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1 Linear families and I-projections

Building on the previous lecture, we will show how to compute and characterize I-projections
for some special sets of distributions.

Definition 1.1. For any given real-valued functions f1, f2, ..., fk on X and α1, α2, ..., αk ∈ R, the
set

L =


P | ∑

x∈X
p(x) · fi(x) = E

x∼P
[ fi(x)] = αi, ∀i ∈ [k]



is called a linear family of distributions.

We show that for linear families, the inequality proved above, is in fact tight. Moreover,
the projection P∗ lies in the interior of the polytope defining L.

Lemma 1.2. Let L be a linear family given by

L =


P : ∑

x∈X
p(x) · fi(x) = αi, i ∈ [k]



and


P∈L Supp(P) = X . Let P∗ = ProjL(Q). Then, for all P ∈ L

1. There exists β > 0 such that for t ∈ [−β, 0], Pt = tP + (1 − t)P∗ ∈ L.

2. D(PQ) = D(PP∗) + D(P∗Q)

Then the I-Projection P∗ of Q onto L satisfies the Pythagorean identity

D(PQ) = D(PP∗) + D(P∗Q)

Proof: Recall that Supp(P) ⊆ Supp(P∗) and pt(x) = t · p(x) + (1 − t) · p∗(x). Since the
conditions defining L are linear, we have that for all t ∈ R and all i ∈ [k]

∑
x∈X

pt(x) · fi(x) = t · ∑
x∈X

p(x) · fi(x) + (1 − t) · ∑
x∈X

p∗(x) · fi(x) = αi
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However, we may not have pt(a) ≥ 0 for all t < 0. We find a β > 0 such that for t ∈ [−β, 0]

pt(x) ≥ 0 ⇔ t(p(x)− p∗(x)) ≥ − p∗(x)

Note that above inequality clearly holds if p(x)− p∗(x) < 0. Now choose β such that

β = min
x:p(x)−p∗(x)>0

 p∗(x)
p(x)− p∗(x)



Notice that β > 0 since Supp(P∗) ⊇ ∪P∈L Supp(P).

The above implies that d
dt D(Pt||Q)|t=0 = 0 by the minimality of P∗, which in turn implies

the equality D(P||Q) = D(P||P∗) + D(P∗||Q).

The above can also be used to show that the I-projection onto L is of a special form. To
describe this, we define the following family of distributions.

Definition 1.3. Let Q be a given distribution. For any given functions g1, g2, ..., gk on X , the set

EQ(g1, . . . , gk) :=


P | ∃λ1, . . . , λk ∈ R ∀x ∈ X , p(x) = c · q(x) · exp


k

∑
i=1

λigi(x)



is called an exponential family of distributions.

We will show that P∗ = ProjL(Q) ∈ EQ( f1, ..., fk). We prove this for a linear family defined
by a single constraint. The proof for families with multiple constraints is identical. Let
f : X → R and let L be defined as

L =


P | ∑

x∈X
p(x) · f (x) = E

x∼P
[ f (x)] = α



The projection P∗ is the optimal solution to the convex program

minimize D(PQ)

subject to ∑
x∈X

p(x) · f (x) = α

∑
x∈X

p(x) = 1

p(x) ≥ 0 ∀x ∈ X .

For λ0, λ1 ∈ R, we write the Lagrangian as

Λ(P; λ0, λ1) = D(PQ) + λ0 ·


∑
x

p(x)− 1


+ λ1 ·



∑
x

p(x) · f (x)− α


.
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The problem above can be written in terms of the Lagrangian as

inf
P≥0

sup
λ0,λ1∈R

Λ(P; λ0, λ1) .

From Lemma 1.2, we know that P∗ lies in the relative interior of the polytope defining L.
Then, strong duality holds for the above program and we can write

inf
P≥0

sup
λ0,λ1∈R

Λ(P; λ0, λ1) = sup
λ0,λ1∈R

inf
P≥0

Λ(P; λ0, λ1) .

