
Information and Coding Theory Autumn 2022

Lecture 17: November 29, 2022
Lecturer: Madhur Tulsiani

1 Linear Codes

A linear code C ⊆ Fn
q is a subspace of Fn

q , viewed as a vector space over the finite field
Fq. We will always take q to be a prime number, with addition and multiplication in Fq
defined modulo q (although the discussion can also be extended to the case when q is a
prime power). If dim(C) = k, we can think of C as encoding a message in Fk

q by linearly
mapping it to an element x ∈ C. Overloading notation to denote Enc(w) ∈ C by C(w), the
encoding map C : Fk

q → Fn
q satisfies

C(α · u + β · v) = α · C(u) + β · C(v) ∀ u, v ∈ Fk
q, α, β ∈ Fq .

Since a linear encoding is a linear map from a finite dimensional vector space to another,
we can write it as a matrix of finite size. That is, there is a corresponding G ∈ Fn×k

q s.t.
C(w) = Gw for all w ∈ Fk

q. This matrix is referred to as a generator matrix for the code C.

If the encoding map is injective (which is the bare minimum for a good code), then the
rank of G must be k (otherwise there exist u, v ∈ Fk

q such that Gu = Gv). Hence, the null
space of GT has dimension n − k. This defines another useful matrix, known as the parity
check matrix of the code.

Definition 1.1 (Parity Check Matrix). Let b1, . . . , bn−k ∈ Fn
q be a basis for the null space of GT

corresponding to a linear code C. Then H ∈ F
(n−k)×n
q , defined by

HT =
[

b1 b2 . . . bn−k
]

is called a parity check matrix for C.

Remark 1.2. As defined above, the generator and parity-check matrices for a code are not unique.
However, the column span of G is unique (is equal to C), and so is the row-span of H. In many
cases however, there is a canonical definition of the generator or parity-check matrix based on the
construction of the code, which may be referred to as the generator or parity-check matrix.

Since GT HT = 0 ⇔ HG = 0, we have (HG)w = 0 for all x ∈ Fk
q, i.e., Hx = 0 for all x ∈ C.

Moreover, since the columns of HT are a basis for the null-space of GT, we have that

x ∈ C ⇔ Hx = 0 .

1

So the parity check matrix gives us a way to quickly check a codeword, by checking the
parities of some bits of x (each row of H gives a parity constraint on x). Also, one can
equivalently define a linear code by either giving G or the parity check matrix H.

Note that for linear codes, encoding w ∈ Fk
2 to the codeword Gw ∈ C can always be done

in polynomial time, by simply multiplying with the matrix G. Also, given x ∈ C, one can
always find w ∈ Fk

2 such that Gw = x, either by Gaussian elimination, or (equivalently) by
multiplying x = Gw by an appropriate matrix G∗ such that G∗Gw = w for all w ∈ Fk

2. Since
we will only be concerned with polynomial time decoding in our discussion of codes, we
can view the decoding problem as: given y which is a corruption of x, find x. The problem
of going from x ∈ Fn

2 to w ∈ Fk
2 can always be solved for linear codes, as outlined above.

Of course, if one is interested in a more fine-grained analysis of the decoding complexity,
one needs to look carefully at the structure of the matrix G∗, but we will restrict our notion
of efficiency to polynomial time.

1.1 Hamming Code

Consider the following code from F4
2 to F7

2, known as the Hamming Code.

Example 1.3. Let C : F4
2 → F7

2, where

C(x1, x2, x3, x4) = (x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4).

Note that each element of the image is a linear function of the xi’s, i.e., one can express C with
matrix multiplication as follows:

C(x1, x2, x3, x4) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

x1
x2
x3
x4

Example 1.4. The parity check matrix of our example Hamming Code is:

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Note that the ith column is the integer i in binary. One can easily check that HG = 0.

2

Now suppose x = (x1, . . . , x7)T is our codeword and we make a single error in the ith entry.
Then the output codeword with the error is

x + ei =

x1
...

xi
...

x7

+

0
...
1
...
0

and H(x + ei) = Hx + Hei = Hei = Hi, the ith column of H, which reads i in binary. So this
is a very efficient decoding algorithm just based on parity checking. Thus, the Hamming
code can correct one arbitrary error in any position. One can generalize the Hamming code
to larger message and block lengths, we can create a parity matrix H ∈ F

(n−k)×n
2 , where

the ith column reads i in binary.

