Information and Coding Theory

Autumn 2022

Lecture 2: September 29, 2022

Lecturer: Madhur Tulsiani

1 Source Coding

We will now attempt to make precise the intuition that a random variable *X* takes H(X) bits to describe on average. We shall need the notion of prefix-free codes as defined below.

Definition 1.1. A code for a set \mathcal{X} over an alphabet Σ is a map $C : \mathcal{X} \to \Sigma^*$ which maps each element of \mathcal{X} to a finite string over the alphabet Σ . We say that a code is prefix-free if for any $x, y \in \mathcal{X}$ such that $x \neq y$, C(x) is not a prefix of C(y) i.e., $C(y) \neq C(x) \circ \sigma$ for any $\sigma \in \Sigma^*$.

For now, we will just use $\Sigma = \{0, 1\}$. For the rest of lecture, we will use prefix-free code to mean prefix-free code over $\{0, 1\}$. The image C(x) for an image x is also referred to as the *codeword* for x.

Note that a prefix-free code has the convenient property that if we are receiving a stream of coded symbols, we can decode them online. As soon as we see C(x) for some $x \in U$, we know what we have received so far cannot be a prefix for C(y), for any $y \neq x$. The following inequality gives a characterization of the lengths of codewords in a prefix-free code. This will help prove both upper and lower bounds on the expected length of a codeword in a prefix-free code, in terms of entropy.

Proposition 1.2 (Kraft's inequality). Let $|\mathcal{X}| = n$. There exists a prefix-free code for \mathcal{X} over $\{0,1\}$ with codeword lengths ℓ_1, \ldots, ℓ_n if and only if

$$\sum_{i=1}^n \frac{1}{2^{\ell_i}} \le 1.$$

For codes over a larger alphabet Σ , we replace 2^{ℓ_i} above by $|\Sigma|^{\ell_i}$.

Proof: Let us prove the "if" part first. Given ℓ_1, \ldots, ℓ_n satisfying $\sum_i 2^{-\ell_i} \leq 1$, we will construct a prefix-free code *C* with these codeword lengths. Without loss of generality, we can assume that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_n = \ell^*$.

It will be useful here to think of all binary strings of length at most ℓ as a complete binary tree. The root corresponds to the empty string and each node at depth *d* corresponds to a string of length *d*. For a node corresponding to a string *s*, its left and right children

correspond respectively to the strings *s*0 and *s*1. The tree has 2^{ℓ^*} leaves corresponding to all strings in $\{0, 1\}^{\ell^*}$.

We will now construct our code by choosing nodes at depth ℓ_1, \ldots, ℓ_n in this tree. When we select a node, we will delete the entire tree below it. This will maintain the prefix-free property of the code. We first chose an arbitrary node s_1 at depth ℓ_1 as a codeword of length ℓ_1 and delete the subtree below it. This deletes $1/2^{\ell_1}$ fraction of the leaves. Since there are still more leaves left in the tree, there exists a node (say s_2) at depth ℓ_2 . Also, s_1 cannot be a prefix of s_2 , since s_2 does not lie in the subtree below s_1 . We choose s_2 as the second codeword in our code *C*. We can similarly proceed to choose other codewords. At each step, we have some leaves left in the tree since $\sum_i 2^{-\ell_i} \leq 1$.

Note that we need to carry out this argument in increasing order of lengths. Otherwise, if we choose longer codewords first, we may have to choose a shorter codeword later which does not lie on the path from the root to any of the longer codewords, and this may not always possible e.g., there exists a code with lengths 1,2,2 but if we choose the strings 01 and 10 first then there is no way to choose a codeword of length 1 which is not a prefix.

For the "only if" part, we can simply reverse the above proof. Let *C* be a given prefix-free code with codeword lengths ℓ_1, \ldots, ℓ_n and let $\ell^* = \max \{\ell_1, \ldots, \ell_n\}$. Considering again the complete binary tree of depth ℓ^* , we can now locate the codewords (say) $C(x_1), \ldots, C(x_n)$ as nodes in the tree. We say that a codeword C(x) *dominates* a leaf *L* if *L* occurs in the subtree rooted at C(x). Note that the out of the total 2^{ℓ^*} fraction of leaves dominated by a codeword of length ℓ_i is $2^{-\ell_i}$. Also, note that if C(x) and C(y) dominate the same leaf *L*, then either C(x) appears in the subtree rooted at C(y) or vice-versa. Since the code is prefix-free, this cannot happen and the sets of leaves dominated by codewords must be disjoint. Thus, we have $\sum_i 2^{-\ell_i} \leq 1$.

