
Information and Coding Theory Autumn 2022

Lecture 5: January 26, 2021
Lecturer:

1 Inequalities for Markov chains

We consider a set of random variables in a particular relationship and its consequences
for mutual information. An ordered tuple of random variables (X, Y, Z) is said to form
a Markov chain, written as X → Y → Z, if X and Z are independent conditioned on Y.
Here, we can think of Y as being sampled given the knowledge of X, and Z being sampled
given the knowledge of Y (but not using the “history” about X).

Note that although the notation X → Y → Z (and also the above description) makes it
seem like this is only a Markov chain the forward order, the conditional independence
definition implies that if X → Y → Z is Markov chain, then so is Z → Y → X. This is
sometimes to written as X ↔ Y ↔ Z to clarify that the variables form a Markov chain in
both forward and backward orders.

1.1 Data Processing Inequality

The following inequality shows that information about the starting point cannot increase
as we go further in a Markov chain.

Lemma 1.1 (Data Processing Inequality). Let X → Y → Z be a Markov chain. Then

I(X; Y) ≥ I(X; Z) .

Proof: It is perhaps useful to consider a useful special case first: let Z = g(Y) be a function
of Y. Then it is easy to see that X → Y → g(Y) form a Markov chain. We can prove the
inequality in this case by observing that conditioning on Y is the same as conditioning on
Y, g(Y).

I(X; Y) = H(X)− H(X|Y)
= H(X)− H(X|Y, g(Y))
≥ H(X)− H(X|g(Y)) = I(X; g(Y)) .

The first two lines of the above proof amounted to the fact that

I(X; Y) = I(X; (Y, g(Y)) = I(X; (Y, Z)) .
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However, this continues to be true in the general case, since

I(X; (Y, Z)) = I(X; Y) + I(X; Z|Y) = I(X; Y) ,

where the second term is zero due to the conditional independence. Hence, the proof for
the general case is the same and we have

I(X; Y) = I(X; (Y, Z))
= H(X)− H(X|Y, Z)
≥ H(X)− H(X|Z) = I(X; Z) .

The special case Z = g(Y) is also useful to define the concept of a “sufficient statistic”,
which is a function of Y that makes the data processing inequality tight.

Definition 1.2. For random variables X and Y, a function g(Y) is called a sufficient statistic (of
Y) for X if I(X; Y) = I(X; g(Y)) i.e., g(Y) contains all the relevant information about X.

Exercise 1.3.

X =

{
p1 w.p. 1/2
p2 w.p. 1/2

Let Y be a sequence of n tosses of a coin with probability of heads given by X. Let g(Y) be the
number of heads in Y. Prove I(X; Y) = I(X; g(Y)).

1.2 Fano’s inequality

We first prove an important inequality that lets us understand how well can some “ground
truth” random variable X be predicted based on some observed data Y. We state the
inequality in the language of Markov chains, which we saw before in the context of data
processing inequality. We will denote the Markov chain as X → Y → X̂. We can think
of X as the choice of an unknown parameter from some finite set X . We think of Y as the
“data” generated from this, say a sequence independent samples. Finally, we think of X̂
as a “guess” for X, which depends only on the data. Fano’s inequality is concerned with
the probability of error in the guess, defined as pe = P

[
X̂ ̸= X

]
. We have the following

statement

Lemma 1.4 (Fano’s inequaity). Let X → Y → X̂ be a Markov chain, and let pe = P
[
X̂ ̸= X

]
.

Let H2(pe) denote the binary entropy function computed at pe. Then,

H2(pe) + pe · log (|X | − 1) ≥ H(X|X̂) ≥ H(X|Y) .
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Proof: We define a binary random variable, which indicates an error i.e

E :=

1 if X̂ ̸= X

0 if X̂ = X

The bound in the ineuality then follows from considering the undertainty that still remains
after our prediction, i.e., the entroy H(X, E|X̂).

H(X, E|X̂) = H(X|X̂) + H(E|X, X̂) = H(X|X̂) ,

since H(E|X, X̂) = 0 (why?) Another way of computing this entropy is

H(X, E|X̂) = H(E|X̂) + H(X|E, X̂)

= H(E|X̂) + pe · H(X|E = 1, X̂) + (1 − pe) · H(X|E = 0, X̂)

≤ H(E) + pe · H(X|E = 1, X̂)

≤ H2(pe) + pe · log (|X | − 1) .

Comparing the two expressions then proves the claim.

Fano’s inequality provides a useful way of lower bounding the error of a predictor, partic-
ularly in the case when |X | > 2. As we will see later, in the case when |X | = 2, we will be
able to obtain better bounds using the concept of KL-divergence considered later.

2 Kullback Leibler divergence

The Kullback-Leibler divergence (KL-divergence), also known as relative entropy, is a
measure of how different two distributions are. Note that here we will talk in terms of
distributions instead of random variables, since this is how KL-divergence is most com-
monly expressed. It is of course easy to think of a random variable corresponding to a
given distribution and vice-versa. We will use capital letters like P(X) to denote a distri-
bution for the random variable X and lowercase letters like p(x) to denote the probability
for a specific element x.

Let P and Q be two distributions on a universe X , then the KL-divergence between P and
Q is defined as:

D(P||Q) := ∑
x∈U

p(x) log
(

p(x)
q(x)

)
Let us consider a simple example.
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Example 2.1. Suppose X = {a, b, c}, and p(a) = 1
3 , p(b) = 1

3 , p(c) = 1
3 and q(a) = 1

2 ,
q(b) = 1

2 , q(c) = 0. Then

D(P||Q) =
2
3

log
2
3
+ ∞ = ∞ .

