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1 The Power of Two Choices (cont.)

We already prove the probability of having many high-load bins is small for the case that β2i ≥
2n lnn in the last lecture. Now we look at the case of the other regime. Let i0 be the minimum i
such that β2i < 2n lnn. We know with high probability Bi0 ≤ βi0 . The probability that Bi0+1 is
large can be bounded as

P [Bi0+1 ≥ k] ≤ P

[
Binom

(
n,

(
Bi0
n

)2
)
≥ k

]

≤ P

[
Binom

(
n,

(
βi0
n

)2
)
≥ k

]

≤ P
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Binom
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n,
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2n lnn

n

)2
)
≥ k

]
,

where we use the fact that the probability of seeing a certain amount of heads increases as we
increase the probability of heads. If we set k = 6 lnn, then Chernoff bound gives

P [Bi0+1 ≥ 6 lnn] ≥ e−2 lnn =
1

n2
.

We further look at whether there even exists a bin with load more than i0 + 2, and we see that

P [Bi0+2 ≥ 1] = P [Bi0+2 ≥ 1|Bi0+1 > k]︸ ︷︷ ︸
≤1

P [Bi0+1 > k]︸ ︷︷ ︸
≤ 1
n2

+P [Bi0+2 ≥ 1|Bi0+1 ≤ k]P [Bi0+1 ≤ k]︸ ︷︷ ︸
≤1

.

Because Bi0+1 is small enough, it suffices to bound the only term left in the above equation with
Markov’s inequality,

P [Bi0+2 ≥ 1|Bi0+1 ≤ k] ≤ E [Bi0+2|Bi0+1 ≤ k] ≤ E

[
Binom

(
n,

(
k

n

)2
)]
≤ k2

n
.

From the solution of βi from the last lecture

βi =
n

22i−6e
,

we have

i0 =
ln lnn

ln 2
+O(1) .

This completes the proof that if we choose two bins at random instead of one, we reduce the number
of high-load bins from O(lnn) to O(ln lnn) with high probability.
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2 Continuous Random Variables

We will now look at random variables that have values in R. As in the countably infinite case,
we only need to define the probability on some elementary sets and let union, intersection, and
complement take care of the rest. The elementary sets are intervals [a, b], and we say the probability
space is generated by intervals. It is common to define a random variable X through defining a
density γ : R→ R such that

P [X ∈ [a, b]] =

∫ b

a
γ(x)dx .

3 Gaussian Random Variables

A Gaussian random variable X is defined through the density function

γ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where µ is its mean and σ2 is its variance, and we write X ∼ N (µ, σ2). To see the definition gives
a valid probability distribution, we need to show

∫∞
−∞ γ(x)dx = 1. It suffices to show for the case

that µ = 0 and σ2 = 1. First we show the integral is bounded.

Claim 3.1 I =
∫∞
−∞ e

−x2/2dx is bounded.

Proof: We see that

I =

∫ ∞
−∞

e−x
2/2dx = 2

∫ ∞
0

e−x
2/2dx ≤ 2

∫ 2

0
1dx+ 2

∫ ∞
2

e−xdx = 4 + 2e−2 ,

where we use the fact that I is even and after x = 2, e−x
2/2 is upper bounded by e−x.

Next we show that the normalization factor is
√

2π.

Claim 3.2 I2 = 2π.

Proof:

I2 =

∫ ∞
−∞

e−x
2/2dx

∫ ∞
−∞

e−y
2/2dy =

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2)/2dxdy

=

∫ ∞
0

∫ 2π

0
e−r

2/2rdrdθ (let x = r cos θ and y = r sin θ)

= 2π

∫ ∞
0

e−sds (let s = r2/2)

= 2π .
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This completes the proof that the definition gives a valid probability distribution. We prove a
useful lemma for later use.

Lemma 3.3 For X ∼ N (0, 1), E
[
etX

2
]

= 1√
1−2t .

Proof:

E
[
etX

2
]

=

∫ ∞
−∞

etx
2 1√

2π
e−x

2/2dx =

∫ ∞
−∞

1√
2π
e−(1−2t)x

2/2dx

=

∫ ∞
−∞

1√
2π
e−y

2/2 dy√
1− 2t

(let y =
√

1− 2tx)

=
1√

1− 2t

4 Johnson–Lindenstrauss Lemma

We will use concentration bounds on Gaussian random variables to prove the following important
lemma.