2 Polar codes

We will briefly outline a beautiful recent construction of codes by Arikan [Ari09] (based on
information-theoretic considerations) which also achieve capacity for the binary symmet-
ric channel, and allow for encoding and decoding algorithms running in time O(n log n).
We will discuss the basic intuition behind this construction, but will not discuss the details
of the analysis. An excellent reference for a more thorough treatment, is the recent book
by Guruswami, Rudra and Sudan [GRS12], also linked from the course webpage.

Recall that in the proof of achieving capacity using random codes, we claimed that for
codes with rate 1 − H2(p)− ε, the error probability is small for block-length n ≥ C/ε2. In
fact this dependence on ε can also be proved to be optimal. Arikan’s “polar codes” also
achieve this polynomial convergence to capacity, and one can show that for polar codes it
suffices to take n ≥ C0/εc for some constant c, although c is larger than 2. There has also
been recent work on modifying the construction, to allow for a constant c = 2 + α for an
arbitrary small α > 0 [GRY20].

2.1 Codes via linear compression

We start with a reduction from the problem of designing codes for error-correction, to the
problem of compressing a random input z ∼ (Bern(p))n, so that with high probability, z
can be recovered from its compression i.e., we want to compression and decompression
maps Com : Fn

2 → Fm
2 and Decom : Fm

2 → Fn
2 , so that

P
Z∼(Bern(p))n

[Decom(Com(Z)) ̸= Z] −→ 0 .

3

Moreover, we will want m to be nearly optimal i.e., m ≈ H(Z) = H2(p) · n.

Note that the problem is the same as source coding if we allow for arbitrary compression
schemes. However, we will require the compression map to be linear, which can specified
as z 7→ Hz for an appropriate matrix H. Thus, the goal is to find a matrix H ∈ Fm×n

2 for
m ≤ (H2(p) + ε) · n, and a decompression map Decom : Fm

2 → Fn
2 such that

P
Z∼(Bern(p))n

[Decom(HZ) ̸= Z] −→ 0 .

We claim that such a linear compression scheme immediately implies the existence of a
code for the binary symmetric channel, with near-optimal rate.

Proposition 2.1. Let H ∈ Fm×n
2 and Decom : Fm

2 → Fn
2 define a linear compression scheme as

above. Then the linear code C = {x | Hx = 0} has a decoding algorithm with vanishing probability
of error, for transmission through the channel BSC(p).

Proof: Recall that a codeword x transmitted through the binary symmetric channel, we
can write the received word as y = x + z, where z ∼ (Bern(p))n. We can then define the
decoding algorithm as

Dec(y) := y +Decom(Hy) .

Note that Hy = H(x + z) = Hz since Hx = 0. Also, if Hz is correctly decompressed to z,
we indeed recover x, since y +Decom(Hz) = y + z = x. Thus, we have

∀x ∈ Fn
2 P

Z∼(Bern(p))n
[Dec(x + Z) ̸= x] = P

Z∼(Bern(p))n
[DecomHZ ̸= Z] −→ 0 .

Since the code C above has dim(C) = n − m ≥ (1 − H2(p)− ε) · n if m ≤ (H2(p) + ε) · n,
the above code has near-optimal rate, if the compression scheme is near-optimal.

2.2 Linear compression from entropy polarization

We now reduce from the problem of constructing a linear compression scheme, to design-
ing an invertible matrix, such that the all the entropy of Z ∼ (Bern(p))n is “contained” only
in m bits of W = PZ.

Before formalizing this, we briefly consider the reverse direction. Let H ∈ Fm×n
2 be a

matrix defining a linear compression scheme, as discussed earlier. In particular, let m ≤
(H2(p) + ε) · n and let

P
Z∼(Bern(p))n

[Decom(HZ) ̸= Z] ≤ δ .

Also, assume that H has full row-rank i.e., im(H) = Fm
2 . Let H′ ∈ F(n−m)×n be such that

the rows of H and H′ together span all of Fn
2 . Then the matrix P ∈ Fn×n

2 with first m rows

4

from H and the last n − m rows from H′ is an invertible matrix. Thus, we have that for
W = PZ

H(W) = H(Z) = n · H2(p) .

