
Information and Coding Theory Autumn 2022

Lecture 11 & 12: November 1 & 3, 2022
Lecturer: Omar Montasser

In this lecture, we will use lower bounds on hypothesis testing developed before to un-
derstand how well we can “learn” properties of distributions using samples. Much of the
presentation here is based on the excellent set of lecture notes by John Duchi [Duc16] also
linked from the course webpage) which I highly recommend for a more in-depth treatment
of the subject.

1 Minimax risk and reduction to hypothesis testing

Let Π be a set of distributions on U and let θ : Π → Θ be any map which we think as a
“property” of P. We consider an estimator 󰁥θ : X n → Θ, which takes n independent sam-
ples from P as input, and tries to estimate θ(P). The quality of the estimator is measured
by a loss function ℓ : Θ × Θ → R+. If we use an estimator 󰁥θ and the data comes from a
distribution P, the expected loss is Ex∼Pn

󰁫
ℓ
󰀓
󰁥θ(x), θ(P)

󰀔󰁬
. The goal is to come up with an

estimator, which minimizes the loss even for the worst-case distribution i.e., we want to
understand

Mn(Π, ℓ) := inf
󰁥θ

sup
P∈Π

E
x∼Pn

󰁫
ℓ
󰀓
󰁥θ(x), θ(P)

󰀔󰁬
.

The quantity Mn(Π, ℓ) is also called the minimax risk. As an example, consider the case
Π = {Pv}v∈V , Θ = V and θ(Pv) = v. We take ℓ(󰁥θ, θ) = 1 if 󰁥θ ∕= θ and 0 otherwise. The
goal is to find

Mn(Π, ℓ) = inf
󰁥θ

sup
v∈V

P
x∼Pn

v
[θ(x) ∕= v] ,

which is very similar to the setting of multiple hypothesis testing introduced in the pre-
vious lecture. While the minimax risk requires bounding the probability of error for the
worst distribution in Π, in the previous lecture we developed a lower bound on the prob-
ability that the estimator errs for a randomly chosen distribution from Π. Of course this is
still a lower bound. If we have some additional information about V , we can find a “hard
set” Π′ ⊆ Π and apply the bound from the previous lecture for a randomly chosen dis-
tribution from Π′. This is still a lower bound on the minimax risk. All the lower bounds
developed below are essentially of this form, where we identify a hard subset of distribu-
tions and apply the bounds for hypothesis testing. In general, the notion of a “hard subset”
of distributions needs to be developed with respect to the loss function ℓ.
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We will restrict the discussion here to loss functions ℓ which only depend on some form of
distance between 󰁥θ and θ. In particular, we consider

ℓ
󰀓
󰁥θ, θ

󰀔
= Φ

󰀓
ρ
󰀓
󰁥θ, θ

󰀔󰀔
= Φ ◦ ρ

󰀓
󰁥θ, θ

󰀔
,

where ρ(·, ·) is a metric (obeying triangle inequality) and Φ is a non-negative and non-

decreasing function. In fact, ℓ(󰁥θ, θ) =
󰀐󰀐󰀐󰁥θ − θ

󰀐󰀐󰀐
2

2
will suffice for our purposes, but we state

the reduction from lower bounds on minimax risk to hypothesis testing for any ℓ of the
form above.

Lemma 1.1. Let {Pv}v∈V ⊆ Π be a finite set of distributions such that ∀v1, v2 ∈ V with v1 ∕= v2,
ρ(θ(Pv1 , Pv2)) ≥ 2δ. Let ℓ be as above. Then,

M(Π, ℓ) ≥ Φ(δ) · inf
T
{P [T(x) ∕= V]} .

Note that the setting in the RHS above is exactly as considered in hypothesis testing. We
think of V as uniformly distributed over the set V and x as drawn from Pn

v .

Proof: Let 󰁥θ : Un → V be any estimator. We define a classifier T : Un → V (depending on
󰁥θ) as follows

T(x) := arg min
v∈V

d
󰀓
󰁥θ(x), θ(Pv)

󰀔
.

Note that if V = v and T(x) = v′ ∕= v, we must have d
󰀓
󰁥θ(x), θ(Pv)

󰀔
≥ δ (why?) This

implies that if T makes an error on input x, then we must have ℓ(󰁥θ, θ) ≥ Φ(δ). Thus, we
get

sup
P∈Π

E
x∼Pn

󰁫
Φ ◦ ρ

󰀓
󰁥θ(x), θ(P)

󰀔󰁬
≥ E

v∈V
E

x∼Pn

󰁫
Φ ◦ ρ

󰀓
󰁥θ(x), θ(Pv)

󰀔󰁬

≥ Φ(δ) · P [T(x) ∕= V]

≥ Φ(δ) · inf
T
{P [T(x) ∕= V]} .

