Lecturer: Madhur Tulsiani

1 Source Coding

We will now attempt to make precise the intuition that a random variable X takes $H(X)$ bits to describe on average. We shall need the notion of prefix-free codes as defined below.

Definition 1.1. A code for a set \mathcal{X} over an alphabet Σ is a map $C: \mathcal{X} \rightarrow \Sigma^{*}$ which maps each element of \mathcal{X} to a finite string over the alphabet Σ. We say that a code is prefix-free if for any $x, y \in \mathcal{X}$ such that $x \neq y, C(x)$ is not a prefix of $C(y)$ i.e., $C(y) \neq C(x) \circ \sigma$ for any $\sigma \in \Sigma^{*}$.

For now, we will just use $\Sigma=\{0,1\}$. For the rest of lecture, we will use prefix-free code to mean prefix-free code over $\{0,1\}$. The image $C(x)$ for an image x is also referred to as the codeword for x.
Note that a prefix-free code has the convenient property that if we are receiving a stream of coded symbols, we can decode them online. As soon as we see $C(x)$ for some $x \in U$, we know what we have received so far cannot be a prefix for $C(y)$, for any $y \neq x$. The following inequality gives a characterization of the lengths of codewords in a prefix-free code. This will help prove both upper and lower bounds on the expected length of a codeword in a prefix-free code, in terms of entropy.

Proposition 1.2 (Kraft's inequality). Let $|\mathcal{X}|=n$. There exists a prefix-free code for \mathcal{X} over $\{0,1\}$ with codeword lengths $\ell_{1}, \ldots, \ell_{n}$ if and only if

$$
\sum_{i=1}^{n} \frac{1}{2^{\ell_{i}}} \leq 1
$$

For codes over a larger alphabet Σ, we replace $2^{\ell_{i}}$ above by $|\Sigma|^{\ell_{i}}$.
Proof: Let us prove the "if" part first. Given $\ell_{1}, \ldots, \ell_{n}$ satisfying $\sum_{i} 2^{-\ell_{i}} \leq 1$, we will construct a prefix-free code C with these codeword lengths. Without loss of generality, we can assume that $\ell_{1} \leq \ell_{2} \leq \cdots \leq \ell_{n}=\ell^{*}$.
It will be useful here to think of all binary strings of length at most ℓ as a complete binary tree. The root corresponds to the empty string and each node at depth d corresponds to a string of length d. For a node corresponding to a string s, its left and right children
correspond respectively to the strings $s 0$ and $s 1$. The tree has $2^{\ell^{*}}$ leaves corresponding to all strings in $\{0,1\}^{\ell^{*}}$.
We will now construct our code by choosing nodes at depth $\ell_{1}, \ldots, \ell_{n}$ in this tree. When we select a node, we will delete the entire tree below it. This will maintain the prefix-free property of the code. We first chose an arbitrary node s_{1} at depth ℓ_{1} as a codeword of length ℓ_{1} and delete the subtree below it. This deletes $1 / 2^{\ell_{1}}$ fraction of the leaves. Since there are still more leaves left in the tree, there exists a node (say s_{2}) at depth ℓ_{2}. Also, s_{1} cannot be a prefix of s_{2}, since s_{2} does not lie in the subtree below s_{1}. We choose s_{2} as the second codeword in our code C. We can similarly proceed to choose other codewords. At each step, we have some leaves left in the tree since $\sum_{i} 2^{-\ell_{i}} \leq 1$.
Note that we need to carry out this argument in increasing order of lengths. Otherwise, if we choose longer codewords first, we may have to choose a shorter codeword later which does not lie on the path from the root to any of the longer codewords, and this may not always possible e.g., there exists a code with lengths $1,2,2$ but if we choose the strings 01 and 10 first then there is no way to choose a codeword of length 1 which is not a prefix.
For the "only if" part, we can simply reverse the above proof. Let C be a given prefix-free code with codeword lengths $\ell_{1}, \ldots, \ell_{n}$ and let $\ell^{*}=\max \left\{\ell_{1}, \ldots, \ell_{n}\right\}$. Considering again the complete binary tree of depth ℓ^{*}, we can now locate the codewords (say) $C\left(x_{1}\right), \ldots, C\left(x_{n}\right)$ as nodes in the tree. We say that a codeword $C(x)$ dominates a leaf L if L occurs in the subtree rooted at $C(x)$. Note that the out of the total $2^{\ell^{*}}$ fraction of leaves dominated by a codeword of length ℓ_{i} is $2^{-\ell_{i}}$. Also, note that if $C(x)$ and $C(y)$ dominate the same leaf L, then either $C(x)$ appears in the subtree rooted at $C(y)$ or vice-versa. Since the code is prefix-free, this cannot happen and the sets of leaves dominated by codewords must be disjoint. Thus, we have $\sum_{i} 2^{-\ell_{i}} \leq 1$.
This part of the proof also has a probabilitic interpretation. Consider an experiment where we generate ℓ^{*} random bits. For $x \in \mathcal{X}$, let E_{x} denote the event that the first $|C(x)|$ bits we generate are equal to $C(x)$. Note that since C is a prefix-free code, E_{x} and E_{y} are mutually exclusive for $x \neq y$. Moreover, the probability that E_{x} happens is exactly $1 / 2^{|C(x)|}$. This gives

