
Information and Coding Theory Winter 2021

Lecture 6: January 28, 2021
Lecturer: Madhur Tulsiani

1 Dealing with infinite universes

So far, we have only considered random variables taking values over a finite universe. We
now consider how to define the various information theoretic quantities, when the set of
possible values is not finite.

1.1 Countable universes

When the universe is countable, various information theoretic quantities such as entropy
an KL-divergence can be defined essentially as before. Of course, since we now have
infinite sums in the definitions, these should be treated as limits of the appropriate series.
Hence, all quantities are defined as limits of the corresponding series, when the limit exists.

Convergence is usually not a problem, but it is possible to construct examples where
the entropy is infinite. Consider the case of U = N, and a probability distribution P
satisfying ∑x∈N p(x) = 1. Since the sequence ∑x p(x) converges, usually the terms of
∑x p(x) · log(1/p(x)) are not much larger. However, we can construct an example using
the fact that ∑n≥2 1/(k · (log k)α) converges if an only if α > 1. Define

p(x) =
C

x · (log x)2 ∀x ≥ 2 where lim
n→∞ ∑

2≤x≤n

1
x · (log x)2 =

1
C

.

Then, for a random variable X distributed according to P,

H(X) = ∑
x≥2

C
x · (log x)2 · log

(
x · (log x)2

C

)
= ∞ .

Exercise 1.1. Calculate H(X) when X be a geometric random variable with

P [X = n] = (1− p)n−1 · p ∀n ≥ 1
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1.2 Uncountable universes

When the universe is not countable, one has to use measure theory to define the appropri-
ate information theoretic quantities (actually, it is the KL-divergence which is defined this
way). However, we will mostly consider the special case of distributions with a probability
density function. Such random variables are referred to as continuous random variables.
Given a random variable X taking values in (say) Rn with associated density function p(x),
we have the property that for any “box” B = I1 ×× · · · × In, where I1, . . . , In are (open or
closed) intervals, we have

P [X ∈ B] =
∫

B
p(x) · dx .

A common example is the Gaussian distribution. The distribution of a one-dimensional
Gaussian random variable X with mean E [X] = µ and variance E

[
(X− µ)2] = σ2 is

denoted by N(µ, σ2) and has the associated density function

p(x) =
1√

2π · σ
· exp

(
− (x− µ)2

2σ2

)
.

Similarly, for a Gaussian random variable taking values in Rn with mean vector E [X] = µ
and covariance matrix E

[
(X− µ)(X− µ)T

]
= Σ, we denote the distribution as N(µ, Σ)

and have the density function

p(x) =
1

(2π)n/2 · |Σ|1/2 · exp
(
−1

2
· (x− µ)TΣ−1(x− µ)

)
,

where |Σ| denotes log(|det(Σ)|) for the positive definite matrix Σ.

1.3 Differential entropy

A commonly used definition in the case of continuous random variables, is that of differ-
ential entropy.

Definition 1.2. Let X be a random variable taking values in Rn, with density p. Then the differ-
ential entropy of X is defined to be the following integral (if it exists)

h(X) :=
∫

p(x) · log
(

1
p(x)

)
dx .

Although the expression for differential entropy looks syntactically similar to that of en-
tropy in the finite case, p(x) appearing in the expression above is a probability density
function and not a probability! In fact, it is problematic to think of h(X) as a measure of
uncertainty or “randomness content” for a random variable as illustrated by the following
example.
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Example 1.3. Consider X to be uniform on [0, 1]. Then

h(X) =
∫ 1

0
1 · log(1)dx = 0 .

Thus, the differential entropy for X is 0 even though it non-trivial random variable! Even more
troublingly, for Y = X/2, which is now uniform in [0, 1/2], we have

h(Y) =
∫ 1/2

0
2 · log(1/2)dy = − 1 .

Thus, h(Y) is non even a non-negative quantity! Finally, consider Z = X2, where X is uniform in
[0, 1]. One can check that the density function is now p(z) = 1

2
√

z , which gives

h(Z) =
∫ 1

0

1
2
√

z
· log(2

√
z)dz = 1− 1

ln 2
.

As the above example shows, the differential entropy is not always a non-negative quan-
tity, and depends on how we parametrize a distribution. A uniform distribution on disks
with diameters in [0, 1] can be parametrized in terms of the diameters, radii, or area. The
above example shows that we will obtain different values for differential entropy in each
of these cases.

