
Information and Coding Theory Autumn 2022

Lecture 8: October 20, 2022
Lecturer: Omar Montasser

1 Gaussian computations

We now derive the expressions for entropy and KL-divergence of Gaussian distributions,
which often come in handy.

1.1 Differential entropy

For a one-dimensional Gaussian X ∼ N(µ, σ2) we can calculate the differential entropy as

h(X) =
∫

p(x) · 1
ln 2
·
(
(x− µ)2

2σ2 +
1
2

ln(2πσ2)

)
dx

=
1

ln 2
·
(

1
2
+

1
2

ln(2πσ2)

)
=

1
2
· log(2π · e · σ2) .

For the n-dimensional case, we first consider a Gaussian variable X with mean 0 and co-
variance In, which means that we can think of X = (X1, . . . , Xn) where each Xi is a one-
dimensional Gaussian with mean 0 and variance 1. Using the chain-rule for differential
entropy (check that it holds) we get

h(X) = h(X1) + · · ·+ h(Xn) =
n
2
· log(2π · e) .

Before computing the entropy of a general Gaussian variables, it is helpful to consider the
following rule for change of variables.

Exercise 1.1 (Change of variables). Let X be a random variable over Rn with associated density
function pX. Using the Jacobian for change of variables in integrals, check that

1. If c ∈ Rn is a fixed vector, then the density function for Y = X + c is given by pY(y) =
pX(y− c).

2. If A ∈ Rn×n is a nonsingular matrix, then the density function for Y = AX is given by
pY(y) =

pX(A−1y)
|A| , where |A| denotes |det(A)|.
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Using the above, we can derive how the differential entropy of a random variable changes
due to translation and scaling.

Proposition 1.2. Let X be a continuous random variable over Rn. Let c ∈ Rn and let A ∈ Rn×n

be a non-singular matrix. Then

1. h(X + c) = h(X).

2. h(AX) = h(X) + log |A|.

Proof: Let pX be the density function for X. For Y = X + c, we have

h(Y) =
∫

Rn
pY(y) · log

(
1

pY(y)

)
dy

=
∫

Rn
pX(y− c) · log

(
1

pX(y− c)

)
dy

=
∫

Rn
pX(x) · log

(
1

pX(x)

)
dx (substituting x = y− c)

= h(X)

Similarly, for Y = AX, we have

h(Y) =
∫

Rn
pY(y) · log

(
1

pY(y)

)
dy

=
∫

Rn

pX(A−1y)
|A| · log

(
|A|

pX(A−1y)

)
dy

=
∫

Rn

pX(x)
|A| · log

(
|A|

pX(x)

)
|A| dx (substituting x = A−1y)

= h(X) + log(|A|) .

Using the fact that Y ∼ N(µ, Σ) can be written as Y = Σ1/2X + µ, where X = N(0, In)
(check this!) we get that

h(Y) = h(X) + log(
∣∣∣Σ1/2

∣∣∣) =
n
2
· log(2π · e) + 1

2
· log |Σ| .
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1.2 KL-divergence

We can compute the KL-divergence of two Gaussian distributions P = N(µ1, σ2
1 ) and Q =

N(µ2, σ2
2 ) as

D (P ‖ Q) =
∫

R
p(x) · log

(
p(x)
q(x)

)
dx

= E
x∼P

[
log
(

p(x)
q(x)

)]
= E

x∼P

[
1

ln 2
· ln
(

exp
(
−(x− µ1)

2/2σ2
1

)
√

2πσ1
·

√
2πσ2

exp
(
−(x− µ2)2/2σ2

2

))]

=
1

ln 2
· E

x∼P

[
(x− µ2)2

2σ2
2

− (x− µ1)
2

2σ2
1

+ ln
(

σ2

σ1

)]
=

1
ln 2
·
(

σ2
1 + (µ1 − µ2)2

2σ2
2

− 1
2
+ ln

(
σ2

σ1

))
=

1
ln 2
·
(

σ2
1 − σ2

2 + (µ1 − µ2)2

2σ2
2

+ ln
(

σ2

σ1

))
.

The above is a common way of showing that changing the parameters of a Gaussian dis-
tribution by a small amount does not alter the behavior of an algorithm using the corre-
sponding random variable as input, by too much.

Exercise 1.3. Let P and Q be Gaussian distributions with means µ1 and µ2 respectively, and
variance σ2 in both cases. Use Pinsker’s inequality to show that

‖P−Q‖1 ≤
|µ1 − µ2|

σ
.

Exercise 1.4. Compute D (P ‖ Q) for the n-dimension Gaussian distributions P = N(µ1, Σ1)
and Q = N(µ2, Σ2).

1.3 Maximum Entropy

We will now see that the multivariate Gaussian distribution maximizes differential entropy
across all distributions with the same covariance.

Theorem 1.5. Let X be a continuous random variable taking values in Rn with mean E[X] = 0
and covariance matrix E[XXT] = Σ. Then,

h(X) ≤ n
2

log(2πe) + log(|det(Σ)|),

with equality iff X ∼ N(0, Σ).
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Proof: Let p be the density of X, and q be the density of a gaussian random variable
N(0, Σ). Then,

0 ≤ D(p||q) =
∫

p(x) log
(

p(x)
q(x)

)
dx

=
∫

p(x) log p(x)dx−
∫

p(x) log q(x)dx

= −h(p)−
∫

p(x) log q(x)dx

= −h(p)−
∫

q(x) log q(x)dx

= −h(p) + h(q),

where the substitution
∫

p(x) log q(x)dx =
∫

q(x) log q(x)dx follows from the definition of
the density function q (for a Gaussian random variable) and the fact the both p and q are
densities for different random variables admitting the same first and second moments (Use
these observations to verify that

∫
p(x) log q(x)dx =

∫
q(x) log q(x)dx). By rearranging

terms, we arrive at the stated inequality.
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