Information and Coding Theory Autumn 2022
Lecture 2: September 29, 2022

Lecturer: Madhur Tulsiani

1 Source Coding

We will now attempt to make precise the intuition that a random variable X takes H(X)
bits to describe on average. We shall need the notion of prefix-free codes as defined below.

Definition 1.1. A code for a set X over an alphabet ¥ is a map C : X — X* which maps each
element of X to a finite string over the alphabet X.. We say that a code is prefix-free if for any
x,y € X such that x # y, C(x) is not a prefix of C(y) i.e., C(y) # C(x) oo forany o € X*.

For now, we will just use X = {0, 1}. For the rest of lecture, we will use prefix-free code to
mean prefix-free code over {0, 1}. The image C(x) for an image x is also referred to as the
codeword for x.

Note that a prefix-free code has the convenient property that if we are receiving a stream
of coded symbols, we can decode them online. As soon as we see C(x) for some x € U,
we know what we have received so far cannot be a prefix for C(y), for any y # x. The
following inequality gives a characterization of the lengths of codewords in a prefix-free
code. This will help prove both upper and lower bounds on the expected length of a
codeword in a prefix-free code, in terms of entropy.

Proposition 1.2 (Kraft's inequality). Let |X| = n. There exists a prefix-free code for X over
{0, 1} with codeword lengths {1, . .., ¢, if and only if

n
1oy
= 2l

For codes over a larger alphabet X, we replace 2 above by |Z|.

Proof: Let us prove the “if” part first. Given ¢y, ..., ¢, satisfying) ; 27t < 1, we will
construct a prefix-free code C with these codeword lengths. Without loss of generality, we
can assume that 01 < 0, < -.. < {, = (*.

It will be useful here to think of all binary strings of length at most ¢ as a complete binary
tree. The root corresponds to the empty string and each node at depth d corresponds to
a string of length d. For a node corresponding to a string s, its left and right children

1

correspond respectively to the strings s0 and s1. The tree has 2'" leaves corresponding to
all strings in {0,1}".

We will now construct our code by choosing nodes at depth /4, ..., ¢, in this tree. When
we select a node, we will delete the entire tree below it. This will maintain the prefix-free
property of the code. We first chose an arbitrary node s; at depth ¢; as a codeword of
length ¢; and delete the subtree below it. This deletes 1/2/1 fraction of the leaves. Since
there are still more leaves left in the tree, there exists a node (say s;) at depth ¢>. Also, s;
cannot be a prefix of s, since s, does not lie in the subtree below s;. We choose s as the
second codeword in our code C. We can similarly proceed to choose other codewords. At
each step, we have some leaves left in the tree since) ; 2t < 1.

Note that we need to carry out this argument in increasing order of lengths. Otherwise, if
we choose longer codewords first, we may have to choose a shorter codeword later which
does not lie on the path from the root to any of the longer codewords, and this may not
always possible e.g., there exists a code with lengths 1,2, 2 but if we choose the strings 01
and 10 first then there is no way to choose a codeword of length 1 which is not a prefix.

For the “only if” part, we can simply reverse the above proof. Let C be a given prefix-free
code with codeword lengths ¢y, ..., ¢, and let /* = max {/4,...,¢,}. Considering again the
complete binary tree of depth ¢*, we can now locate the codewords (say) C(x1),...,C(xy)
as nodes in the tree. We say that a codeword C(x) dominates a leaf L if L occurs in the
subtree rooted at C(x). Note that the out of the total 2¢ fraction of leaves dominated by
a codeword of length ¢; is 2. Also, note that if C(x) and C(y) dominate the same leaf
L, then either C(x) appears in the subtree rooted at C(y) or vice-versa. Since the code is
prefix-free, this cannot happen and the sets of leaves dominated by codewords must be
disjoint. Thus, we have) ; 274 < 1.
This part of the proof also has a probabilitic interpretation. Consider an experiment where
we generate ¢* random bits. For x € X, let E, denote the event that the first |C(x)| bits we
generate are equal to C(x). Note that since C is a prefix-free code, E, and E, are mutually
exclusive for x # y. Moreover, the probability that E, happens is exactly 1/2/¢¥)I. This
gives
1> Y P[E] = ZL = ii.
xex pex 20 EH 2k
|

We will show that the concept of entropy, defined in the previous lecture, provides a lower
bound on the expected length of any prefix free code. In particular, we will now show that
any prefix-free code for communicating the value of a random variable X must use at least
H(X) on average.

Claim 1.3. Let X be a random variable taking values in X and let C : X — {0, 1} be a prefix-free
code. Then the expected number of bits used by C to communicate the value of X is at least H(X).

