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1 Gaussian computations

We now derive the expressions for entropy and KL-divergence of Gaussian distributions,
which often come in handy.

1.1 Differential entropy

For a one-dimensional Gaussian X ~ N(u,0?) we can calculate the differential entropy as

h(X) = / p(x) - ﬁ : (W + iln(27wz)> dx
_ ﬁ . G + ;ln(Zn(TZ))

= 1-log(27t~e- 2.
2
For the n-dimensional case, we first consider a Gaussian variable X with mean 0 and co-
variance [,,, which means that we can think of X = (Xj,...,X,) where each X; is a one-
dimensional Gaussian with mean 0 and variance 1. Using the chain-rule for differential
entropy (check that it holds) we get

h(X) = h(X))+ - +h(Xy) = g log (27 -¢).
Before computing the entropy of a general Gaussian variables, it is helpful to consider the
following rule for change of variables.

Exercise 1.1 (Change of variables). Let X be a random variable over R" with associated density
function px. Using the Jacobian for change of variables in integrals, check that

1. If c € R" is a fixed vector, then the density function for Y = X + c is given by py(y) =
px(y —c).

2. If A € R"™" is a nonsingular matrix, then the density function for Y = AX is given by

pr(y) = A where |A] denotes |det(A)).



Using the above, we can derive how the differential entropy of a random variable changes
due to translation and scaling.

Proposition 1.2. Let X be a continuous random variable over R". Let ¢ € R" and let A € R"*"
be a non-singular matrix. Then

1. h(X+c) = h(X).

2. h(AX) = h(X) +1og|A|.

Proof: Let px be the density function for X. For Y = X + ¢, we have

h(Y) = /R py(y) - log (r,yl(y» dy

= /IR px(y —c)-log <px(y1_ C)> dy
= /]R” px(x) - log <Px1(x)> dx (substituting x =y — ¢)
= h(X)

Similarly, for Y = AX, we have

b0 = [ vl -tog () d

y\Y
px(A~ly) < )
= <2 .lo [ —
R A E\px(aTy) )V
A

PTIL(‘T) -log ( | ) |A| dx (substituting x = A_ly)
Rn

h(X) +1log(|A]) -

Using the fact that Y ~ N(y,X) can be written as Y = rl/zx 4 i, where X = N(0,1,)
(check this!) we get that

h(Y) = h(X)—Hog(‘Zl/z‘) = g-log(27r'e)+%-log12\ :



1.2 KL-divergence

We can compute the KL-divergence of two Gaussian distributions P = N(y1,07) and Q =
N(p2,02) as

D(PIQ) = [ pt)-tog (L) )

= £ s (5
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The above is a common way of showing that changing the parameters of a Gaussian dis-
tribution by a small amount does not alter the behavior of an algorithm using the corre-
sponding random variable as input, by too much.

Exercise 1.3. Let P and Q be Gaussian distributions with means yuy and py respectively, and
variance o in both cases. Use Pinsker’s inequality to show that

1= U2
IP-ql, < ol

Exercise 1.4. Compute D (P || Q) for the n-dimension Gaussian distributions P = N(p1,%1)
and Q = N(up, Xp).
1.3 Maximum Entropy

We will now see that the multivariate Gaussian distribution maximizes differential entropy
across all distributions with the same covariance.

Theorem 1.5. Let X be a continuous random variable taking values in R" with mean E[X] = 0
and covariance matrix E[XXT] = X. Then,

h(X) < 7 log(27e) + log(| det(Z)]),

with equality iff X ~ N(0,XZ).



Proof: Let p be the density of X, and g be the density of a gaussian random variable
N(0,%). Then,

0 < D(pllg) = [ plx)tog (53 ) a
— [ p)1ogp(x)dx ~ [ plx)logg(x)dx
= —h(p) — [ p(x)logq(x)dx
— —h(p) - [ a(x)loga(x)dx
= —h(p) +h(q),

where the substitution [ p(x)logg(x)dx = [ q(x)logq(x)dx follows from the definition of
the density function g (for a Gaussian random variable) and the fact the both p and q are
densities for different random variables admitting the same first and second moments (Use
these observations to verify that [ p(x)logg(x)dx = [ g(x)logq(x)dx). By rearranging
terms, we arrive at the stated inequality. ]
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