Lemma 4.1 (Johnson–Lindenstrauss Lemma) Let P be a set of n points in Rd. Let 0 < ε < 1.
For k = 8 lnn

ε2/2−ε3/3 , there exists a mapping ϕ : P → Rk such that for all u, v ∈ P

(1− ε)‖u− v‖2 ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + ε)‖u− v‖2 .

The above lemma is useful for dimensionality reduction, especially when a problem has an expo-
nential dependence on the number of dimensions.

We construct the mapping ϕ as follows. First choose a matrix G ∈ Rk×d such that each Gij ∼
N (0, 1) is independent. Define

ϕ(u) =
Gu√
k
.

Note that by the above construction ϕ is oblivious, meaning that it doesn’t depend on the points
in P, and it is linear.

Before we prove the lemma, we will use the following fact several times.

Fact 4.2 Let Z = c1X1 + c2X2, where X1 ∼ N (0, 1) and X2 ∼ N (0, 1) are independent. Then
Z ∼ N (0, c21 + c22).

The strategy of proving the lemma is to first prove that with high probability the lemma holds for
any fixed two points and then apply union bounds to get the result for all pairs of points.

Claim 4.3 Fix u, v ∈ P. Let w = u − v. With probability greater than 1 − 1/n3, the following
inequality holds,

(1− ε)‖w‖2 ≤ ‖ϕ(w)‖2 ≤ (1− ε)‖w‖2 .
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Proof: Recall that ϕ(u) = Gu√
k
. Let

Z =
k‖ϕ(w)‖2

‖w‖2
=

∑k
i=1(Gw)2i
‖w‖2

.

We need to show (1− ε)k ≤ Z ≤ (1 + ε)k. We know that the sum of Gaussian random variables is
still a Gaussian random variable, so (Gw)i = Giw =

∑n
j=1Gijwj is a Gaussian variable. Besides,

Var
[∑n

j=1Gijwj

]
=
∑

j w
2
j = ‖w‖2 according to Fact 4.2. In other words, Giw ∼ N (0, ‖w‖2). As

a result, Z =
∑k

i=1
(Gw)2i
‖w‖2 =

∑k
i=1X

2
i , where Xi ∼ N (0, 1). The expectation of each individual

element in Gw is

E
[
(Gw)2i

]
= E

[
(Giw)2

]
= E

 n∑
j=1

Gijwj

2 = Var

 n∑
j=1

Gijwj

 = ‖w‖2 .

In addition,

E [Z] =

∑k
j=1 E

[
(Gw)2i

]
‖w‖2

= k .

Now we prove the concentration bound for Z. The proof is almost identical to Chernoff bound.

P [Z ≥ (1 + ε)k] ≤ P
[
etZ ≥ et(1+ε)k

]
≤

E
[
etZ
]

et(1+ε)k
(by Markov’s inequality)

=
E
[
et
∑k
i=1X

2
i

]
et(1+ε)k

=

∏k
i=1 E

[
etX

2
i

]
et(1+ε)k

(by the independence of X2
i )

=

∏k
i=1

1√
1−2t

et(1+ε)k
(by Lemma 3.3)

≤

(
e−2(1+ε)t

1− 2t

)k/2
(assume t ≤ 1/2)

≤ (e−ε(1 + ε))k/2 (let t =
ε

2(1 + ε)
)

≤
(

(1− ε+
ε2

2
− ε3

6
)(1 + ε)

)k/2
(by Taylor expansion of e−x)

≤ e−
(
ε2

2
− ε

3

3

)
k
2 (by 1 + x ≤ ex)

We can derive the other side of the inequality in an analogous way, so we have

P [|Z − k| ≥ εk] ≤ 2e
−
(
ε2

2
− ε

3

3

)
k
2 ≤ 2e−3 lnn =

2

n3
,

where we choose

k =

⌈
6 lnn
ε2

2 −
ε3

3

⌉
.
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To prove Johnson–Lindenstrauss Lemma, we apply the union bound and get the desired result

P
[
∀u, v ∈ P, (1− ε)‖u− v‖2 ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + ε)‖u− v‖2

]
≥ 1−

(
n

2

)
2

n3
≥ 1− 1

n
.