This part of the proof also has a probabilitic interpretation. Consider an experiment where we generate ℓ^* random bits. For $x \in \mathcal{X}$, let E_x denote the event that the *first* |C(x)| bits we generate are equal to C(x). Note that since *C* is a prefix-free code, E_x and E_y are mutually exclusive for $x \neq y$. Moreover, the probability that E_x happens is exactly $1/2^{|C(x)|}$. This gives

$$1 \geq \sum_{x \in \mathcal{X}} \mathbb{P}[E_x] = \sum_{x \in \mathcal{X}} \frac{1}{2^{|C(x)|}} = \sum_{i=1}^n \frac{1}{2^{\ell_i}}$$

We will show that the concept of entropy, defined in the previous lecture, provides a lower bound on the expected length of any prefix free code. In particular, we will now show that *any* prefix-free code for communicating the value of a random variable X must use at least H(X) on average.

Claim 1.3. Let X be a random variable taking values in \mathcal{X} and let $C : \mathcal{X} \to \{0, 1\}$ be a prefix-free code. Then the expected number of bits used by C to communicate the value of X is at least H(X).

Proof: The expected number of bits used is $\sum_{x \in \mathcal{X}} p(x) \cdot |C(x)|$. We consider the quantity

$$\begin{split} H(X) &- \sum_{x \in \mathcal{X}} p(x) \cdot |C(x)| \; = \; \sum_{x \in \mathcal{X}} p(x) \cdot \left(\log\left(\frac{1}{p(x)}\right) - |C(x)| \right) \\ &= \; \sum_{x \in \mathcal{X}} p(x) \cdot \log\left(\frac{1}{p(x) \cdot 2^{|C(x)|}}\right) \, . \end{split}$$

We consider a random variable Y with takes the value $\frac{1}{p(x) \cdot 2^{|C(x)|}}$ with probability p(x). The above expression then becomes $\mathbb{E}[\log(Y)]$. Using Jensen's inequality gives

$$\mathbb{E}\left[\log(Y)\right] \leq \log\left(\mathbb{E}\left[Y\right]\right) = \log\left(\sum_{x \in \mathcal{X}} p(x) \cdot \frac{1}{p(x) \cdot 2^{|C(x)|}}\right) = \log\left(\sum_{x \in \mathcal{X}} \frac{1}{2^{|C(x)|}}\right)$$

which is non-positive since $\sum_{x \in U} \frac{1}{2^{|C(x)|}} \leq 1$ by Kraft's inequality.

The Shannon code: We now construct a (prefix-free) code for conveying the value of *X*, using at most H(X) + 1 bits on average (over the distribution of *X*). For an element $x \in \mathcal{X}$ which occurs with probability p(x), we will use a codeword of length $\lceil \log(1/p(x)) \rceil$. By Kraft's inequality, there exists a prefix-free code with these codeword lengths, since

$$\sum_{x \in \mathcal{X}} \frac{1}{2^{|C(x)|}} = \sum_{x \in \mathcal{X}} \frac{1}{2^{\lceil \log(1/p(x)) \rceil}} \le \sum_{x \in \mathcal{X}} \frac{1}{2^{\log(1/p(x))}} = \sum_{x \in \mathcal{X}} p(x) = 1.$$

Also, the expected number of bits used is

$$\sum_{x \in \mathcal{X}} p(x) \cdot \lceil \log(1/p(x)) \rceil \leq \sum_{x \in \mathcal{X}} p(x) \cdot (\log(1/p(x)) + 1) = H(X) + 1.$$

This code is known as the Shannon code.