We now characterize the form of the optimal solution by considering the second (dual)
program. For a given value of λ0, λ1, we can find the optimal solution P∗ by setting the
derivative of Λ(P; λ0, λ1) with respect to p(x) to zero, for every x ∈ X . This gives

log


p∗(x)
q(x)


+

1
ln 2

+ λ0 + λ1 · f (x) = 0

Thus, we have for all a ∈ X

p∗(x) = q(x) · 2−λ0−λ1· f (x) .

The proof for linear families defined by multiple constraints is identical. The above also
shows that maximum entropy distributions subject to linear constraints, always belong to
an exponential family. Exponential families have many interesting applications, and more
material on these can be found in the survey by Jordan and Wainwright [WJ08]. A good
reference for looking up the convex-duality based arguments above, is Chapter 5 of the
excellent book by Boyd and Vandenberghe [BV04].

2 Matrix Scaling

We will consider an application of I-projections to a problem known as matrix scaling. Say
we are given two nonnegative matrices M, N ∈ Rn×n

+ such that for all i, j, Mij = 0 ⇔ Nij =
0. The goal is to multiply (scale) each row i of M by a number ri and each column j by cj,
such that the resulting matrix M′ has the same row and column sums as the target matrix
N. Another way of stating this is that we want to find diagonal matrices D1 and D2 such
that for M′ = D1MD2, we have

∑
j

M′
ij = ∑

j
Nij ∀i ∈ [n] and ∑

i
M′

ij = ∑
i

Nij ∀j ∈ [n] .

We will show a special case when the goal is to scale M so that the resulting matrix M′ is
doubly stochastic i.e.,

∑
j

M′
ij = ∑

i
M′

ij = 1 ∀i, j ∈ [n] .
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First, note that by a global scaling of 1/ ∑i,j Mij, we can assume that ∑i,j Mij = 1, and the
goal is instead to scale it to have row and column sums equal to 1/n i.e.,

∑
j

M′
ij = ∑

i
M′

ij =
1
n

∀i, j ∈ [n] .

We can now think of this as a problem of going from one distribution to another. Assume
that Mij > 0 for all i, j, and think of the target matrix N with Nij = 1/n2 for all i, j. Since
the entries of M are positive and sum to 1, we can think of it as a probability distribu-
tion Q with Supp(Q) = [n] × [n] (where q(i, j) = Mij). We consider the linear family of
distributions on [n]× [n] (written as matrices) with the required row and column sums.

L :=


P | ∑

j
p(i, j) = ∑

i
p(i, j) =

1
n

∀i, j ∈ [n]



Note that the above is a linear family as defined in the previous lecture, since we can
consider functions f1, . . . , fn and g1, . . . , gn defined as

fi0(i, j) =


1 if i = i0
0 otherwise

and gj0(i, j) =


1 if j = j0
0 otherwise

.

Then, the above family can be written in terms of the expectations of the functions fi and
gj for all i, j ∈ [n]. Moreover, we know from the previous lecture that the I-projection P∗ of
Q onto L is of the form

p∗(i, j) = c0 · q(i, j) · exp



∑
i0

λi0 · fi0(i, j) + ∑
j0

µj0 · gj0(i, j)



= c0 · q(i, j) · exp

λi + µj



= (
√

c0 · exp(λi)) · Mi,j ·
√

c0 · exp(µj)


.

Thus, we can define the diagonal matrices D1 and D2 as

(D1)ii =
√

c0 · exp(λi) and (D2)jj =
√

c0 · exp(µj) .

We then have that the distribution p∗ given by the resulting matrix M′ = D1MD2, belongs
to the linear family L. Thus, the row and column sums of M′ are 1/n. Combining this with
another global scaling (replace

√
c0 by

√
c0 · n) we can also get all the row and column sums

to be 1 (i.e., make the matrix doubly stochastic).

Exercise 2.1. Where did we use the fact that Mij > 0 for all i, j ∈ [n]?

Exercise 2.2. Use this the above techniques to solve the matrix scaling problem for an arbitrary
target matrix N (assuming Mij = 0 ⇔ Nij = 0).
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Matrix scaling and its generalization, known as operator scaling have found a variety of
applications in combinatorial optimization, complexity theory and analysis. Please take
a look at the recent tutorial by Wigderson [Wig17] for an introduction to many of these
connections.
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