$$
1 \geq \sum_{x \in \mathcal{X}} \mathbb{P}\left[E_{x}\right]=\sum_{x \in \mathcal{X}} \frac{1}{2^{|C(x)|}}=\sum_{i=1}^{n} \frac{1}{2^{\ell_{i}}} .
$$

We will show that the concept of entropy, defined in the previous lecture, provides a lower bound on the expected length of any prefix free code. In particular, we will now show that any prefix-free code for communicating the value of a random variable X must use at least $H(X)$ on average.

Claim 1.3. Let X be a random variable taking values in \mathcal{X} and let $C: \mathcal{X} \rightarrow\{0,1\}$ be a prefix-free code. Then the expected number of bits used by C to communicate the value of X is at least $H(X)$.

Proof: The expected number of bits used is $\sum_{x \in \mathcal{X}} p(x) \cdot|C(x)|$. We consider the quantity

$$
\begin{aligned}
H(X)-\sum_{x \in \mathcal{X}} p(x) \cdot|C(x)| & =\sum_{x \in \mathcal{X}} p(x) \cdot\left(\log \left(\frac{1}{p(x)}\right)-|C(x)|\right) \\
& =\sum_{x \in \mathcal{X}} p(x) \cdot \log \left(\frac{1}{p(x) \cdot 2^{|C(x)|}}\right) .
\end{aligned}
$$

We consider a random variable Y with takes the value $\frac{1}{p(x) \cdot 2^{[C(x) \mid}}$ with probability $p(x)$. The above expression then becomes $\mathbb{E}[\log (Y)]$. Using Jensen's inequality gives

$$
\mathbb{E}[\log (Y)] \leq \log (\mathbb{E}[Y])=\log \left(\sum_{x \in \mathcal{X}} p(x) \cdot \frac{1}{p(x) \cdot 2^{|\mathcal{C}(x)|}}\right)=\log \left(\sum_{x \in \mathcal{X}} \frac{1}{2^{|C(x)|}}\right)
$$

which is non-positive since $\sum_{x \in U} \frac{1}{2 C(x) \mid} \leq 1$ by Kraft's inequality.
The Shannon code: We now construct a (prefix-free) code for conveying the value of X, using at most $H(X)+1$ bits on average (over the distribution of X). For an element $x \in \mathcal{X}$ which occurs with probability $p(x)$, we will use a codeword of length $\lceil\log (1 / p(x))\rceil$. By Kraft's inequality, there exists a prefix-free code with these codeword lengths, since

$$
\sum_{x \in \mathcal{X}} \frac{1}{2^{|C(x)|}}=\sum_{x \in \mathcal{X}} \frac{1}{2^{[\log (1 / p(x))]}} \leq \sum_{x \in \mathcal{X}} \frac{1}{2^{\log (1 / p(x))}}=\sum_{x \in \mathcal{X}} p(x)=1
$$

Also, the expected number of bits used is

$$
\sum_{x \in \mathcal{X}} p(x) \cdot\lceil\log (1 / p(x))\rceil \leq \sum_{x \in \mathcal{X}} p(x) \cdot(\log (1 / p(x))+1)=H(X)+1
$$

This code is known as the Shannon code.

