Information and Coding Theory

Lecture 7: February 2, 2021

Lecturer: Madhur Tulsiani

1 The Method of Types

For this lecture, we will take \mathcal{X} to be a finite universe $|\mathcal{X}| = r$, and use $\overline{\mathbf{x}} = (x_1, x_2, \dots, x_n)$ to denote a sequence of *n* elements from *U*.

Definition 1.1. The type $P_{\overline{\mathbf{x}}}$ of $\overline{\mathbf{x}}$, also called the empirical distribution of $\overline{\mathbf{x}}$, is a distribution \hat{P} on \mathcal{X} , defined as

$$\hat{P}(a) := \frac{|\{i: x_i = a\}|}{n} \quad \forall a \in \mathcal{X}.$$

We use T_n to denote the set of all types coming from sequences of length n. We also use C_P to denote the set of all sequences with the type P. C_P is called the type class of P.

$$\mathcal{C}_P := \{ \overline{\mathbf{x}} \in \mathcal{X}^n \mid P_{\overline{\mathbf{x}}} = P \} .$$

Exercise 1.2. Check that $|\mathcal{T}_n| = \binom{n+r-1}{r-1} \leq (n+1)^r$.

Next, we bound the size of a given type class in terms of the entropy of that type.

Proposition 1.3. *For any type* $P \in T_n$ *, we have*

$$rac{2^{n \cdot H(P)}}{(n+1)^r} \ \le \ |\mathcal{C}_P| \ \le \ 2^{n \cdot H(P)} \, .$$

Proof: For each $a_i \in U$, let $P(a_i) = k_i/n$. Then $|C_P| = n!/(k_1!k_2!...k_r!)$. We prove the lower bound by considering

$$n^{n} = (k_{1} + k_{2} + \dots + k_{r})^{n} = \sum_{j_{1} + \dots + j_{r} = n} \frac{n!}{j_{1}! \dots j_{m}!} (k_{1}^{j_{1}} \dots k_{m}^{j_{r}})$$

$$\leq \binom{n+r-1}{r-1} \cdot \max_{j_{1} + \dots + j_{r} = n} \frac{n!}{j_{1}! \dots j_{r}!} \cdot (k_{1}^{j_{1}} \dots k_{m}^{j_{r}}),$$

where each tuple $(j_1, ..., j_r)$ corresponds to a distinct type. We leave it as an exercise to check that the maximum term in the expression above is when $(j_1, ..., j_r) = (k_1, ..., k_r)$.

Winter 2021

Exercise 1.4. Show that

$$\frac{n!}{j_1! \dots j_r!} \cdot (k_1^{j_1} \dots k_r^{j_r}) \leq \frac{n!}{k_1! \dots k_r!} \cdot (k_1^{k_1} \dots k_r^{k_r})$$

for all (j_1, \ldots, j_r) such that $j_1 + \cdots + j_r = n$. (Hint: if $j_s > k_s$ for some s, then $j_t < k_t$ for some t.)

Using the above, we can now prove the lower bound.

$$n^{n} \leq \binom{n+r-1}{r-1} \cdot \frac{n!}{k_{1}! \dots k_{r}!} \cdot (k_{1}^{k_{1}} \dots k_{r}^{k_{r}}) \leq (n+1)^{r} \cdot |\mathcal{C}_{P}| \cdot (k_{1}^{k_{1}} \dots k_{m}^{k_{m}})$$

We get

$$\begin{aligned} |\mathcal{C}_P| &\geq \frac{1}{(n+1)^r} \cdot \frac{n^{k_1+k_2+\dots+k_r}}{k_1^{k_1}\dots k_r^{k_r}} \\ &= \frac{1}{(n+1)^r} \cdot \prod_{i=1}^r \left(\frac{n}{k_i}\right)^{k_i} \\ &= \frac{1}{(n+1)^r} \cdot \prod_{i=1}^r 2^{k_i \cdot \log(n/k_i)} = \frac{1}{(n+1)^r} \cdot 2^{n \cdot H(P)} \,. \end{aligned}$$

The proof of the upper bound is similar and left as an exercise.

