
Information and Coding Theory Autumn 2022

Homework 2
Due: November 1, 2022

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. Biased coins strike back. [3 + 3 = 6 points]
In class we considered the problem of distinguishing coins distributed according to
the following two distributions:

P =


1 w.p. 1

2 − ε

0 w.p. 1
2 + ε

and Q =


1 w.p. 1

2

0 w.p. 1
2

We derived matching upper and lower bounds (up to constants) of the form Θ(1/ε2)
on the number of coin tosses required to distinguish the two distributions. Consider
now the problem of distinguishing two extremely biased coins with slightly differing
biases:

P′ =


1 w.p. ε

0 w.p. 1 − ε
and Q′ =


1 w.p. 2ε

0 w.p. 1 − 2ε

Find tight upper and lower bounds (up to constants) on the number of independent
coin tosses required to distinguish coins distributed according to P′ and Q′.

2. Jensen-Shannon divergence. [2 + 3 + 4 + 3 = 12 points]
While KL-divergence is sometimes used as a measure of the difference between two
distributions, it is asymmetric and can be infinite. In some applications, one can
instead consider the Jensen-Shanon divergence which addresses these issues.

(a) For two distributions P and Q, we define the Jensen-Shannon divergence as

JSD(P, Q) :=
1
2
· D (P∥M) +

1
2
· D (Q∥M) where M =

P + Q
2

.

Show that 0 ≤ JSD(P, Q) ≤ 1.

(b) Show that JSD(P, Q) ≥ 1
8 ln 2 · ∥P − Q∥2

1.
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(c) Show that JSD(P, Q) ≤ 1
2 · ∥P − Q∥1.

(d) The notion of Jensen-Shannon divergence can be generalized to an arbitrary
number of distributions and an arbitrary convex combination. Let P1, . . . , Pk be
distributions on the same universe and let λ = (λ1, . . . , λk) be a tuple of non-
negative weights such that ∑i λi = 1. We define

JSDλ(P1, . . . , Pk) := ∑
i

λi · D (Pi∥M) where M = ∑
i

λiPi .

Show that 0 ≤ JSDλ(P1, . . . , Pk) ≤ H(λ), where H(λ) denotes the entropy of λ,
when viewed as a distribution over [k].

3. Counting using method of types (Problem 11.5 from the book). [5 points]
Let X be a finite universe with |X | = r and let g : X → R be a real valued function.
Let S ⊆ X n be the set of sequences x1, . . . , xn with each xi ∈ X defined as

S =

{
(x1, . . . , xn) ∈ X n | 1

n

n

∑
i=1

g(xi) ≥ α

}
.

Let Π = {P | ∑a∈X P(a)g(a) ≥ α}. Show that

|S| ≤ (n + 1)r · 2nH∗
,

where H∗ = supP∈Π H(P).

4. Differential entropy of a Gaussian. [2 + 3 = 5 points]
We saw in class that if the differential entropy h(X) exists for a continuous random
variable X taking values in Rn, and A ∈ Rn×n is a non-singular matrix, then

h(AX) = h(X) + log |A| ,

where |A| denotes |Det(A)|. We can use this to compute the entropy of a Gaussian
random variable.

(a) Let X ∼ N(µ, Σ) be an n-dimensional Gaussian with mean µ and covariance
matrix Σ i.e.,

E [X] = µ and E
[
(X − µ)(X − µ)T

]
= Σ .

Assume that the covariance matrix Σ is positive definite and hence there exists a
non-singular matrix R such that Σ = R2. Use this to show that

h(X) =
n
2
· log(2πe) +

1
2
· log |Σ| .
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(b) Use the above to show that for any two positive definite matrices Σ1 and Σ2,
and α ∈ [0, 1], we have

|α · Σ1 + (1 − α) · Σ2| ≥ |Σ1|α · |Σ2|1−α .

5. Dual definition of KL-diveregnce [6+6 = 12 Points]
Let P, Q be two distributions supported on a finite universe X . In class, we defined
the KL-divergence D(P∥Q) between P and Q as

D(P∥Q) = ∑
x∈U

P(x) log
P(x)
Q(x)

,

but there is an alternate definition known as the Donsker-Varadhan variational rep-
resentation where

D(P∥Q) = sup
f :X→R>0

Ex∼P[log f (x)]− log(Ex∼Q f (x)).

(a) In the first part of this problem, we will prove one side of this equality. In
particular, we would like to show that for any f : X → R>0 (i.e., taking only
positive values),

D(P∥Q) ≥ Ex∼P[log f (x)]− log(Ex∼Q f (x)) .