The last inequality above used the fact that the error of the classifier T here is lower
bounded by the error of the best classifier. Since after taking the infimum over T, the above
bound now holds for any 󰁥θ, it also we get that

Mn(Π, ℓ) = inf
󰁥θ

sup
P∈Π

E
x∼Pn

󰁫
Φ ◦ ρ

󰀓
󰁥θ(x), θ(P)

󰀔󰁬
≥ Φ(δ) · inf

T
{P [T(x) ∕= V]} ,

which proves the claim.
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2 Lower bounds via binary hyothesis testing (Le Cam’s method)

We return to out favorite example of biased coins. Let X = {0, 1} and let Π be the set of
all distributions on {0, 1}. For a distribution P on X , let θ(P) := p(1) = Ex∼P [x] i.e., the
goal is to estimate the probability that the coin comes up heads (the mean of a Bernoulli
random variable). We first consider a very simple estimator, which just takes the empirical
mean of the given data i.e.,

󰁥θ(x) = 󰁥θ(x1, . . . , xn) :=
1
n
· ∑

i∈[n]
xi .

Check that the expected error of this estimator, for the loss function ℓ(󰁥θ, θ) = (󰁥θ − θ)2, is
O(1/n).

Exercise 2.1. Let P : {0, 1} → [0, 1] be any distribution with Ex∼P [x] = p(1) = µ. Show that

E
(x1,...,xn)∼Pn

󰀵

󰀷
󰀏󰀏󰀏󰀏󰀏
1
n
· ∑

i∈[n]
xi − µ

󰀏󰀏󰀏󰀏󰀏

2
󰀶

󰀸 = O
󰀕

1
n

󰀖
.

We will now show that the above bound is tight. Let V = {0, 1}, and let P0 = (1/2, 1/2)
and P1 = (1/2 − 2δ, 1/2 + 2δ) be the corresponding two distributions (the value of δ will
be chosen later). Note that

|θ(P0)− θ(P1)| = 2δ .

Using the lemma from the previous section, we get that

M(Π, ℓ) ≥ δ2 · inf
T
{P [T(x) ∕= V]}

≥ δ2 · inf
T

󰀝
1
2
· P

x∼Pn
0

[T(x) = 1] + P
x∼Pn

1

[T(x) = 0]
󰀞

≥ δ2 · 1
2
· inf

T
{α(T) + β(T)} ,

where α(T) and β(T) are the errors as defined in the setting of binary hypothesis testing.
Using the bound in terms of total-variation distance, we get that

M(Π, ℓ) ≥ δ2

2
·
󰀕

1 − 1
2
· 󰀂Pn

0 − Pn
1 󰀂1

󰀖

≥ δ2

2
·
󰀕

1 − 1
2
·
󰁴

2 ln 2 · n · D(P0󰀂P1)

󰀖
.

We use the calculation from the previous lectures that D(P0󰀂P1) ≤ cδ2 for some constant c.
Choosing δ = (c · 2 ln 2 · n)−1/2 gives

M(Π, ℓ) ≥ δ2

2

󰀕
1 − 1

2

󰀖
= Ω

󰀕
1
n

󰀖
.
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3 Lower bounds for minimax rates via multiple hypotheses

We now consider a high-dimensional problem, where we can prove lower bounds using
bounds for testing multiple hypotheses. Recall that for a random variable V uniformly
distrbuted over a set of hypotheses V , the probability of of error for any classifier T(x)
with input x coming from Pn

v for a randomly chosen v ∈ V , is lower bounded as

P [T(x) ∕= V] ≥ 1 − n · Ev1,v2∈V [D(Pv1󰀂Pv2)] + 1
log |V| .