Next, we need the observation that the probability of a sequence according to a product distribution only depends on its type.

Proposition 1.5. Let Q be any distribution on U and let Q^n the product distribution on \mathcal{X}^n . Let $\overline{\mathbf{x}}, \overline{\mathbf{y}} \in \mathcal{X}^n$ be such that $P_{\overline{\mathbf{x}}} = P_{\overline{\mathbf{y}}}$. Then, $Q^n(\overline{\mathbf{x}}) = Q^n(\overline{\mathbf{y}})$.

Proof: Let $P = P_{\overline{x}} = P_{\overline{y}}$. Then we have:

$$Q^{n}(\overline{\mathbf{x}}) = \prod_{a \in \mathcal{X}} (Q(a))^{|\{i:x_{i}=1\}|} = \prod_{a \in \mathcal{X}} (Q(a))^{n \cdot P(a)} = Q^{n}(\overline{\mathbf{y}}).$$

Now we give bounds on the probability of a certain type occurring, in terms of the KL divergence between the true distribution and the empirical distribution.

Theorem 1.6. For any product distribution Q^n and type P on \mathcal{X}^n , we have

$$\frac{2^{-n \cdot D(P \parallel Q)}}{(n+1)^r} \leq \mathbb{P}_{\overline{\mathbf{x}} \sim Q^n}[P_{\overline{\mathbf{x}}} = P] \leq 2^{-n \cdot D(P \parallel Q)}.$$

Proof: Let $\overline{\mathbf{x}}$ be of type $P_{\overline{\mathbf{x}}} = P$. For the lower bound, we note that

$$\frac{Q^{n}(\overline{\mathbf{x}})}{P^{n}(\overline{\mathbf{x}})} = \frac{\prod_{a \in \mathcal{X}} (Q(a))^{nP(a)}}{\prod_{a \in \mathcal{X}} (P(a))^{nP(a)}} = \prod_{a \in \mathcal{X}} \left(\frac{Q(a)}{P(a)}\right)^{nP(a)} = 2^{n\sum_{a \in \mathcal{X}} P(a)\log\left(\frac{Q(a)}{P(a)}\right)} = 2^{-n \cdot D(P \parallel Q)}$$

We also know from the previous proposition that for any $\overline{\mathbf{x}} \in C_P$, we have

$$P^{n}(\overline{\mathbf{x}}) = \prod_{a \in U} \left(P(a) \right)^{n \cdot P(a)} = 2^{-n \cdot H(P)}.$$

Finally, using Proposition 1.3, we get

$$\begin{split} \Pr_{\overline{\mathbf{x}} \sim Q^{n}} \left[P_{\overline{\mathbf{x}}} = P \right] &= \sum_{\overline{\mathbf{x}} \in \mathcal{C}_{P}} Q^{n}(\overline{\mathbf{x}}) = \sum_{\overline{\mathbf{x}} \in \mathcal{C}_{P}} 2^{-n \cdot H(P)} \cdot 2^{-n \cdot D(P \parallel Q)} \\ &= |\mathcal{C}_{P}| \cdot 2^{-n \cdot H(P)} \cdot 2^{-n \cdot D(P \parallel Q)} \\ &\geq \frac{2^{n \cdot H(P)}}{(n+1)^{r}} \cdot 2^{-n \cdot H(P)} \cdot 2^{-n \cdot D(P \parallel Q)} \\ &= \frac{2^{-n \cdot D(P \parallel Q)}}{(n+1)^{r}} \end{split}$$

The proof of the upper bound is left as an exercise. Note that It may be that $\text{Supp}(Q) \subsetneq$ Supp(*P*) i.e., $\exists a \in \mathcal{X} : Q(a) = 0, P(a) \neq 0$. Then the $\log(1/Q(a))$ term makes D(P||Q) undefined, so thinking of D(P||Q) as $+\infty$, we get $2^{-nD(P||Q)} = \text{Prob}_{Q^n}(T_P^n) = 0$.

