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1 The Method of Types

For this lecture, we will take X to be a finite universe |X | = r, and use x = (x1, x2, . . . , xn)
to denote a sequence of n elements from U.

Definition 1.1. The type Px of x, also called the empirical distribution of x, is a distribution P̂
on X , defined as

P̂(a) :=
|{i : xi = a}|

n
∀a ∈ X .

We use Tn to denote the set of all types coming from sequences of length n. We also use CP to denote
the set of all sequences with the type P. CP is called the type class of P.

CP := {x ∈ X n | Px = P} .

Exercise 1.2. Check that |Tn| = (n+r−1
r−1 ) ≤ (n + 1)r.

Next, we bound the size of a given type class in terms of the entropy of that type.

Proposition 1.3. For any type P ∈ Tn, we have

2n·H(P)

(n + 1)r ≤ |CP| ≤ 2n·H(P) .

Proof: For each ai ∈ U, let P(ai) = ki/n. Then |CP| = n!/(k1!k2! . . . kr!). We prove the
lower bound by considering

nn = (k1 + k2 + · · ·+ kr)
n = ∑

j1+···+jr=n

n!
j1! . . . jm!

(kj1
1 . . . kjr

m)

≤
(

n + r− 1
r− 1

)
· max

j1+···+jr=n

n!
j1! . . . jr!

· (kj1
1 . . . kjr

m) ,

where each tuple (j1, . . . , jr) corresponds to a distinct type. We leave it as an exercise to
check that the maximum term in the expression above is when (j1, . . . , jr) = (k1, . . . , kr).
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Exercise 1.4. Show that

n!
j1! . . . jr!

· (kj1
1 . . . kjr

r ) ≤
n!

k1! . . . kr!
· (kk1

1 . . . kkr
r )

for all (j1, . . . , jr) such that j1 + · · ·+ jr = n. (Hint: if js > ks for some s, then jt < kt for some t.)

Using the above, we can now prove the lower bound.

nn ≤
(

n + r− 1
r− 1

)
· n!

k1! . . . kr!
· (kk1

1 . . . kkr
r ) ≤ (n + 1)r · |CP| · (kk1

1 . . . kkm
m ) .

We get

|CP| ≥
1

(n + 1)r ·
nk1+k2+···+kr

kk1
1 . . . kkr

r

=
1

(n + 1)r ·
r

∏
i=1

(
n
ki

)ki

=
1

(n + 1)r ·
r

∏
i=1

2ki ·log(n/ki) =
1

(n + 1)r · 2
n·H(P) .

The proof of the upper bound is similar and left as an exercise.

Next, we need the observation that the probability of a sequence according to a product
distribution only depends on its type.

Proposition 1.5. Let Q be any distribution on U and let Qn the product distribution on X n. Let
x, y ∈ X n be such that Px = Py. Then, Qn(x) = Qn(y).

Proof: Let P = Px = Py. Then we have:

Qn(x) = ∏
a∈X

(Q(a))|{i:xi=1}| = ∏
a∈X

(Q(a))n·P(a) = Qn(y) .

Now we give bounds on the probability of a certain type occurring, in terms of the KL
divergence between the true distribution and the empirical distribution.

Theorem 1.6. For any product distribution Qn and type P on X n, we have

2−n·D(P‖Q)

(n + 1)r ≤ P
x∼Qn

[Px = P] ≤ 2−n·D(P‖Q) .
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Proof: Let x be of type Px = P. For the lower bound, we note that

Qn(x)
Pn(x)

=
∏a∈X (Q(a))nP(a)

∏a∈X (P(a))nP(a)
= ∏

a∈X

(
Q(a)
P(a)

)nP(a)

= 2n ∑a∈X P(a) log
(

Q(a)
P(a)

)
= 2−n·D(P‖Q)

We also know from the previous proposition that for any x ∈ CP, we have

Pn(x) = ∏
a∈U

(P(a))n·P(a) = 2−n·H(P) .

Finally, using Proposition 1.3, we get

P
x∼Qn

[Px = P] = ∑
x∈CP

Qn(x) = ∑
x∈CP

2−n·H(P) · 2−n·D(P‖Q)

= |CP| · 2−n·H(P) · 2−n·D(P‖Q)

≥ 2n·H(P)

(n + 1)r · 2
−n·H(P) · 2−n·D(P‖Q)

=
2−n·D(P‖Q)

(n + 1)r

The proof of the upper bound is left as an exercise. Note that It may be that Supp(Q) (
Supp(P) i.e., ∃a ∈ X : Q(a) = 0, P(a) 6= 0. Then the log(1/Q(a)) term makes D(P‖Q)
undefined, so thinking of D(P‖Q) as +∞, we get 2−nD(P‖Q) = ProbQn(Tn

P) = 0.

2 Chernoff bounds

The above counting can be used to prove the Chernoff bound. Let X = {0, 1}, and let
x = (x1, . . . , xn) be a sequence drawn from X n according to Qn, where

Q =

{
0 : with probability 1/2

1 : with probability 1/2 .

