
Information and Coding Theory Autumn 2022

Homework 3
Due: November 17, 2022

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. Generalization and Mutual Information [2 + 3 = 5 points]
A central problem in machine learning is to use (training) data samples to learn pre-
dictors, which we hope will perform well on future examples which we may have
not seen during training, which is known as generalization.

Consider a randomized algorithm, which receives a sequence i.i.d. training exam-
ples, z = (z1, . . . , zn) ∼ Dn drawn from some unknown distribution D. The algo-
rithm outputs a (possibly random) hypothesis h ∈ H. We can represent the data and
the prediction by a pair of random variables (Z, H), which has some joint distribu-
tion based on the learning algorithm. Let the error of the predictor h on a data point
z be measured by a loss function ℓ(z, h). The training error is defined as the average
loss of the predictor on the training data set, which equals

L(z, h) =
1
n
·

n

∑
i=1

ℓ(zi, h) .

On the other hand, the test error is the expected error on a future unknown sample,
which equals EW∼D [ℓ(W, h)]. We are interested in bounding the generalization error
which is the difference between the training and test error of the (possibly random)
predictor given by our learning algorithm. This is given by the expression

εG =

∣∣∣∣∣ E
Z,H

[
1
n
·

n

∑
i=1

ℓ(Zi, H)

]
− E

W.H
[ℓ(W, H)]

∣∣∣∣∣ =

∣∣∣∣ E
Z,H

[
L(Z, H)

]
− E

W,H
[ℓ(W, H)]

∣∣∣∣ .

Note that while Z and H are correlated, the future sample W is independent of H.

(a) Let W ∼ Dn be a sequence of i.i.d. samples from D, which is independent of
both Z and H. Show that the generalization error can be written as

εG =

∣∣∣∣ E
Z,H

[
L(Z, H)

]
− E

W,H

[
L(W, H)

]∣∣∣∣ .
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(b) Suppose that the random variable L(W, H) is σ-subgaussian. Show that this
implies that

εG =

∣∣∣∣ E
Z,H

[
L(Z, H)

]
− E

W,H

[
L(W, H)

]∣∣∣∣ ≤
√

2 ln 2 · σ2 · I(Z; H)

(Hint: Use Homework 2.)

Remark: To apply the above result, one can use the fact that if ℓ(W, H) is α-subgaussian
(which is true, for example, if the loss is a bounded function), one can show that
L(W, H) is α√

n -subgaussian. This gives us a generalization bound of

εG ≤

√
2 ln 2 · α2 · I(Z; H)

n
.

which decreases with increasing number of samples n. This can interpreted as saying
that as long as the learning algorithm does not "memorize" an amount of informa-
tion which grows linearly with the amount of training data, the generalization error
decreases with the number of training examples.

2. Minimax rates for denoising. [3 × 5 = 15 points]
We consider the problem of learning a function f : [0, 1] → R, given noisy samples.
For this problem, we will also assume that the function is L-Lipschitz i.e., for any
x1, x2 ∈ [0, 1], we have

| f (x1)− f (x2)| ≤ L · |x1 − x2| .

Note that without any such assumptions, it hard to learn f in a meaningful way
even if there is no noise: given the value of f at a few sample points, we have no
information about the value of f at other points in the interval.

(a) Let a sample Y be of the form

Y = f (X) + G ,

where X ∈ [0, 1] is chosen uniformly at random, and G ∼ N(0, σ2) is a one-
dimensional Gaussian random variable (independent of X) with mean 0 and
variance σ2. Note that given a value x for the random variable X, Y is simply a
Gaussian with mean f (x) and variance σ2.
Also, note that the distribution of (X, Y) depends on the function f . We denote
this distribution as by Pf . Show that for two functions f and g,

D(Pf ∥Pg) =
∥ f − g∥2

2
2 ln 2 · σ2 where ∥ f − g∥2

2 =
∫ 1

0
| f (x)− g(x)|2 dx .

(Hint: Consider the density for Y.)
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(b) Consider the problem of finding an “estimator” for the function f given n sam-
ples (of the form (X, Y)) from the distribution Pf i.e., we consider the family

Π =
{

Pf | f : [0, 1] → R is L-Lipschitz
}

,

and the property θ(Pf ) = f . We consider the loss function

ℓ( f , g) := ∥ f − g∥2
2 =

∫ 1

0
| f (x)− g(x)|2 dx .