2 Chernoff bounds

The above counting can be used to prove the Chernoff bound. Let $\mathcal{X} = \{0, 1\}$, and let $\overline{\mathbf{x}} = (x_1, \dots, x_n)$ be a sequence drawn from \mathcal{X}^n according to Q^n , where

$$Q = \begin{cases} 0 : & \text{with probability } \frac{1}{2} \\ 1 : & \text{with probability } \frac{1}{2}. \end{cases}$$

We expect there to be around n/2 occurrences of 1 in $\overline{\mathbf{X}}$; that is, $\mathbb{E}[\sum_{i=1}^{n} x_i] = n/2$. It is natural to ask how much the empirical distribution is likely to deviate from n/2. If we set

$$P = \begin{cases} 0 : & \text{with probability } \frac{1}{2} - \varepsilon \\ 1 : & \text{with probability } \frac{1}{2} + \varepsilon \end{cases}$$

then we have

$$\mathbb{P}_{Q^n}\left[X_1+\cdots+X_n=\frac{n}{2}+\varepsilon n\right] = \mathbb{P}_{\overline{\mathbf{x}}\sim Q^n}\left[P_{\overline{\mathbf{x}}}=P\right] \leq 2^{-n\cdot D(P||Q)} = 2^{-c\cdot n\cdot \varepsilon^2},$$

by Theorem 1.6, for a constant *c*. This is sort of like Chernoff bounds, but we may want to know how likely we are to see *any* sufficiently large deviation, and not just the deviation exactly equal to *ɛn*.

Theorem 2.1 (Chernoff bound). For $\overline{\mathbf{X}} = (X_1, \dots, X_n) \sim_{Q^n} U^n$ with Q the uniform distribution on $\mathcal{X} = \{0, 1\}$, we have

$$\mathbb{P}_{Q^n}\left[\sum_{i=1}^n X_i \geq \frac{n}{2} + \varepsilon n\right] \leq (n+1) \cdot 2^{-c \cdot n \cdot \varepsilon^2}.$$

Proof: Let $\mathcal{X} = \{0, 1\}$ and note that that each type class corresponds to a unique value of $x_1 + \cdots + x_n$. From the above bound, we have that for any $\eta > 0$,

$$\mathbb{P}_{Q^n}\left[X_1+\cdots+X_n=\frac{n}{2}+\eta n\right] \leq 2^{-c\cdot n\cdot \eta^2}.$$

Going over all types for all $\eta \ge \varepsilon$, and noting that the number of types is at most n + 1, we get

$$\mathbb{P}_{Q^n}\left[\sum_{i=1}^n X_i \geq \frac{n}{2} + \varepsilon n\right] \leq (n+1) \cdot 2^{-c \cdot n \cdot \varepsilon^2},$$

as claimed.

The above idea can be generalized for product distributions over arbitrary (finite) universes to prove a general large deviation result known as Sanov's theorem.

3 Sanov's theorem

We generalize the Chernoff bound to understand the probability that $P_{\overline{x}} \in \Pi$ for an arbitrary set Π of distributions over U.

Theorem 3.1 (Sanov). Let Π be a set of distributions on \mathcal{X} , and $|\mathcal{X}| = r$. Then

$$\mathbb{P}_{\mathbb{Q}^n}[P_{\overline{\mathbf{x}}}\in\Pi] \leq (n+1)^r \cdot 2^{-n\cdot\delta},$$

where $\delta = \inf_{P \in \Pi} D(P || Q)$. Moreover, if Π is the closure of an open set and

$$P^* := \operatorname*{arg\,min}_{P \in \Pi} D(P \| Q)$$
 ,

then

$$\frac{1}{n} \cdot \log \left(\mathbb{P}_{\overline{\mathbf{x}} \sim Q^n} \left[P_{\overline{\mathbf{x}}} \in \Pi \right] \right) \quad \to \quad -D(P^* \| Q) \,.$$

Proof: For any $P \in T_n$, we have by Theorem 1.6 that

$$\Pr_{Q^n}\left[\bar{\mathbf{x}}\in\mathcal{C}_P\right] \leq 2^{-nD(P\|Q)}$$

.

