
Information and Coding Theory Autumn 2022

Lecture 4: October 6, 2022
Lecturer: Madhur Tulsiani

1 Shearer’s Lemma and Combinatorial Applications

Let us begin by restating Shearer’s lemma, which we mentioned and used (but did not
prove) in the previous lecture.

Lemma 1.1 (Shearer’s Lemma). Let {X1, . . . , Xn} be a set of random variables. For any S ⊂ [n],
let us denote XS = {Xi : i ∈ S}. Let F ⊆ 2[n] be a collection of subsets of [n] with the property
that for all i ∈ [n], we have that |{S ∈ F | S ∋ i}| ≥ t. Then

t · H(X1, . . . , Xn) ≤ ∑
S∈F

H(XS) .

We will actually prove a more general version of the lemma which can be stated in terms
of a distribution over subsets of [m] such that for each i ∈ [n], we have a lower bound on
the probability that a random subset from the distribution includes i. The lemma below
can easily be seen to imply the version above, by using the uniform distribution on the
collection F .

Lemma 1.2 (Shearer’s Lemma: distribution version). Let {X1, . . . , Xn} be a set of random
variables. For any S ⊂ [n], let us denote XS = {Xi : i ∈ S}. Let D be an arbitrary distribution
on 2[n] (set of all subsets of [n]) and let µ be such that ∀i ∈ [n] PS∼D [i ∈ S] ≥ µ. Then

µ · H(X1, . . . , Xn) ≤ E
S∼D

[H(XS)] .

Exercise 1.3. Check that Lemma 1.2 implies Lemma 1.1. Also check that both these lemmas imply
sub-additivity.

We now prove Lemma 1.2

Proof: The proof of the lemma follows simply from the chain rule for entropy and the fact
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that conditioning reduces entropy (on average).

E
S∼D

[H(XS)] = E
S∼D

[
∑
i∈S

H
(

Xi | XS∩[i−1]

)]
by Chain rule

≥ E
S∼D

[
∑
i∈S

H
(

Xi | X[i−1]

)]
H(Xi|XA) ≥ H(Xi|XB) for A ⊂ B

= E
S∼D

[
∑

i∈[n]
1{i∈S} · H

(
Xi | X[i−1]

)]
= ∑

i∈[n]
P

S∼D
[i ∈ S] · H

(
Xi | X[i−1]

)
≥ µ · ∑

i∈[n]
H
(

Xi | X[i−1]

)
= µ · H(X1, . . . , Xm)

We now consider some simple combinatorial applications of Shearer’s lemma.

1.1 Counting graph homomorphisms

Shearer’s lemma can be used to give an estimate of the number of ways of “embedding”
a small graph G into a large graph H. For two graphs G : (VG, EG) and H = (VH, EH), an
embedding (also called a homomorphism) of G in H is defined as a function f : VG → VH
such that for all (u, v) ∈ EG, we have ( f (u), f (v)) ∈ VH. Note that the definition does not
prevent the image of non-edge pairs in EG from being edges in EH.

We will show an upper bound on the maximum number of embeddings for a graph G
into any H with at most m edges. For now, let us take G to be the 5-cycle with vertex set
{1, 2, 3, 4, 5}. Consider any graph H with at most m edges and let F = (F(1), . . . , F(5)) be
a collection of random variables denoting an embedding of G chosen uniformly from the
set of all embeddings. Using Shearer’s lemma, we can write

2 · H(F(1), . . . , F(5)) ≤ H(F(1), F(2)) + H(F(2), F(3)) + · · ·+ H(F(5), F(1)) .

Since {1, 2} is an edge in G, the pair (F(1), F(2)) must correspond to an (ordered) edge in
H. Since the number of edges in H is at most m, we get that H(F(1), F(2)) ≤ log(2m).
Using the same bound for all terms on the right, we get

H(F(1), . . . , F(5)) ≤ 5
2
· log(2m) ,

which gives a bound of (2m)5/2 on the number of embeddings.
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Exercise 1.4. Check that the exponent of 5/2 in the above bound is tight.