Note that H(W) above denotes the entropy of the random variable W, and not the matrix
H. Unfortunately, the common notation for both parity-check matrices and entropy, is H.
However, in the rest of the lecture, we will only deal with a matrix P, and use H(·) to
denote entropy. Using the chain rule, we can write the entropy of W as

n · H2(p) = H(W) =
m

∑
i=1

H(Wi | W<i)+
n

∑
i=m+1

H(Wi | W<i) = H(W≤m)+ H(W>m | W≤m) .

Since the first m entries of W (corresponding to the first m rows of P) allow for a decom-
pression of Z, we expect that H(Wi | W<i) ≈ 0 for all i > m, and hence H(Wi | W<i) ≈ 1
for i ≤ m. In fact, one can prove the following using Fano’s inequality.

Exercise 2.2. Prove that H(W>m | W≤m) ≤ H2(δ) + δ · n.

Thus, while Z satisfies H(Zi | Z<i) = H2(p) for all i (since bits in Z are independent),
entropies for the bits of W (after conditioning on previous bits) are very close to 0 or 1.
This is the phenomenon, we refer to as entropy polarization. We now define it formally for
arbitrary matrices P.

Definition 2.3. An invertible matrix P ∈ Fn×n
2 is said to be (ε, τ)-polarizing for the random

variable Z ∼ (Bern(p))n if for

W = PZ and Sτ = {i ∈ [n] | H(Wi | W<i) ≥ τ} ,

we have that |Sτ| ≤ (H2(p) + ε) · n.

Check that the above bound on |Sτ| is nearly optimal, for small ε and τ.

Exercise 2.4. Prove that for any invertible matrix P, we have |Sτ| ≥ (H2(p)− τ) · n.

Polarizing matrices imply linear compression schemes

While the argument we sketched above shows that linear compression schemes can be
used to obtain polarizing matrices, we are more interested in the reverse direction. Be-
low, we show that polarizing matrices can be used to obtain linear compression schemes,
which will then reduce our problem of designing codes, to that of constructing polarizing
matrices.

Given an (ε, τ)-polarizing matrix P and Sτ = {i ∈ [n] | H(Wi | W<i) ≥ τ} as before (for
W = PZ) we now define compression and decompression maps below.

5

- Compression: We take Com(Z) = Y = PSτ
Z, where PSτ

denotes the sub-matrix of P,
restricted to the rows in Sτ. This defines a linear compression map Com : Fn

2 → F
|Sτ |
2 .

- Decompression: Given Y ∈ F|Sτ |
2 , we construct an estimator Ŵ for W = PZ, and

defined Decom(Y) = P−1Ŵ. The estimator Ŵ is computed as below.

For i = 1 to n

– if i ∈ Sτ, take Ŵi = Yi.

– else take Ŵi = argmaxb∈{0,1}

{
P
[
Wi = b | W<i = Ŵ<i

]}
.

Thus, we take the compression map to be the entries of W = PZ corresponding only to
indices in Sτ. The decompression algorithm, computes an estimator Ŵ, which copies the
bits in Sτ, and fills in the rest of the bits by choosing for each i the most likely value,
given the estimate for the previous bits. Note that for an (ε, τ)-polarizing matrix, we have
|Sτ| ≤ (H2 + ε) · n, and thus the compression is near-optimal as desired. We will argue
that

P
Z∼(Bern(p))n

[Decom(Com(Z)) ̸= Z] ≤ n · τ ,

which will imply a compression scheme with vanishing error when τ = o(1/n). The proof
the above bound is left as an exercise, which can be completed using the following.

Exercise 2.5. Prove that

P
Z∼(Bern(p))n

[Decom(Com(Z)) ̸= Z] ≤
n

∑
i=1

P
[
Ŵi ̸= Wi | Ŵ<i = W<i

]
.

You may also need the following observation.

Exercise 2.6. For a binary random variable X taking values in {0, 1}, prove that

H(X) ≤ α ⇒ max {P [X = 0] , P [X = 1]} ≥ 1 − α .