We expect there to be around n/2 occurrences of 1 in X; that is, E[∑n
i=1 xi] = n/2. It is

natural to ask how much the empirical distribution is likely to deviate from n/2. If we set

P =

{
0 : with probability 1/2− ε
1 : with probability 1/2 + ε ,

then we have

P
Qn

[
X1 + · · ·+ Xn =

n
2
+ εn

]
= P

x∼Qn
[Px = P] ≤ 2−n·D(P‖Q) = 2−c·n·ε2

,

by Theorem 1.6, for a constant c. This is sort of like Chernoff bounds, but we may want to
know how likely we are to see any sufficiently large deviation, and not just the deviation
exactly equal to εn.
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Theorem 2.1 (Chernoff bound). For X = (X1, . . . , Xn) ∼Qn Un with Q the uniform distribu-
tion on X = {0, 1}, we have

P
Qn

[
n

∑
i=1

Xi ≥
n
2
+ εn

]
≤ (n + 1) · 2−c·n·ε2

.

Proof: Let X = {0, 1} and note that that each type class corresponds to a unique value of
x1 + · · ·+ xn. From the above bound, we have that for any η > 0,

P
Qn

[
X1 + · · ·+ Xn =

n
2
+ ηn

]
≤ 2−c·n·η2

.

Going over all types for all η ≥ ε, and noting that the number of types is at most n + 1, we
get

P
Qn

[
n

∑
i=1

Xi ≥
n
2
+ εn

]
≤ (n + 1) · 2−c·n·ε2

,

as claimed.

The above idea can be generalized for product distributions over arbitrary (finite) uni-
verses to prove a general large deviation result known as Sanov’s theorem.

3 Sanov’s theorem

We generalize the Chernoff bound to understand the probability that Px ∈ Π for an arbi-
trary set Π of distributions over U.

Theorem 3.1 (Sanov). Let Π be a set of distributions on X , and |X | = r. Then

P
Qn

[Px ∈ Π] ≤ (n + 1)r · 2−n·δ ,

where δ = infP∈Π D(P‖Q). Moreover, if Π is the closure of an open set and

P∗ := arg min
P∈Π

D(P‖Q) ,

then
1
n
· log

(
P

x∼Qn
[Px ∈ Π]

)
→ − D(P∗‖Q) .

Proof: For any P ∈ Tn, we have by Theorem 1.6 that

P
Qn

[x ∈ CP] ≤ 2−nD(P‖Q) .

4



Let Tδ = {P ∈ Tn | D(P‖Q) ≥ δ}. Then, we have

P
x∼Qn

[D(Px‖Q) ≥ δ] = ∑
P∈Tδ

2−n·D(P‖Q) ≤ (n + 1)r · 2−nδ.

We now use this to prove Sanov’s theorem. Take δ = infP∈Π D(P‖Q), so for all P ∈ Π we
have D(P‖Q) ≥ δ. Then we get

P
x∼Qn

[Px ∈ Π] = P
Qn

[Px ∈ Π ∩ Tn] ≤ P
Qn

[D(Px‖Q) ≥ δ] ≤ (n + 1)r · 2−nδ

as desired. Now let’s prove the other direction. Since Π is the closure of an open set
(obtained by including the limit points of all converging sequences), we can say that
the limit of the sequence converging to infP∈Π D(P‖Q) exists in the set, and there ex-
ists P∗ ∈ Π such that D(P∗‖Q) = infP∈Π D(P‖Q). This is the distribution P∗ satisfying
P∗ := arg minP∈Π D(P‖Q).

Also, there is an n0 such that we can find a sequence {P(n)}n≥n0 satisfying P(n) → P∗ and
P(n) ∈ Tn ∩Π for each n. Then we have

P
x∼Qn

[Px ∈ Π] = P
x∼Qn

[Px ∈ Π] = P
x∼Qn

[Px ∈ Π ∩ Tn]

≥ P
x∼Qn

[
Px = P(n)

]
≥ 1

(n + 1)r · 2
−nD(P(n)‖Q)

Thus we get

−D(P(n)‖Q)− r log(n + 1)
n

≤ 1
n

log
(

P
x∼Qn

[Px ∈ Π]

)
≤ − D(P∗‖Q) +

r log(n + 1)
n

which gives
1
n
· P

Qn
[Px ∈ Π]→ −D(P∗‖Q) ,

as claimed.

Note that the upper bound on the probability in Sanov’s theorem holds for any Π. How-
ever, for the lower bound we need some conditions on Π. This is necessary since if (for
example) Π is a set of distributions such that all probabilities in all the distributions are
irrational, then PQn [Px ∈ Π] = 0. In particular, we cannot get any lower bound on this
probability for such a Π.

Sanov’s theorem can also be extended to the case when X is an infinite set, using the
definition of KL-divergence as a supremum over all finite partitions of an infinite space.
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