
Information and Coding Theory Autumn 2022

Lecture 2: September 29, 2022
Lecturer: Madhur Tulsiani

1 Source Coding

We will now attempt to make precise the intuition that a random variable X takes H(X)
bits to describe on average. We shall need the notion of prefix-free codes as defined below.

Definition 1.1. A code for a set X over an alphabet Σ is a map C : X → Σ∗ which maps each
element of X to a finite string over the alphabet Σ. We say that a code is prefix-free if for any
x, y ∈ X such that x ̸= y, C(x) is not a prefix of C(y) i.e., C(y) ̸= C(x) ◦ σ for any σ ∈ Σ∗.

For now, we will just use Σ = {0, 1}. For the rest of lecture, we will use prefix-free code to
mean prefix-free code over {0, 1}. The image C(x) for an image x is also referred to as the
codeword for x.

Note that a prefix-free code has the convenient property that if we are receiving a stream
of coded symbols, we can decode them online. As soon as we see C(x) for some x ∈ U,
we know what we have received so far cannot be a prefix for C(y), for any y ̸= x. The
following inequality gives a characterization of the lengths of codewords in a prefix-free
code. This will help prove both upper and lower bounds on the expected length of a
codeword in a prefix-free code, in terms of entropy.

Proposition 1.2 (Kraft’s inequality). Let |X | = n. There exists a prefix-free code for X over
{0, 1} with codeword lengths ℓ1, . . . , ℓn if and only if

n

∑
i=1

1
2ℓi

≤ 1 .

For codes over a larger alphabet Σ, we replace 2ℓi above by |Σ|ℓi .

Proof: Let us prove the “if” part first. Given ℓ1, . . . , ℓn satisfying ∑i 2−ℓi ≤ 1, we will
construct a prefix-free code C with these codeword lengths. Without loss of generality, we
can assume that ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn = ℓ∗.

It will be useful here to think of all binary strings of length at most ℓ as a complete binary
tree. The root corresponds to the empty string and each node at depth d corresponds to
a string of length d. For a node corresponding to a string s, its left and right children

1

correspond respectively to the strings s0 and s1. The tree has 2ℓ
∗

leaves corresponding to
all strings in {0, 1}ℓ∗ .
We will now construct our code by choosing nodes at depth ℓ1, . . . , ℓn in this tree. When
we select a node, we will delete the entire tree below it. This will maintain the prefix-free
property of the code. We first chose an arbitrary node s1 at depth ℓ1 as a codeword of
length ℓ1 and delete the subtree below it. This deletes 1/2ℓ1 fraction of the leaves. Since
there are still more leaves left in the tree, there exists a node (say s2) at depth ℓ2. Also, s1
cannot be a prefix of s2, since s2 does not lie in the subtree below s1. We choose s2 as the
second codeword in our code C. We can similarly proceed to choose other codewords. At
each step, we have some leaves left in the tree since ∑i 2−ℓi ≤ 1.

Note that we need to carry out this argument in increasing order of lengths. Otherwise, if
we choose longer codewords first, we may have to choose a shorter codeword later which
does not lie on the path from the root to any of the longer codewords, and this may not
always possible e.g., there exists a code with lengths 1, 2, 2 but if we choose the strings 01
and 10 first then there is no way to choose a codeword of length 1 which is not a prefix.

For the “only if” part, we can simply reverse the above proof. Let C be a given prefix-free
code with codeword lengths ℓ1, . . . , ℓn and let ℓ∗ = max {ℓ1, . . . , ℓn}. Considering again the
complete binary tree of depth ℓ∗, we can now locate the codewords (say) C(x1), . . . , C(xn)
as nodes in the tree. We say that a codeword C(x) dominates a leaf L if L occurs in the
subtree rooted at C(x). Note that the out of the total 2ℓ

∗
fraction of leaves dominated by

a codeword of length ℓi is 2−ℓi . Also, note that if C(x) and C(y) dominate the same leaf
L, then either C(x) appears in the subtree rooted at C(y) or vice-versa. Since the code is
prefix-free, this cannot happen and the sets of leaves dominated by codewords must be
disjoint. Thus, we have ∑i 2−ℓi ≤ 1.

This part of the proof also has a probabilitic interpretation. Consider an experiment where
we generate ℓ∗ random bits. For x ∈ X , let Ex denote the event that the first |C(x)| bits we
generate are equal to C(x). Note that since C is a prefix-free code, Ex and Ey are mutually
exclusive for x ̸= y. Moreover, the probability that Ex happens is exactly 1/2|C(x)|. This
gives

1 ≥ ∑
x∈X

P [Ex] = ∑
x∈X

1
2|C(x)| =

n

∑
i=1

1
2ℓi

.

We will show that the concept of entropy, defined in the previous lecture, provides a lower
bound on the expected length of any prefix free code. In particular, we will now show that
any prefix-free code for communicating the value of a random variable X must use at least
H(X) on average.

Claim 1.3. Let X be a random variable taking values in X and let C : X → {0, 1} be a prefix-free
code. Then the expected number of bits used by C to communicate the value of X is at least H(X).

2

Proof: The expected number of bits used is ∑x∈X p(x) · |C(x)|. We consider the quantity

H(X)− ∑
x∈X

p(x) · |C(x)| = ∑
x∈X

p(x) ·
(

log
(

1
p(x)

)
− |C(x)|

)
= ∑

x∈X
p(x) · log

(
1

p(x) · 2|C(x)|

)
.