Relating differential entropy to the limit of a sum. One way of trying to understand
the above behavior is to consider the derivation of entropy for a continuous random vari-
ables, using the limit of a sum. Let P be such that both p(x) and p(x) · log(1/p(x)) are
Riemann integrable. If we divide the real line into intervals of length ε, using the mean
value theorem, w we can find a point xk for each interval [k · ε, (k + 1) · ε] (where k ∈ Z)
such that

ε · p(xk) =
∫ (k+1)·ε

k·ε
p(x)dx .

Consider the random variable X′ taking values in the countable set {xk}k∈Z such that

P
[
X′ = xk

]
= ε · p(xk) .

Then, we have

H(X′) = ∑
k∈Z

ε · p(xk) · log
(

1
ε · p(xk)

)
= ∑

k∈Z
ε · p(xk) · log

(
1

p(xk)

)
+

1
ε

Note that the definition of differential entropy is the limit of the first sum, as ε→ 0. How-
ever, this is not the limit of H(X′), which is actually infinite. Hence, the concept of differ-
ential entropy is not a measure of the randomness content of a random variable and one
should be careful about how to interpret it.
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Since differential entropy is the limit up to the discretization factor of log(1/ε), it also
changes when we scale the random variable. Let X be any random variable with the den-
sity p and let Y = α · X. Then, Y has the density q(y) = (1/α) · p(y/α) and

h(Y) =
∫

q(y) · log
(

1
q(y)

)
dy =

∫ 1
α
· p(y/α) · log

(
α

p(y/α)

)
= h(X) + log(α) .

Thus, in general it is problematic to compare the values differential entropy for two ran-
dom variables, without controlling for the scale. Occasionally, we will see a comparison
between two random variables once we restrict them to having the same values for some
moments (which fixes a scale). See the introduction by Marsh [Mar13] on how to work
with the notion of differential entropy.

1.4 KL-divergence

We define KL-divergence for two distributions analogously, when both distributions have
associated density functions.

Definition 1.4. If P and Q are two distributions with densities p and q, then their KL-divergence
if defined by the integral

D(P‖Q) :=
∫

p(x) · log
(

p(x)
q(x)

)
dx .

Unlike the concept of differential entropy, that of KL-divergence is a direct generalization
of KL-divergence for distributions on finite universes. A measure-theoretic definition of
KL-divergence was developed in the works of Kolmogorov and Pinsker. A detailed treat-
ment can be found in Chapter 7 of the book by Gray [Gra11] (Chapter 5 of the older edition
linked from the author’s webpage).

In general, consider any two probability measures P, Q on a space Ω with underlying
σ-algebra F ⊆ 2Ω (defining the notion of “valid events” which one can talk about). A
random variable X taking values in a finite set [n] is defined to be a measurable function
X : Ω → [n] i.e., we require X−1(S) to be a valid event in F , for all subsets S ⊆ [n]. Then,
the KL-divergence of P and Q is defined to be

D(P‖Q) = sup
X,n

D(P(X)‖Q(X)) ,

for X and n as above. When P and Q have densities p and q, this definition can be shown
to converge to the one defined above.

Note that the measure-theoretic definition reduces the infinite case to the (supremum over)
finite cases.
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Since mutual information of two random variables X, Y can be defined in terms of the
KL-divergence as (see Homework 1)

I(X; Y) = D (P(X, Y) ‖ P(X)P(Y)) ,

this also gives a measure-theoretic definition for mutual information.

Also, since D(P(X)‖Q(X)) ≥ 0 for each of the finite cases, we still have D(P‖Q) for any
two distributions over Rn. Thus, any inequalities between entropies which were derived
using the non-negativity of KL-divergence are still valid. These include the non-negativity
of mutual information or (equivalently) the fact that conditioning reduces entropy, the
sub-additivity of entropy and also Shearer’s lemma. In addition, Pinsker’s inequality also
holds for the infinite setting, since the total variation distance can also be defined by a
similar expression in terms of finite distributions.

2 Gaussian computations

We now derive the expressions for entropy and KL-divergence of Gaussian distributions,
which often come in handy.

