion. The problem is specified in terms of K “arms”, each of which generates a (possibly
random) “reward” at time t. As the player, we get to make a choice Ct ∈ [K] at time t for
which arm to choose, and we get to see the reward generated by the arm Ct. After mak-
ing choices for times t = 1, . . . , n, we compare the reward earned, against the best arm in
hindsight. Denoting the reward for arm i at time t by Xi,t, the goal is to optimize

min
C1,...,Cn

(
max
i∈[K]

n

∑
t=1

Xi,t −
n

∑
t=1

XCt,t

)
.
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There are several variants of the problem, where are rewards for each arm at each time t
are selected randomly from an unknown distribution, or chosen adversarially based on the
players choices C1, . . . , Ct−1. Also, while comparison with a single arm is the most com-
mon way to define regret, one can consider other models where the comparison is again
“low complexity” choices in hindsight. See the book by Cesa-Bianchi and Lugosi [CBL06]
and the survey by Bubeck and Cesa-Bianchi [BCB12] for a detailed discussion of various
models and results.

When the rewards are bounded (say) in the range [0, 1], known algorithms can achieve an
upper bound of O(

√
nK log K) even in the adversarial case. The lower bound construction

we discuss below, which was given by Auer et al. [ACBFS02], yields a lower bound of
Ω(
√

nK) even in the case where the rewards are random and independent of the player’s
choices. The construction uses the following distribution: the rewards for one of the K
arms, chosen uniformly at random at the beginning, are generated according to a biased
coin, which is 1 with probability 1/2 + ε and 0 with probability 1/2− ε. The rewards for
all other arms are chosen according to a fair coin, are 0/1 with probability1/2 each. The
authors prove that

E [regret] ≥ ε · n ·
(

1− 1
K
− c0

√
ε2 · n

K

)
.

The result extends the bound we proved for distinguishing biased coins. One shows that
with a small number of samples, not only is it not possible to distinguish the distributions,
but any algorithm to guess the right distribution makes about as many errors as random
guessing. The above expression can be interpreted in this way, thinking of the cost of
each incorrect guess as ε, and the number of mistakes made by random guessing, as being
n
(
1− 1

K

)
. The regret bound follows from the above estimate by choosing ε2 = Θ(K/n).

We will analyze a toy version of the above problem, with K = 2. We will argue that any
guessing algorithm must make a mistake on about 1/2 the guesses. For the case of K = 2,
we will prove that

E [regret] ≥ ε · n ·
(

1
2
− c0 ·

√
ε2 · n

)
.

This captures many of the ideas in the proof of the general case, while avoiding some
notational difficulties.

3.1 Lower bound for two-armed bandits

We consider a case with only two arms, labelled ` and r, with rewards X`,t and Xr,t at
time t. We consider a random variable H which equals ` or r with probability 1/2 each,
and chooses the location of the biased coin (this is chosen and fixed at the beginning). If
H = `, rewards are sampled according to the distribution P`, where each X`,t is indepen-
dently 1 with probability 1/2 + ε and 0 with probability 1/2− ε, and each Xr,t is 0/1 with
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probability 1/2 each. Likewise, we denote by Pr the distribution in the case when H = r.
In this case, each X`,t is 0/1 with probability 1/2 each, and the rewards Xr,t are 0/1 with
probabilities 1/2− ε and 1/2 + ε.

We first change the goal from the analysis of the expected regret, to analyzing the deviation
from the choice with the best expected reward. This quantity, which involves a switch of
E [max{·}] and max{E [·]} is referred to as the “pseudo-regret”.

Proposition 3.1. For any player strategy, we have that

E [regret] ≥
(

1
2
+ ε

)
· n−E

[
n

∑
t=1

XCt,t

]
.

Proof: We have

E [regret] = E

[
max

i∈{`,r}

n

∑
t=1

Xi,t −
n

∑
t=1

XCt,t

]

≥ max
i∈{`,r}

·E
[

n

∑
t=1

Xi,t

]
− E

[
n

∑
t=1

XCt,t

]

=

(
1
2
+ ε

)
· n − E

[
n

∑
t=1

XCt,t

]
,

using the fact that the maximum of the two expectations is
( 1

2 + ε
)
· n.

Randomness and determinism. Note that if RC denotes the randomness used in the
strategy of the player, and RX denotes the randomness in the rewards, then using the fact
that the distribution of all the rewards is independent of the player’s strategy, we can write the
second term (expected reward) above as

E

[
n

∑
t=1

XCt,t

]
= E

RC
E
RX

[
n

∑
t=1

XCt,t

]
.

Thus, if the expectation is at least θ, then there exists a value of RC which achieves a value
of at least θ. Using the contrapositive, it suffices to prove an upper bound on the expected
reward (and hence a lower bound on regret) only against deterministic strategies of the
player. Note that this only means that the choices Ct are deterministic functions of the re-
wards seen by the player. Viewed in isolation, there is still randomness in the choice Ct,
which comes from the randomness of the rewards {X`,1, . . . , X`,t−1} and {Xr,1, . . . , Xr,t−1}
We can formalize this as follows. Let Ω = {0, 1}n × {0, 1}n be the outcome space contain-
ing outcomes of all coin tosses (rewards) {X`,t, Xr,t}t∈[n]. Then each choice Ct is a function
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Ct : Ω → {`, r}. We also define random variables Zt = XCt,t capturing the rewards ac-
tually seen by the player. Notice again that Zt : Ω → {0, 1} is a function completely
determined by the outcomes of the tosses. Since P` and Pr are distributions for all the coin
tosses (rewards), we can also think of them as giving distributions for the views Z1, . . . , Zn.