2.3 A small (slightly) polarizing matrix

The polarizing matrix P ∈ Fn×n
2 will be constructed bu recursively applying a simple

transform P2 ∈ F2×2
2 . Consider the transform

P2 =

[
1 1
0 1

]
which maps

[
Z1
Z2

]
→

[
Z1 + Z2

Z2

]
=

[
W1
W2

]

6

For Z ∼ (Bern(p))2, we have that H(Z1) = H(Z2 | Z1) = H2(p). On the other hand
W1 = Z1 + Z2 is 1 with probability 2p(1 − p) and 0 otherwise. We thus have

H(W1) = H2(2p(1 − p)) > H2(p)
H(W2 | W1) = 2H2(p)− H2(2p(1 − p)) < H2(p) .

Thus, the entropies H(W1) and H(W2 | W1) are slightly closer to 1 and 0 respectively,
compared to H(Z1) and H(Z2 | Z1), assuming of course that p ̸= 1/2 (otherwise there
can be no compression and no good codes anyway). We represent this transformation
pictorially as below.

HIP I to KY L Zz Hz 2pct P

HIP T Wz Zz 7HIP Hz2pct P
z

ki it
zip Z a HEPAPD Z r Z Z IN

ez et
Lp Zz HakpaPDI a µ Is I lolz

17
e steps

ta ca e
Iz zadpsadzpaPDZ.net 1 Last Last
2 2 ZHENHd2P 2 a 2 2

f

2.4 Recursive construction of polarizing matrices

The final construction is obtained by recursing the above construction of 2 × 2 matrices.
Let n = 2t for some t ∈ N. We define the polarizing matrices recursively as

Pn =

[
Pn/2 Pn/2
Pn/2 0

]
and P2 =

[
1 1
1 0

]
The following is a good exercise for understanding the recursive structure of the matrix.

Exercise 2.7. Prove that for z ∈ Fn
2 , the multiplication Pz can be computed in time O(n log(n))

where P = Pn ∈ Fn×n
2 is the matrix as defined above.

The matrix can be thought of as a circuit, which applies the transformation P2 in t layers as
indicated in the following diagram.

7

HIP I to KY L Zz Hz 2pct P

HIP T Wz Zz 7HIP Hz2pct P
z

ki it
zip Z a HEPAPD Z r Z Z IN

ez et
Lp Zz HakpaPDI a µ Is I lolz

17
e steps

ta ca e
Iz zadpsadzpaPDZ.net 1 Last Last
2 2 ZHENHd2P 2 a 2 2

f
We denote by Z(j)

i the random variables obtained in the j-th layer of the transformation.
The analysis of polarization (which we will not be able to discuss) considers the sequence
of random variables Xj = H(Zi | Z<i) for j = 1, . . . , t, which tracks the entropy in a ran-
domly chosen row i of the above diagram. One obtains the following result via a (some-
what involved) martingale analysis.

Theorem 2.8 (Speed of polarization). For all γ > 0, there exist constant α ∈ (0, 1), β > 0 such
that for all t ∈ N, we have

P
[
Xt ∈ (γt, 1 − γt)

]
≤ β · αt .

The important part of the above theorem is the freedom to choose γ, which lets us obtain
a small τ in the (ε, τ)-polarization property. For example, choosing γ = 1/4, yields that
(for t = log n) the fraction of entropies in the interval (1/n2, 1 − 1/n2) is small, which gives
τ = 1/n2 = o(1/n). Details of the above analysis can be found in [GRS12], which is also an
excellent reference for coding theory in general.

References

[Ari09] Erdal Arikan. Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE Transac-
tions on information Theory, 55(7):3051–3073, 2009. 3

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Cod-
ing Theory. 2012. URL: https://cse.buffalo.edu/faculty/atri/courses/
coding-theory/book/index.html. 3, 8

8

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html

[GRY20] Venkatesan Guruswami, Andrii Riazanov, and Min Ye. Arikan meets Shannon:
Polar codes with near-optimal convergence to channel capacity. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 552–564,
2020. 3

9

	Linear Codes
	Hamming Code

	Polar codes
	Codes via linear compression
	Linear compression from entropy polarization
	A small (slightly) polarizing matrix
	Recursive construction of polarizing matrices