2

Proof: The expected number of bits used is }_,cy p(x) - |C(x)|. We consider the quantity

_x;(p(x)-|C(x)| = xgp(x)- <log (p(lx)> - !C(x)!>
=) px)-log (M) .

xeX

We consider a random variable Y with takes the value e 2\C ;7 with probability p(x). The

above expression then becomes E [log(Y)]. Using Jensen’s inequality gives

E[log(Y)] < log(E[Y] (Zp)12|C()> = log<z):(2|cl(x)>

xeX

which is non-positive since), -, 2\C < 1 by Kraft’s inequality. [

The Shannon code: We now construct a (prefix-free) code for conveying the value of X,
using at most H(X) + 1 bits on average (over the distribution of X). For an element x € X
which occurs with probability p(x), we will use a codeword of length [log(1/p(x))]. By
Kraft’s inequality, there exists a prefix-free code with these codeword lengths, since

1 1 1

Looew = X s < X g — 4P

xeX

Also, the expected number of bits used is

Y. p(x)-Mog(1/p(x))] < Y. p(x)- (log(1/p(x))+1) = H(X)+1.
xeX xeX

This code is known as the Shannon code.

2 Joint Entropy

We have two random variables X and Y. The joint distribution of the two random variables
(X,Y) takes values (x,y) with probability p(x,y). Merely by using the definition, we can
write down the entropy of Z = (X, Y) trivially. However what we are more interested in
is seeing how the entropy of (X,Y), the joint entropy, relates to the individual entropies,

which we work out below:

1
H(X, prylogp(y)
=Y_p(x)p(ylx) log +2P p(y|x)log —— !
Xy (x) p(ylx)
Z;p(x)logp(lx);p -l-Zp p(y|x)log (y1|x)
= H(X)+Y_p(x)H(Y|X = x)
= (X)+1§[H(Y|X:x)]

Denoting E, [H(Y|X = x)] as H(Y|X), this can simply be written as
H(X,Y)=H(X)+ H(Y|X)

If we were to redo the calculations, we could similarly obtain:
H(X,Y)=H(Y)+ H(X|Y)

This is called the Chain Rule for Entropy. Note that in the calculations above, we treat
(Y|X = x) as a random variable, with distribution given by P[Y =y | X = x] = p(y|x).
Also note that H(Y|X) is a simply a shorthand for the expected entropy of (Y|X = x), with
the expectation taken over the values for X.

Example 2.1. Consider the random variable (X,Y) with X VY = 1and X € {0,1} and Y =
{0,1} such that:

10 with probability 1/3

01 with probability 1/3
(X,Y)
11 with probability 1/3

Now, let us calculate the following:

1. H(X) = H(Y) = 1log3 + %log 3

From the above we see that:
H(Y) > H(Y[X)

this is actually always true and we prove this fact below.
Proposition 2.2. H(Y) > H(Y|X)

Proof: We want to show that H(Y|X) — H(Y) < 0. Consider the quantity on the left hand
side.

1
H(Y|X) — H(Y) = L p(x ;P(J/!x)bg y|x ;P Jlog o5
Z};p(X)§p(ylx>10g y|x ;p 08y L P)

1 1
= %P(x,y) <1<>g S o8)>

p(y
Y x| 1oe PRIPW)
—%P(4/)(1 8 y) >

Now consider a random variable Z that takes value ;() y()) with probability p(x,y). Then
we can use Jensen’s inequality to get:

ZP(W)(log W) < log (Zp x ;?P(x,y)) = log(1) = 0.
XY

: & plx
|

Note however the fact that conditioning on X reduces the entropy of Y is only true on
average over all fixings of X. In particular, in the above example wehave H(Y|X =1) =1 >
H(Y). But H(Y|X), which is an average over all fixings of X, is indeed smaller than H(Y).
Also, check that above inequality is tight only when X and Y are independent.

Exercise 2.3. Show that H(Y) = H(Y|X) if and only if X and Y are independent.

Using induction, we can use the chain rule to show that the following also holds for a tuple
of random variables (Xy, ..., X;).

H(X1,Xa, ..., Xm) = H(Xy) 4+ H(X2|X1) + H(X3|X1, X2) ... H(X| X1, - -, Xin1) -

Combining this with the fact that conditioning (on average) reduces the entropy, we get
the following inequality which is referred to the sub-additivity property of entropy.

H(X1, X2, ..., Xm) < H(X1) +H(Xp) + H(X3) + - + H(Xu) .

	Source Coding
	Joint Entropy