The above method can also be used to give a tight estimate for any graph G (of constant
size). In general, the exponent depends on a parameter known as the fractional independent
set number of G. I will divide this proof in a few parts and add this as an extra problem in
the homework. The solution to this problem need not be submitted.

The proof, along with many other combinatorial applications can also be found in the
surveys by Radhakrishnan [Rad03] and [Gal14]. A generalization of Shearer’s lemma was
also used in the paper by Friedgut [Fri04] that we discussed in the previous lecture.

2 Mutual Information

The mutual information is a quantity which measures the amount of dependence between
two random variables. Unlike correlation, which defines the random variables to take
values in the same space, the mutual information can be defined for any two random
variables. The mutual information between two random variables X and Y is defined by
the formula

I(X; Y) = H(X)− H(X|Y)

Using the chain rule for entropy, we can see that

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y) .

We can use the first two expressions to observe that I(X; Y) ≥ 0 and the last one to observe
that I(X; Y) = I(Y; X).

Example 2.1. Consider the random variable (X, Y) with X ∨ Y = 1, X ∈ {0, 1} and Y ∈ {0, 1}
such that:

(X, Y) =


10 w.p 1/3
01 w.p 1/3
11 w.p 1/3

Then, we can calculate the entropy and mutual information as follows:

H(X) = H(Y) =
1
3

log 3 +
2
3

log
3
2

= log 3 − 2
3

H(X, Y) = log 3

I(X; Y) = H(X) + H(Y)− H(X, Y) = log 3 − 4
3
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Conditioning on a third random variable Z, we can also define the conditional mutual
information I(X; Y|Z) as

I(X; Y|Z) := E
z
[I(X|Z = z; Y|Z = z)]

= E
z
[H(X|Z = z)− H(X|Y, Z = z)]

= H(X|Z)− H(X|Y, Z) .

Consider the following example of three random variables.

Example 2.2. Consider the random variable (X, Y, Z), X ∈ {0, 1}, Y ∈ {0, 1} and Z = X ⊕ Y
such that:

(X, Y, Z) =


000 w.p 1/4
011 w.p 1/4
101 w.p 1/4
110 w.p 1/4

We can check that in this case, X, Y are independent and thus I(X; Y) = 0. However,

I(X : Y|Z) = E
z
[I(X|Z = z; Y|Z = z)]

=
1
2

I(X|Z = 0; Y|Z = 0) +
1
2

I(X|Z = 1; Y|Z = 1)

=
1
2

log 2 +
1
2

log 2 = 1

The above example illustrates that unlike entropy, it is not true that conditioning (on aver-
age) decreases the mutual information. In the above example, while I(X; Y) = 0, we have
I(X; Y|Z) = 1 which is in fact the maximum possible.

Recall that entropy provides theoretical limits on source coding, where the goal is to com-
press information when transmitting in a way such that whatever we send is received
without any error. The concept of mutual information provides limits on transmission,
when the transmission "channel" is noisy. We will discuss this in detail when we consider
error-correcting codes, but it is instructive to consider the following example known as the
"Binary Symmetric Chhannel".

Exercise 2.3. Let X be a random variable supported on {0, 1}, and let Y be a "noisy" copy of X,
which is equal to X with probability 1 − p, and has the opposite value (0 is X is 1, and 1 if X is 0)
with probability p. Calculate the maximum possible value of I(X; Y) over all possible distributions
for X. This is known as the capacity of the binary symmetric channel.

As in the case of entropy, mutual information also obeys a chain rule.

Lemma 2.4. I((X1, . . . , Xm); Y) = ∑m
i=1 I(Xi; Y|X1, . . . , Xi−1)
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Proof: The chain rule for mutual information is a simple consequence of the chain rule
for entropy. We have

I((X1, . . . , Xm); Y) = H(X1, . . . , Xm)− H(X1, . . . , Xm|Y)

=
m

∑
i=1

H(Xi|X1, . . . , Xi−1)−
m

∑
i=1

H(Xi|Y, X1, . . . , Xi−1)

=
m

∑
i=1

[H(Xi|X1, . . . , Xi−1)− H(Xi|Y, X1, . . . , Xi−1)]

=
m

∑
i=1

I(Xi; Y|X1, . . . , Xi−1)
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