We consider a random variable Y with takes the value 1
p(x)·2|C(x)| with probability p(x). The

above expression then becomes E [log(Y)]. Using Jensen’s inequality gives

E [log(Y)] ≤ log (E [Y]) = log

(
∑

x∈X
p(x) · 1

p(x) · 2|C(x)|

)
= log

(
∑

x∈X

1
2|C(x)|

)

which is non-positive since ∑x∈U
1

2|C(x)| ≤ 1 by Kraft’s inequality.

The Shannon code: We now construct a (prefix-free) code for conveying the value of X,
using at most H(X) + 1 bits on average (over the distribution of X). For an element x ∈ X
which occurs with probability p(x), we will use a codeword of length ⌈log(1/p(x))⌉. By
Kraft’s inequality, there exists a prefix-free code with these codeword lengths, since

∑
x∈X

1
2|C(x)| = ∑

x∈X

1
2⌈log(1/p(x))⌉ ≤ ∑

x∈X

1
2log(1/p(x))

= ∑
x∈X

p(x) = 1 .

Also, the expected number of bits used is

∑
x∈X

p(x) · ⌈log(1/p(x))⌉ ≤ ∑
x∈X

p(x) · (log(1/p(x)) + 1) = H(X) + 1 .

This code is known as the Shannon code.

2 Joint Entropy

We have two random variables X and Y. The joint distribution of the two random variables
(X, Y) takes values (x, y) with probability p(x, y). Merely by using the definition, we can
write down the entropy of Z = (X, Y) trivially. However what we are more interested in
is seeing how the entropy of (X, Y), the joint entropy, relates to the individual entropies,

3

which we work out below:

H(X, Y) = ∑
x,y

p(x, y) log
1

p(x, y)

= ∑
x,y

p(x)p(y|x) log
1

p(x)
+ ∑

x,y
p(x)p(y|x) log

1
p(y|x)

= ∑
x

p(x) log
1

p(x) ∑
y

p(y|x) + ∑
x,y

p(x)p(y|x) log
1

p(y|x)

= H(X) + ∑
x

p(x)H(Y|X = x)

= H(X) + E
x
[H(Y|X = x)]

Denoting Ex [H(Y|X = x)] as H(Y|X), this can simply be written as

H(X, Y) = H(X) + H(Y|X)

If we were to redo the calculations, we could similarly obtain:

H(X, Y) = H(Y) + H(X|Y)

This is called the Chain Rule for Entropy. Note that in the calculations above, we treat
(Y|X = x) as a random variable, with distribution given by P [Y = y | X = x] = p(y|x).
Also note that H(Y|X) is a simply a shorthand for the expected entropy of (Y|X = x), with
the expectation taken over the values for X.

Example 2.1. Consider the random variable (X, Y) with X ∨ Y = 1 and X ∈ {0, 1} and Y =
{0, 1} such that:

(X, Y) =


01 with probability 1/3
10 with probability 1/3
11 with probability 1/3

Now, let us calculate the following:

1. H(X) = H(Y) = 1
3 log 3 + 2

3 log 3
2

2. H(Y|X = 0) = 0

3. H(Y|X = 1) = 1
2 log 1

1
2
+ 1

2 log 1
1
2
= 1

4. H(Y|X) = 1
3 · 0 + 2

3 · 1 = 2
3

5. H(X, Y) = 1
3 log 3 + 1

3 log 3 + 1
3 log 3 = log 3

4

From the above we see that:
H(Y) ≥ H(Y|X)

this is actually always true and we prove this fact below.

Proposition 2.2. H(Y) ≥ H(Y|X)

Proof: We want to show that H(Y|X)− H(Y) ≤ 0. Consider the quantity on the left hand
side.

H(Y|X)− H(Y) = ∑
x

p(x)∑
y

p(y|x) log
1

p(y|x) − ∑
y

p(y) log
1

p(y)

= ∑
x

p(x)∑
y

p(y|x) log
1

p(y|x) − ∑
y

p(y) log
1

p(y) ∑
x

p(x|y)

= ∑
x,y

p(x, y)

(
log

1
p(y|x) − log

1
p(y)

)

= ∑
x,y

p(x, y)

(
log

p(x)p(y)
p(x, y)

)

Now consider a random variable Z that takes value p(x)p(y)
p(x,y) with probability p(x, y). Then

we can use Jensen’s inequality to get:

∑
x,y

p(x, y)

(
log

p(x)p(y)
p(x, y)

)
≤ log

(
∑
x,y

p(x)p(y)
p(x, y)

p(x, y)

)
= log(1) = 0 .

Note however the fact that conditioning on X reduces the entropy of Y is only true on
average over all fixings of X. In particular, in the above example we have H(Y|X = 1) = 1 >
H(Y). But H(Y|X), which is an average over all fixings of X, is indeed smaller than H(Y).
Also, check that above inequality is tight only when X and Y are independent.

Exercise 2.3. Show that H(Y) = H(Y|X) if and only if X and Y are independent.

Using induction, we can use the chain rule to show that the following also holds for a tuple
of random variables (X1, . . . , Xm).

H(X1, X2, . . . , Xm) = H(X1) + H(X2|X1) + H(X3|X1, X2) . . . H(Xm|X1, . . . , Xm−1) .

Combining this with the fact that conditioning (on average) reduces the entropy, we get
the following inequality which is referred to the sub-additivity property of entropy.

H(X1, X2, . . . , Xm) ≤ H(X1) + H(X2) + H(X3) + · · ·+ H(Xm) .

5

	Source Coding
	Joint Entropy