2 Joint Entropy

We have two random variables X and Y. The joint distribution of the two random variables (X, Y) takes values (x, y) with probability $p(x, y)$. Merely by using the definition, we can write down the entropy of $Z=(X, Y)$ trivially. However what we are more interested in is seeing how the entropy of (X, Y), the joint entropy, relates to the individual entropies,
which we work out below:

$$
\begin{aligned}
H(X, Y) & =\sum_{x, y} p(x, y) \log \frac{1}{p(x, y)} \\
& =\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(x)}+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =\sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y \mid x)+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =H(X)+\sum_{x} p(x) H(Y \mid X=x) \\
& =H(X)+\underset{x}{\mathbb{E}}[H(Y \mid X=x)]
\end{aligned}
$$

Denoting $\mathbb{E}_{x}[H(Y \mid X=x)]$ as $H(Y \mid X)$, this can simply be written as

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

If we were to redo the calculations, we could similarly obtain:

$$
H(X, Y)=H(Y)+H(X \mid Y)
$$

This is called the Chain Rule for Entropy. Note that in the calculations above, we treat $(Y \mid X=x)$ as a random variable, with distribution given by $\mathbb{P}[Y=y \mid X=x]=p(y \mid x)$. Also note that $H(Y \mid X)$ is a simply a shorthand for the expected entropy of $(Y \mid X=x)$, with the expectation taken over the values for X.

Example 2.1. Consider the random variable (X, Y) with $X \vee Y=1$ and $X \in\{0,1\}$ and $Y=$ $\{0,1\}$ such that:

$$
(X, Y)= \begin{cases}01 & \text { with probability } 1 / 3 \\ 10 & \text { with probability } 1 / 3 \\ 11 & \text { with probability } 1 / 3\end{cases}
$$

Now, let us calculate the following:

1. $H(X)=H(Y)=\frac{1}{3} \log 3+\frac{2}{3} \log \frac{3}{2}$
2. $H(Y \mid X=0)=0$
3. $H(Y \mid X=1)=\frac{1}{2} \log \frac{1}{\frac{1}{2}}+\frac{1}{2} \log \frac{1}{\frac{1}{2}}=1$
4. $H(Y \mid X)=\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1=\frac{2}{3}$
5. $H(X, Y)=\frac{1}{3} \log 3+\frac{1}{3} \log 3+\frac{1}{3} \log 3=\log 3$

From the above we see that:

$$
H(Y) \geq H(Y \mid X)
$$

this is actually always true and we prove this fact below.
Proposition 2.2. $H(Y) \geq H(Y \mid X)$
Proof: We want to show that $H(Y \mid X)-H(Y) \leq 0$. Consider the quantity on the left hand side.

$$
\begin{aligned}
H(Y \mid X)-H(Y) & =\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}-\sum_{y} p(y) \log \frac{1}{p(y)} \\
& =\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}-\sum_{y} p(y) \log \frac{1}{p(y)} \sum_{x} p(x \mid y) \\
& =\sum_{x, y} p(x, y)\left(\log \frac{1}{p(y \mid x)}-\log \frac{1}{p(y)}\right) \\
& =\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right)
\end{aligned}
$$

Now consider a random variable Z that takes value $\frac{p(x) p(y)}{p(x, y)}$ with probability $p(x, y)$. Then we can use Jensen's inequality to get:

$$
\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right) \leq \log \left(\sum_{x, y} \frac{p(x) p(y)}{p(x, y)} p(x, y)\right)=\log (1)=0
$$

Note however the fact that conditioning on X reduces the entropy of Y is only true on average over all fixings of X. In particular, in the above example we have $H(Y \mid X=1)=1>$ $H(Y)$. But $H(Y \mid X)$, which is an average over all fixings of X, is indeed smaller than $H(Y)$. Also, check that above inequality is tight only when X and Y are independent.
Exercise 2.3. Show that $H(Y)=H(Y \mid X)$ if and only if X and Y are independent.
Using induction, we can use the chain rule to show that the following also holds for a tuple of random variables $\left(X_{1}, \ldots, X_{m}\right)$.

$$
H\left(X_{1}, X_{2}, \ldots, X_{m}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right) \ldots H\left(X_{m} \mid X_{1}, \ldots, X_{m-1}\right)
$$

Combining this with the fact that conditioning (on average) reduces the entropy, we get the following inequality which is referred to the sub-additivity property of entropy.

$$
H\left(X_{1}, X_{2}, \ldots, X_{m}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+H\left(X_{3}\right)+\cdots+H\left(X_{m}\right) .
$$