Observe that, without loss of generality, it suffices to consider the case where
Ex∼Q f (x) = 1, since we can always rescale f (x) to f̃ (x) = f (x)

Ex∼Q f (x) . Thus,
prove the following: for all functions f : X → R>0 satisfying Ex∼Q [ f (x)] = 1,
we have

Ex∼P[log f (x)] ≤ D(P∥Q) .

(b) We will now see that the above property can be used to prove a “Pinsker-like”
inequality for “Gaussian-like" random variables, which may not necessarily be
bounded in absolute value. A random variable Z with mean µ is said to be
σ-subgaussian if it satisfies Eeλ(Z−µ) ≤ eλ2σ2/2 ∀λ ∈ R. This notion is useful
because it captures random variables that enjoy some of the properties of Gaus-
sian random variables (you can check that the inequality holds for Gaussians).
Let g : X → R be such that g(X) is σ-subgaussian when X has the distribution
Q. Show that ∣∣∣∣ E

x∼P
[g(x)]− E

x∼Q
[g(x)]

∣∣∣∣ ≤
√

2 ln 2 · σ2 · D(P∥Q) .

Hint: Apply the inequality from part (a) on an appropriately chosen g̃ function
defined in terms of g. Use the subgaussianity property, and then optimize λ.

3



Note that this inequality is qualitatively similar to what we proved in class (Lec-
ture 6). If g was bounded in absolute value, then the LHS could be bound in
terms of the total variation distance, and then use Pinsker’s inequality. The key
difference here is that g(X) is not necessarily bounded, but subgaussian (when
X is distributed according to Q).

6. Extra problem (no need to submit): Chernoff bound for read-k families.
We used Sanov’s theorem to derive the Chernoff bound for independent random
variables X1, . . . , Xn taking values uniformly in {0, 1}. In particular, we showed that

P

[
X1 + · · ·+ Xn ≥

(
1
2
+ ε

)
n
]

≤ (n + 1) · 2−n·D( 1
2+ε∥ 1

2 ) ,

where D
( 1

2 + ε∥ 1
2

)
denotes the KL-divergence of two distributions on {0, 1}, with

probabilities ( 1
2 + ε, 1

2 − ε) and ( 1
2 , 1

2 ). In this problem, we will consider functions
f1, . . . , fr depending on the variables X1, . . . , Xn and prove a concentration bound on
the expression f1 + · · ·+ fr.

Let S1, . . . , Sr be subsets of [n] for each i ∈ [r], let fi : {0, 1}Si → {0, 1} be a function
which depends only on the variables in Si. We use the shorthand XSi to denote the
variables

{
Xj

}
j∈Si

. Moreover, we have the property that each variable is involved in
only k functions i.e., ∀j ∈ [n], |{i ∈ [r] | j ∈ Si}| = k. Such a family of functions is
called a read-k family (it is not too hard to see that the lower bound extends to the
case when each variable is in at most k functions).

(a) Recall that for two random variables Z1 and Z2 distributed on same universe Z
with distributions P1 and P2, we also use D (Z1∥Z2) to mean D (P1∥P2). Let
Y1, . . . , Yn be (not necessarily independent) random variables jointly distributed
on {0, 1}n and let X1, . . . , Xn be random variables as above, distributed uni-
formly and independently on {0, 1}n. Let the sets {Si}i∈[r] be as above. Use
Shearer’s lemma to show that

k · D (Y1, . . . , Yn∥X1, . . . , Xn) ≥ ∑
i∈[r]

D (YSi∥XSi) .

(b) Let A =
{
(a1, . . . , an) ∈ {0, 1}n | ∑i∈[r] fi

({
aj
}

j∈Si

)
≥ t

}
. Let (Y1, . . . , Yn) be

uniformly distributed over the set A (note that Y1, . . . , Yn are not necessarily
independent). Prove that

P
X1,...,Xn

[
∑

i∈[r]
fi(XSi) ≥ t

]
= 2−D(Y1,...,Yn∥X1,...,Xn) ,

where the probability is over the uniform distribution for X1, . . . , Xn.
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(c) For each i ∈ [r], let E [ fi (XSi)] = µi and E [ fi (YSi)] = νi. Prove that

D (YSi∥XSi) ≥ D (νi∥µi) ,

where D (νi∥µi) denotes the divergence of two distributions on {0, 1} with prob-
abilities (νi, 1 − νi) and (µi, 1 − µi).

(d) Use the above bounds and the convexity of KL-divergence in both its arguments
to show that for µ = 1

r · (µ1 + · · ·+ µr),

P
X1,...,Xn

[ f1(XS1) + · · ·+ fr(XSr) ≥ (µ + ε) · r] ≤ 2−(r/k)·D(µ+ε∥µ) .
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