As before, we will combine the above bound with Lemma 1.1 to prove the desired lower
bound on the minimax rate using

Mn(Π, ℓ) = inf
󰁥θ

sup
P∈Π

E
x∼Pn

󰁫
ℓ(󰁥θ(x), θ(P))

󰁬
≥ Φ(δ) · inf

T
{P [T(x) ∕= V]}

To use the above bounds, we need to come up with a set of distributions which are far in
terms of the property θ (so that the second bound is large), but close on average in terms of
KL-divergence (so that the first bound is large). This is also known as the local Fano method
since we derived the first bound using Fano’s inequality, and are applying it by using (a
local bound on) KL-divergence for every pair of distributions Pv1 , Pv2 (recall that we used
convexity of KL-divergence to reduce to the local setting). You can find other variants of
this method in the notes by Duchi [Duc16].

3.1 Gaussian mean estimation

While binary hypothesis testing was used show a bound for estimating the mean of Bernoulli
random variables, the multiple hypotheses setting is often useful in considering high-
dimensional problems. We take Π to be the set of d-dimensional Gaussian distributions
as below

Π =
󰁱

N(µ, Id) | µ ∈ Rd
󰁲

.

Let the property θ be the mean as before, and let ℓ(󰁥θ, θ) =
󰀐󰀐󰀐󰁥θ − θ

󰀐󰀐󰀐
2

2
. We first check the

expected loss for the empirical mean estimator.

Proposition 3.1. Let 󰁥θ(x1, . . . , xn) =
1
n · ∑i∈[n] xi. Then, for any µ ∈ Rd, we have that

E
X∼(N(µ,Id))n

󰀵

󰀷
󰀐󰀐󰀐󰀐󰀐

1
n ∑

i∈[n]
Xi − µ

󰀐󰀐󰀐󰀐󰀐

2

2

󰀶

󰀸 =
d
n

.
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Proof: The proof is similar to the case of Bernoulli random variables. By the (pairwise)
independence of the n samples, we have that

E
X∼(N(µ,Id))n

󰀵

󰀷
󰀐󰀐󰀐󰀐󰀐

1
n ∑

i∈[n]
Xi − µ

󰀐󰀐󰀐󰀐󰀐

2

2

󰀶

󰀸 =
1
n2 · ∑

i∈[n]
E
󰁫
󰀂Xi − µ󰀂2

2

󰁬
+

1
n2 · ∑

i ∕=j
E
󰀅󰀍

Xi − µ, Xj − µ
󰀎󰀆

=
n
n2 · E

X∼N(µ,Id)

󰁫
󰀂X − µ󰀂2

2

󰁬

=
n
n2 · d =

d
n

.

We will apply the local Fano method to prove the optimality of the above bound in terms
of both d and n. We first need the following expression for KL-divergence of two normal
distributions.

Exercise 3.2. Prove (using the chain rule) that

D(N(µ1, Id) 󰀂 N(µ2, Id)) =
1

2 ln 2
· 󰀂µ1 − µ2󰀂2

2 .

Thus, we need to find a large collection of distributions, equivalent to finding a large col-
lection of means, such that for any two µ1 ∕= µ2, we have that 󰀂µ1 − µ2󰀂 is somewhat
large (to lower bound the loss), but still 󰀂µ1 − µ2󰀂 is small on average (to upper bound the
average KL-divergence). This is the content of the following lemma.

Lemma 3.3 (Packing lemma). There exists a collection of vectors V ⊆ Rd such that |V| ≥ 2d

and for all v1, v2 ∈ V , v1 ∕= v2, we have

1
2

≤ 󰀂v1 − v2󰀂2 ≤ 2 .

It is actually quite easy to prove the packing lemma above (with slightly weaker param-
eters) but we will take a slightly longer route through covering and packing numbers to
illustrate a general method. We first the lower bound, assuming the packing lemma. Let
V be a collection as in Lemma 3.3. We consider the set of distributions

{N(4δ · v, Id) | v ∈ V} .

We have that for all P, P′ ∈ Π, 󰀂θ(P)− θ(P′)󰀂 ≥ 2δ. Also, since 󰀂v − v′󰀂 ≤ 2 for any
v, v′ ∈ V , we get that for any P, P′ ∈ Π, the means are at distance at most 8δ. Hence,

D(P󰀂P′) =
1

2 ln 2
·
󰀐󰀐µ − µ′󰀐󰀐2

2 ≤ 1
2 ln 2

· (64δ2) =
32δ2

ln 2
.