Let $\mathcal{T}_{\delta} = \{ P \in \mathcal{T}_n \mid D(P \| Q) \ge \delta \}$. Then, we have

$$\mathbb{P}_{\overline{\mathbf{x}}\sim Q^n}\left[D(P_{\overline{\mathbf{x}}}\|Q) \ge \delta\right] = \sum_{P\in\mathcal{T}_{\delta}} 2^{-n\cdot D(P\|Q)} \le (n+1)^r \cdot 2^{-n\delta}.$$

We now use this to prove Sanov's theorem. Take $\delta = \inf_{P \in \Pi} D(P || Q)$, so for all $P \in \Pi$ we have $D(P || Q) \ge \delta$. Then we get

$$\mathbb{P}_{\overline{\mathbf{x}} \sim Q^n} \left[P_{\overline{\mathbf{x}}} \in \Pi \right] = \mathbb{P}_{Q^n} \left[P_{\overline{\mathbf{x}}} \in \Pi \cap \mathcal{T}_n \right] \leq \mathbb{P}_{Q^n} \left[D(P_{\overline{\mathbf{x}}} \| Q) \ge \delta \right] \leq (n+1)^r \cdot 2^{-n\delta}$$

as desired. Now let's prove the other direction. Since Π is the closure of an open set (obtained by including the limit points of all converging sequences), we can say that the limit of the sequence converging to $\inf_{P \in \Pi} D(P || Q)$ exists in the set, and there exists $P^* \in \Pi$ such that $D(P^* || Q) = \inf_{P \in \Pi} D(P || Q)$. This is the distribution P^* satisfying $P^* := \arg \min_{P \in \Pi} D(P || Q)$.

Also, there is an n_0 such that we can find a sequence $\{P^{(n)}\}_{n \ge n_0}$ satisfying $P^{(n)} \to P^*$ and $P^{(n)} \in \mathcal{T}_n \cap \Pi$ for each n. Then we have

$$\begin{split} \Pr_{\overline{\mathbf{x}} \sim Q^{n}} \left[P_{\overline{\mathbf{x}}} \in \Pi \right] &= \Pr_{\overline{\mathbf{x}} \sim Q^{n}} \left[P_{\overline{\mathbf{x}}} \in \Pi \right] = \Pr_{\overline{\mathbf{x}} \sim Q^{n}} \left[P_{\overline{\mathbf{x}}} \in \Pi \cap \mathcal{T}_{n} \right] \\ &\geq \Pr_{\overline{\mathbf{x}} \sim Q^{n}} \left[P_{\overline{\mathbf{x}}} = P^{(n)} \right] \\ &\geq \frac{1}{(n+1)^{r}} \cdot 2^{-nD(P^{(n)} \parallel Q)} \end{split}$$

Thus we get

$$-D(P^{(n)} \| Q) - \frac{r \log(n+1)}{n} \le \frac{1}{n} \log \left(\prod_{\bar{\mathbf{x}} \sim Q^n} [P_{\bar{\mathbf{x}}} \in \Pi] \right) \le -D(P^* \| Q) + \frac{r \log(n+1)}{n}$$

which gives

$$\frac{1}{n}\cdot \mathop{\mathbb{P}}_{Q^n}[P_{\overline{\mathbf{x}}}\in\Pi]\to -D(P^*\|Q)\,,$$

as claimed.

Note that the upper bound on the probability in Sanov's theorem holds for any Π . However, for the lower bound we need some conditions on Π . This is necessary since if (for example) Π is a set of distributions such that all probabilities in all the distributions are irrational, then $\mathbb{P}_{Q^n}[P_{\overline{x}} \in \Pi] = 0$. In particular, we cannot get any lower bound on this probability for such a Π .

Sanov's theorem can also be extended to the case when X is an infinite set, using the definition of KL-divergence as a supremum over all finite partitions of an infinite space.