Another crucial property is that since the strategy of the player only depends on the rewards
they actually see, we can actually think of each Ct as a deterministic function of the values of
Z1, . . . , Zt−1. This can seem confusing since it seems what we see depends on the choices
Ct, but remember that we have already fixed a deterministic strategy for the player, and
are only claiming that the choices Ct depend on the 0/1 values seen by the player in the
previous steps (these values may correspond to X`,j or Xr,j depending on Cj). Given the
fixed strategy, C1 is already determined and we already know if the player is going to see
the value of X`,1 or Xr,1. Now, given this value Z1, C2 is determined, which determines if
the player is going to see X`,2 or Xr,2. Thus, given Z1 and Z2, C3 is determined an so on.

We can now resume our analysis of the expected regret. We first relate it to the number of
“wrong choices” where Ct 6= H.

Proposition 3.2.
E [regret] ≥ ε ·E [|{t | Ct 6= H}|] .

Proof: Note that E [XCt,t] =
( 1

2 + ε
)

if Ct = H, and E [XCt,t] = 1
2 if Ct 6= H. Using

Proposition 3.1, we have

E [regret] ≥
(

1
2
+ ε

)
· n−E

[
n

∑
t=1

XCt,t

]
= ε ·E [|{t | Ct 6= H}|] .

We can now relate the number of mistakes to the statistical distance between the distribu-
tions of the rewards seen by the player, in the cases when H = ` and when H = r.

Proposition 3.3.

E [|{t | Ct 6= H}|] ≥ n
2
·
(

1− 1
2
· ‖P`(Z1, . . . , Zn)− Pr(Z1, . . . , Zn)‖1

)
.

Proof: Computing the expectation conditioned on the value of H, we get

E [|{t | Ct 6= H}|] =
1
2
·E [|{t | Ct = r}| | H = `] +

1
2
·E [|{t | Ct = `}| | H = r]

=
1
2
·
(

n−E
P`
[|{t | Ct = `}|] + E

Pr
[|{t | Ct = `}|]

)
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Since the choices of the player are functions of the view (Z1, . . . , Zn), we can write |{t | Ct = `}| =
f (Z1, . . . , Zn) as a function which takes values between 0 and n. Thus, we get

E
P`
[|{t | Ct = `}|]−E

Pr
[|{t | Ct = `}|] = E

P`
[ f (Z1, . . . , Zn)]−E

Pr
[ f (Z1, . . . , Zn)]

≤ n
2
· ‖P`(Z1, . . . , Zn)− Pr(Z1, . . . , Zn)‖1 .

Substituting this bound in the above equality then proves the claim.

As before, we can now bound the statistical distance using Pinsker’s inequality.

Proposition 3.4. There exists a constant c > 0 such that

‖P`(Z1, . . . , Zn)− Pr(Z1, . . . , Zn)‖2
1 ≤ c · ε2 · n .

Proof: As before, we use Pinsker’s inequality and bound the KL-divergence. We have

D (P`(Z1, . . . , Zn) ‖ Pr(Z1, . . . , Zn)) =
n

∑
t=1

D (P`(Zt | Z1, . . . , Zt−1) ‖ Pr(Zt | Z1, . . . , Zt−1)) .

We now use the fact that Ct is determined by the values of Z1, . . . , Zt−1, which we denote
below by Z<t for short. Also, since the rewards X`,t and Xr,t are independent of the history
(in both P` and Pr), we get

D (P`(Zt | Z<t) ‖ Pr(Zt | Z<t)) =

{
D (P`(X`,t) ‖ Pr(X`,t)) if Ct(Z<t) = `

D (P`(Xr,t) ‖ Pr(Xr,t)) if Ct(Z<t) = r

Finally, using D (p ‖ q) to denote the KL-divergence of distributions P and Q on {0, 1}
with p(1) = p and q(1) = q, we get that

D (P`(X`,t) ‖ Pr(X`,t)) = D
(

1
2
+ ε ‖ 1

2

)
and D (P`(Xr,t) ‖ Pr(Xr,t)) = D

(
1
2
‖ 1

2
+ ε

)
.

Since both the divergences above are bounded by c′ · ε2 for some constant c′ (check!) we
get using Pinsker’s inequality that

‖P`(Z1, . . . , Zn)− Pr(Z1, . . . , Zn)‖2
1 ≤ 2 ln 2 · n · c′ε2 ,

which proves the claim.

Combining the bounds from Proposition 3.2, Proposition 3.3 and Proposition 3.4, we now
get that

E [regret] ≥ εn
2
·
(

1− 1
2
· ‖P`(Z1, . . . , Zn)− Pr(Z1, . . . , Zn)‖1

)
≥ εn

2
·
(

1−
√

c · ε2 · n
)

= εn ·
(

1
2
− c0 ·

√
ε2 · n

)
,

for c0 =
√

c/2.
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