Applying the lower bound on minimax loss in terms of KL-divergences gives

Mn(Π, ℓ) ≥ δ2 ·
󰀕

1 − n · (32δ2/ ln 2) + 1
log |V|

󰀖
≥ δ2 ·

󰀕
1 − n · (32δ2/ ln 2) + 1

d

󰀖
.
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3.2 Covering and packing numbers

Definition 3.4. Let S be a set of points with a metric ρ(·, ·). A collection of points C ⊆ S is called
a δ-covering of S (with respect to the metric ρ) if

∀x ∈ S, ∃y ∈ C ρ(x, y) ≤ δ .

A set of points P is called a δ-packing if

∀x, y ∈ P , x ∕= y ρ(x, y) > δ .

The size of the minimal δ-covering, denoted as N(δ, S, ρ), is called the δ-covering number of S and
the size of the maximal δ-packing is called the δ-packing number. The quantity log N(δ, S, ρ) is
also called the metric entropy of S.

Remark 3.5. As was pointed out after the lecture, the inequality in at least one of the two definitions
above needs to be strict, for the remaining argument below to make sense. Typically, the inequality
in the packing definition is taken to be strict.

We will take the required collection in Lemma 3.3 to be a (1/2)-packing of the unit ball
in Rd (under the Euclidean distance). We will show a lower bound on the size of this
collection (the packing number) by using a relationship between the packing and covering
numbers.

Exercise 3.6. For any set S, metric ρ and δ > 0, show that

M(2δ, S, ρ) ≤ N(δ, S, ρ) ≤ M(δ, S, ρ) .

(Hint: First prove that an optimal δ-packing must also be a δ-covering.)

Let Bd(x, r) denote the ball in Rd of radius r (in the Euclidean distance) with its center at x.
We know that Vol (Bd(x, r)) = cd · rd for some constant cd ≥ 0. Note that if C ⊆ Bd(0, 1) is
a δ-covering of Bd(0, 1), then

B(0, 1) ⊆
󰁞

x∈C
Bd(x, δ) .

Thus, we have

cd = Vol (Bd(0, 1)) ≤ ∑
x∈C

Vol (Bd(x, δ)) = N (δ, Bd(0, 1), 󰀂·󰀂2) · cd · δd .

Combining with the previous relationship between covering and packing numbers, this
gives

M (δ, Bd(0, 1), 󰀂·󰀂2) ≥ N (δ, Bd(0, 1), 󰀂·󰀂2) ≥ 1
δd .
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Thus, there exists a (1/2)-packing of Bd(0, 1) of size at least 2d. Note that for any v1, v2 in
the packing

1
2

< 󰀂v1 − v2󰀂 ≤ 󰀂v1󰀂+ 󰀂v2󰀂 ≤ 2 ,

which proves the packing lemma.

3.3 Another proof of (a weaker) packing lemma

One can also sample points on the Boolean cube {−1, 1}d to prove a weaker version of
the packing lemma, which also suffices for our application. For some applications, this
additional structure in the set of points may be helpful.

Lemma 3.7. There exists a collection of vectors V ⊆ 1√
d
· {−1, 1}d such that |V| ≥ 2d/20 and for

all v1, v2 ∈ V , v1 ∕= v2, we have

1
2

≤ 󰀂v1 − v2󰀂2 ≤ 2 .

Remark 3.8. The above bound is a crude one and is just proved as an illustration. A more sophis-
ticated sampling argument can prove a lower bound of exp (d/8) on the size of the set V .

Proof: Sample y1, . . . , yN ∈ {−1, 1}d uniformly and independently at random, and take
V =

󰁱
1√
d
· y1, . . . , 1√

d
· yN

󰁲
. For a fixed pair vi, vj, we have

󰀐󰀐vi − vj
󰀐󰀐 ≤ 1

2
⇔

󰀍
vi, vj

󰀎
≥ 7

8
⇔

󰀍
yi, yj

󰀎
≥ 7d

8

Since
󰀍
yi, yj

󰀎
is a sum of d independent variables in {−1, 1}, we have by Chernoff-Hoeffding

bounds that

P

󰀗󰀍
yi, yj

󰀎
≥ 7d

8

󰀘
≤ 2−

d
6 ·(

7
8 )

2

≤ 2−d/8 .

By a union bound

P

󰀗
∃i, j ∈ [N]

󰀍
yi, yj

󰀎
≥ 7d

8

󰀘
≤ N2 · 2−d/8 ,

The probability above is o(1) for N ≪ 2d/16, and thus, with high probability, we have for
all i ∕= j,

󰀐󰀐vi − vj
󰀐󰀐 ≥ 1

2 . The upper bound on the distance also holds since all vectors lie on
the unit sphere.
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