2 Joint Entropy

We have two random variables *X* and *Y*. The joint distribution of the two random variables (X, Y) takes values (x, y) with probability p(x, y). Merely by using the definition, we can write down the entropy of Z = (X, Y) trivially. However what we are more interested in is seeing how the entropy of (X, Y), the joint entropy, relates to the individual entropies,

which we work out below:

$$H(X,Y) = \sum_{x,y} p(x,y) \log \frac{1}{p(x,y)}$$

= $\sum_{x,y} p(x)p(y|x) \log \frac{1}{p(x)} + \sum_{x,y} p(x)p(y|x) \log \frac{1}{p(y|x)}$
= $\sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y|x) + \sum_{x,y} p(x)p(y|x) \log \frac{1}{p(y|x)}$
= $H(X) + \sum_{x} p(x)H(Y|X = x)$
= $H(X) + \mathbb{E}_{x} [H(Y|X = x)]$

Denoting $\mathbb{E}_{x}[H(Y|X = x)]$ as H(Y|X), this can simply be written as

$$H(X,Y) = H(X) + H(Y|X)$$

If we were to redo the calculations, we could similarly obtain:

$$H(X,Y) = H(Y) + H(X|Y)$$

This is called the *Chain Rule* for Entropy. Note that in the calculations above, we treat (Y|X = x) as a random variable, with distribution given by $\mathbb{P}[Y = y \mid X = x] = p(y|x)$. Also note that H(Y|X) is a simply a shorthand for the *expected* entropy of (Y|X = x), with the expectation taken over the values for X.

Example 2.1. Consider the random variable (X, Y) with $X \lor Y = 1$ and $X \in \{0, 1\}$ and $Y = \{0, 1\}$ such that:

$$(X,Y) = \begin{cases} 01 & with probability 1/3\\ 10 & with probability 1/3\\ 11 & with probability 1/3 \end{cases}$$

Now, let us calculate the following:

- 1. $H(X) = H(Y) = \frac{1}{3}\log 3 + \frac{2}{3}\log \frac{3}{2}$
- 2. H(Y|X=0) = 0
- 3. $H(Y|X=1) = \frac{1}{2}\log\frac{1}{\frac{1}{2}} + \frac{1}{2}\log\frac{1}{\frac{1}{2}} = 1$
- 4. $H(Y|X) = \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$
- 5. $H(X,Y) = \frac{1}{3}\log 3 + \frac{1}{3}\log 3 + \frac{1}{3}\log 3 = \log 3$

From the above we see that:

$$H(Y) \ge H(Y|X)$$

this is actually *always* true and we prove this fact below.

Proposition 2.2. $H(Y) \ge H(Y|X)$

Proof: We want to show that $H(Y|X) - H(Y) \le 0$. Consider the quantity on the left hand side.

$$\begin{split} H(Y|X) - H(Y) &= \sum_{x} p(x) \sum_{y} p(y|x) \log \frac{1}{p(y|x)} - \sum_{y} p(y) \log \frac{1}{p(y)} \\ &= \sum_{x} p(x) \sum_{y} p(y|x) \log \frac{1}{p(y|x)} - \sum_{y} p(y) \log \frac{1}{p(y)} \sum_{x} p(x|y) \\ &= \sum_{x,y} p(x,y) \left(\log \frac{1}{p(y|x)} - \log \frac{1}{p(y)} \right) \\ &= \sum_{x,y} p(x,y) \left(\log \frac{p(x)p(y)}{p(x,y)} \right) \end{split}$$

Now consider a random variable *Z* that takes value $\frac{p(x)p(y)}{p(x,y)}$ with probability p(x,y). Then we can use Jensen's inequality to get:

$$\sum_{x,y} p(x,y) \left(\log \frac{p(x)p(y)}{p(x,y)} \right) \le \log \left(\sum_{x,y} \frac{p(x)p(y)}{p(x,y)} p(x,y) \right) = \log(1) = 0.$$

Note however the fact that conditioning on *X* reduces the entropy of *Y* is only true *on average over all fixings of X*. In particular, in the above example we have H(Y|X = 1) = 1 > H(Y). But H(Y|X), which is an average over all fixings of *X*, is indeed smaller than H(Y). Also, check that above inequality is tight only when *X* and *Y* are independent.

Exercise 2.3. Show that H(Y) = H(Y|X) if and only if X and Y are independent.

Using induction, we can use the chain rule to show that the following also holds for a tuple of random variables (X_1, \ldots, X_m) .

$$H(X_1, X_2, \ldots, X_m) = H(X_1) + H(X_2|X_1) + H(X_3|X_1, X_2) \ldots H(X_m|X_1, \ldots, X_{m-1}).$$

Combining this with the fact that conditioning (on average) reduces the entropy, we get the following inequality which is referred to the sub-additivity property of entropy.

$$H(X_1, X_2, \ldots, X_m) \leq H(X_1) + H(X_2) + H(X_3) + \cdots + H(X_m).$$