D(Q||P) = log
3
2
+ 0 = log

3
2

.

The above example illustrates two important facts: D(P||Q) and D(Q||P) are not necessar-
ily equal, and D(P||Q) may be infinite. Even though the KL-divergence is not symmetric,
it is often used as a measure of “dissimilarity” between two distribution. Towards this, we
first prove that it is non-negative and is 0 if and only if P = Q.

Lemma 2.2. Let P and Q be distributions on a finite universe X . Then D(P||Q) ≥ 0 with equality
if and only if P = Q.

Proof: Let Supp(P) = {x | p(x) > 0}. Then, we must have Supp(P) ⊆ Supp(Q) if
D(P, Q) < ∞. We can then assume without loss of generality that Supp(Q) = X . Using
the fact the log is a (strictly) concave function, with Jensen inequality, we have:

D(P||Q) = ∑
x∈X

p(x) log
p(x)
q(x)

= ∑
x∈Supp(P)

p(x) log
p(x)
q(x)

= − ∑
x∈Supp(P)

p(x) log
q(x)
p(x)

≥ − log

 ∑
x∈Supp(P)

p(x) · q(x)
p(x)


= − log

 ∑
x∈Supp(P)

q(x)


≥ − log 1 = 0 .

For the case when D(P||Q) = 0, we note that this implies p(x) = p(x) ∀x ∈ Supp(P),
which in turn gives that p(x) = q(x) ∀x ∈ X .

Like entropy and mutual information, we can also derive a chain rule for KL-divergence.
Let P(X, Y) and Q(X, Y) be two distributions for a pair of variables X and Y. We then have
the following expression for D(P(X, Y)||Q(X, Y)).

Proposition 2.3 (Chain rule for KL-divergence). Let P(X, Y) and Q(X, Y) be two distributions
for a pair of variables X and Y. Then,

D(P(X, Y) ∥ Q(X, Y)) = D(P(X) ∥ Q(X)) + E
x∼P

[D(P(Y|X = x) ∥ Q(Y|X = x))]

= D(P(X) ∥ Q(X)) + D(P(Y|X) ∥ Q(Y|X))
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Here P(X) and Q(X) denote the marginal distributions for the first variable, and P(Y|X =
x) denotes the conditional distribution of Y.

Proof: The proof follows from (by now) familiar manipulations of the terms inside the
log function.

D(P(X, Y) ∥ Q(X, Y)) = ∑
x,y

p(x, y) log
p(x, y)
q(x, y)

= ∑
x,y

p(x)p(y|x) log
(

p(x)
q(x)

· p(y|x)
q(y|x)

)
= ∑

x
p(x) log

p(x)
q(x) ∑

y
p(y|x) + ∑

x
p(x)∑

y
p(y|x) log

p(y|x)
q(y|x)

= D(P(X) ∥ Q(X)) + ∑
x

p(x) · D(P(Y|X = x) ∥ Q(Y|X = x))

= D(P(X) ∥ Q(X)) + D(P(Y|X) ∥ Q(Y|X))

Note that if P(X, Y) = P1(X)P2(Y) and Q(X, Y) = Q1(X)Q2(Y), then D(P||Q) = D(P1||Q1)+
D(P2||Q2).

We note that KL-divergence also has an interesting interpretation in terms of source cod-
ing. Writing

D(P||Q) = ∑ p(x) log
p(x)
q(x)

= ∑ p(x) log
1

q(x)
− ∑ p(x) log

1
p(x)

,

we can view this as the number of extra bits we use (on average) if we designed a code
according to the distribution P, but used it to communicate outcomes of a random variable
X distributed according to Q. The first term in the RHS, which corresponds to the average
number of bits used by the “wrong” encoding, is also referred to as cross entropy.

2.1 Convexity of KL-divergence

Before we consider applications, let us prove an important property of KL-divergence. We
prove below that D (P ∥ Q), when viewed as a function of the inputs P and Q, is jointly
convext in both it’s inputs i.e., it is convex in the input (P, Q) when viewed as a tuple.

Proposition 2.4. Let P1, P2, Q1, Q2 be distributions on a finite universe X , and let α ∈ [0, 1].
Then,

D (α · P1 + (1 − α) · P2 ∥ α · Q1 + (1 − α) · Q2) ≤ α · D (P1 ∥ Q1) + (1 − α) · D (P2 ∥ Q2) .
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Proof: For this proof, we will use an inequality called the log-sum inequality, the proof of
which is left is an exercise. The inequality states that for a1, a2, b1, b2 ≥ 0

(a1 + a2) · log
(

a1 + a2

b1 + b2

)
≤ a1 · log

(
a1

b1

)
+ a2 · log

(
a2

b2

)
Using the above inequality, we can bound the LHS as

D (α · P1 + (1 − α) · P2 ∥ α · Q1 + (1 − α) · Q2)

= ∑
x∈X

(α · p1(x) + (1 − α) · p2(x)) · log
(

α · p1(x) + (1 − α) · p2(x)
α · q1(x) + (1 − α) · q2(x)

)
≤ ∑

x∈X
α · p1(x) · log

(
α · p1(x)
α · q1(x)

)
+ (1 − α) · p2(x) · log

(
(1 − α) · p2(x)
(1 − α) · q2(x)

)
= α · D (P1 ∥ Q1) + (1 − α) · D (P2 ∥ Q2) .

Exercise 2.5 (Log-sum inequality). Prove that for a1, a2, b1, b2 ≥ 0

(a1 + a2) · log
(

a1 + a2

b1 + b2

)
≤ a1 · log

(
a1

b1

)
+ a2 · log

(
a2

b2

)
.
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