2.1 Differential entropy

For a one-dimensional Gaussian X ∼ N(µ, σ2) we can calculate the differential entropy as

h(X) =
∫

p(x) · 1
ln 2
·
(
(x− µ)2

2σ2 +
1
2

ln(2πσ2)

)
dx

=
1

ln 2
·
(

1
2
+

1
2

ln(2πσ2)

)
=

1
2
· log(2π · e · σ2) .

For the n-dimensional case, we first consider a Gaussian variable X with mean 0 and co-
variance In, which means that we can think of X = (X1, . . . , Xn) where each Xi is a one-
dimensional Gaussian with mean 0 and variance 1. Using the chain-rule for differential
entropy (check that it holds) we get

h(X) = h(X1) + · · ·+ h(Xn) =
n
2
· log(2π · e) .

Before computing the entropy of a general Gaussian variables, it is helpful to consider the
following rule for change of variables.
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Exercise 2.1 (Change of variables). Let X be a random variable over Rn with associated density
function pX. Using the Jacobian for change of variables in integrals, check that

1. If c ∈ Rn is a fixed vector, then the density function for Y = X + c is given by pY(y) =
pX(y− c).

2. If A ∈ Rn×n is a nonsingular matrix, then the density function for Y = AX is given by
pY(y) =

pX(A−1y)
|A| , where |A| denotes |det(A)|.

Using the above, we can derive how the differential entropy of a random variable changes
due to translation and scaling.

Proposition 2.2. Let X be a continuous random variable over Rn. Let c ∈ Rn and let A ∈ Rn×n

be a non-singular matrix. Then

1. h(X + c) = h(X).

2. h(AX) = h(X) + log |A|.

Proof: Let pX be the density function for X. For Y = X + c, we have

h(Y) =
∫

Rn
pY(y) · log

(
1

pY(y)

)
dy

=
∫

Rn
pX(y− c) · log

(
1

pX(y− c)

)
dy

=
∫

Rn
pX(x) · log

(
1

pX(x)

)
dx (substituting x = y− c)

= h(X)

Similarly, for Y = AX, we have

h(Y) =
∫

Rn
pY(y) · log

(
1

pY(y)

)
dy

=
∫

Rn

pX(A−1y)
|A| · log

(
|A|

pX(A−1y)

)
dy

=
∫

Rn

pX(x)
|A| · log

(
|A|

pX(x)

)
|A| dx (substituting x = A−1y)

= h(X) + log(|A|) .

Using the fact that Y ∼ N(µ, Σ) can be written as Y = Σ1/2X + µ, where X = N(0, In)
(check this!) we get that

h(Y) = h(X) + log(
∣∣∣Σ1/2

∣∣∣) =
n
2
· log(2π · e) + 1

2
· log |Σ| .
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2.2 KL-divergence

We can compute the KL-divergence of two Gaussian distributions P = N(µ1, σ2
1 ) and Q =

N(µ2, σ2
2 ) as

D (P ‖ Q) =
∫

R
p(x) · log

(
p(x)
q(x)

)
dx

= E
x∼P

[
log
(

p(x)
q(x)

)]
= E

x∼P

[
1

ln 2
· ln
(

exp
(
−(x− µ1)

2/2σ2
1

)
√

2πσ1
·

√
2πσ2

exp
(
−(x− µ2)2/2σ2

2

))]

=
1

ln 2
· E

x∼P

[
(x− µ2)2

2σ2
2

− (x− µ1)
2

2σ2
1

+ ln
(

σ2

σ1

)]
=

1
ln 2
·
(

σ2
1 + (µ1 − µ2)2

2σ2
2

− 1
2
+ ln

(
σ2

σ1

))
=

1
ln 2
·
(

σ2
1 − σ2

2 + (µ1 − µ2)2

2σ2
2

+ ln
(

σ2

σ1

))
.

The above is a common way of showing that changing the parameters of a Gaussian dis-
tribution by a small amount does not alter the behavior of an algorithm using the corre-
sponding random variable as input, by too much.

Exercise 2.3. Let P and Q be Gaussian distributions with means µ1 and µ2 respectively, and
variance σ2 in both cases. Use Pinsker’s inequality to show that

‖P−Q‖1 ≤
|µ1 − µ2|

σ
.

Exercise 2.4. Compute D (P ‖ Q) for the n-dimension Gaussian distributions P = N(µ1, Σ1)
and Q = N(µ2, Σ2).
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