Let { fa}a∈S be a collection of L-Lipschitz functions such that for any two a, b ∈ S,
we have

2δ ≤ ∥ fa − fb∥2 ≤ 8δ .

Show that the minimax loss for n samples is lower bounded as

Mn(Π, ℓ) ≥ δ2 ·
(

1 − (32δ2n)/(σ2 · ln 2) + 1
log |S|

)
(c) We will now construct such a family of functions using the “bump” functions

Bε : [−1, 1] → R defined as

Bε(x) =

{
L · (ε − |x|) |x| ≤ ε

0 otherwise

Note that this function is bump around the origin of width 2ε. Show that B(x)
is L-Lipschitz and (assuming ε < 1)∫ 1

−1
(Bε(x))2dx =

2ε3L2

3
.

(d) Let z1, . . . , zm ∈ (ε, 1 − ε) be a set of points which are at least 2ε apart. For a set
S ⊆ {0, 1}m, define the function fa for each a ∈ S as

fa =
m

∑
i=1

ai · Bε(x − zi) ,

fa is a collection of (non-intersecting) bumps around points zi depending on
which positions i have ai = 1. Show that if dH(a, b) denotes the Hamming
distance between a and b, then

∥ fa − fb∥2
2 =

2ε3L2

3
· dH(a, b) .
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(e) Assume that there exists a set S ⊆ {0, 1}m such that |S| ≥ 2m/8 and dH(a, b) ≥
m/8 for all a, b ∈ S (note that this is just a good code). Use this to show that
there exists a constant c0 such that

Mn(Π, ℓ) ≥ c0 ·
(

σ2 · L
n

)2/3

This bound is known to be tight for Lipschitz functions.

3. Loaded dice. [3 + 4 = 7 points]
Consider the following game played using a dice: a single dice is rolled and we gain
a dollar if the outcome is 2, 3, 4 or 5, and lose a dollar if it’s 1 or 6.

(a) What is our expected gain assuming all outcomes in {1, 2, 3, 4, 5, 6} are equally
likely.

(b) Find the maximum entropy distribution over the universe X = {1, 2, 3, 4, 5, 6}
such that the expected gain is at least α (say α is greater than the expected gain
for the uniform distribution).

4. Exponential families and maximum entropy. [3 + 3 + 2 = 8 points]
In the class, we proved that for a linear family defined as

L =

{
P | ∑

x∈X
P(x) · fi(x) = E

x∼P
[ fi(x)] = αi, ∀i ∈ [k]

}
,

the maximum entropy distribution P∗ is of the form

P∗(x) = exp

(
λ0 + ∑

i∈[k]
λi · fi(x)

)
,

where λ0, . . . , λk are chosen so that

∑
x∈X

P∗(x) = 1 and ∑
x∈X

P∗(x) · fi(x) = αi ∀i ∈ [k] .

In this exercise, we consider the converse. Let f1, . . . , fk : X → R be any functions
and Q be any a distribution of the form

Q(x) = exp

(
λ0 + ∑

i∈[k]
λi · fi(x)

)
.

and let α1, . . . , αk be defined as

αi := ∑
x∈X

Q(x) · fi(x) = E
x∼Q

[ fi(x)] .
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We now consider the linear family defined by f1, . . . , fk and α1, . . . , αk.

L =

{
P | ∑

x∈X
P(x) · fi(x) = E

x∼P
[ fi(x)] = αi, ∀i ∈ [k]

}
.

Thus, L is the family of distributions which have the same expected value for the
“statistics” f1, . . . , fk, as the distribution Q. We will show that Q is indeed the maxi-
mum entropy distribution in the family L (this is a generalization of the often stated
fact that the Gaussian distribution has the highest entropy among all distributions
with the same covariance).

(a) Show that

H(Q) = − 1
ln 2

·
(

λ0 + ∑
i∈[k]

λi · αi

)
.

(b) Show that for any distribution P ∈ L, we have

D(P∥Q) = H(Q)− H(P) .

(c) Deduce that Q is the maximum entropy distribution in the family L.
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