1 The power of two random choices

In the last lecture we analyzed an algorithm for load balancing based on independent random assignments of balls to bins. We proved that for \(n \) balls and \(n \) bins, this gives a maximum load of \(O\left(\frac{\ln n}{\ln \ln n}\right) \) with high probability. We will now show that two random choices can reduce the maximum load to \(O(\ln \ln n) \). The proof technique is due to Azar et al. [ABKU94, ABKU99] and various applications were explored by Mitzenmacher in his thesis [Mit96]. We first provide the intuition for the proof.

For each \(i \), let \(B_i \) denote the number of bins with at least \(i \) balls. Suppose \(B_i \leq \beta_i \) for some bound \(\beta_i \). Then \(B_{i+1} \) is bounded above by a random variable corresponding to the number of heads in \(n \) independent coin tosses, where the probability of each toss being heads is at most \((\beta_i / n)^2 \). This is because for a ball to land a bin such that the load of the bin becomes greater than \(i \), it must happen that both the random bins which we chose to put it in, had load at least \(i \). This happens with probability at most \((\beta_i / n)^2 \). Thus, \(B_{i+1} \) is upper bounded by the above random variable. We also use the notation \(\text{Bin}(n,p) \) to denote a random variable which is the sum of \(n \) independent 0/1 random variables, each of which is 1 with probability \(p \). Such a random variable is known as a binomial random variable.

This, \(\mathbb{E}[B_{i+1}] \leq n \cdot \left(\frac{\beta_i}{n}\right)^2 \) and \(B_{i+1} \) is at most \(e \cdot \frac{\beta_i^2}{n} \) with high probability. We can then take \(\beta_{i+1} \) to be \(e \cdot \frac{\beta_i^2}{n} \). For the above sequence, the value of \(\beta_i \) becomes less than 1 for \(i_0 = O(\ln \ln n) \), and thus we can bound the maximum load by \(i_0 \). The proof will follow this intuition, except that for the last step, when \(\mathbb{E}[B_i] \) becomes very small, we will not be able to use a Chernoff bound and will have to resort to a slightly different analysis.
We first define the values β_i. Let $\beta_6 = \frac{n}{2e}$ and $\beta_{i+1} = e \cdot n \cdot \left(\frac{\beta_i}{n}\right)^2$.

\[\beta_6 = \frac{n}{2e} \]
\[\Rightarrow \beta_7 = e \left(\frac{n}{2e}\right)^2 n = \frac{n}{4e} = \frac{n}{2^2e} \]
\[\Rightarrow \beta_8 = e \left(\frac{n}{4e}\right)^2 n = \frac{n}{16e} = \frac{n}{2^4e} \]
\[\Rightarrow \beta_9 = e \left(\frac{n}{16e}\right)^2 n = \frac{n}{256e} = \frac{n}{2^8e} \]
\[\vdots \]
\[\Rightarrow \beta_i = \frac{n}{2^{2^{i-6}}e} \]

Let E_i be the event that $B_i \leq \beta_i$. Note that E_6 holds for sure since there can be at most $n/6 \leq n/2e$ bins with 6 or more balls. We show that with high probability, if E_i holds then E_{i+1} holds provided $\beta_i^2 \geq 2n \ln n$.

Claim 1.1 Let i be such that $\beta_i^2 \geq 2n \ln n$. Then,

\[\Pr \left[\neg E_{i+1} \mid E_i \right] \leq \frac{1}{n^2} \cdot \frac{1}{\Pr \left[E_i \right]} \]

Proof: The tricky part in proving the claim is the conditioning. Conditioning on the event E_i, the choices made by the various balls are no longer independent. To take care of this, we define the random variables Y_t as

\[Y_t = \begin{cases}
1 & \text{if at time } t \text{ there are at most } \beta_t \text{ bins with load } i \text{ and both bins chosen by the } t^{th} \text{ ball have load at least } i \\
0 & \text{otherwise}
\end{cases} \]

We can now write the event E_{i+1} in terms of the variables Y_t. We have

\[\Pr \left[\neg E_{i+1} \mid E_i \right] = \frac{\Pr \left[\neg E_{i+1} \land E_i \right]}{\Pr \left[E_i \right]} \leq \frac{\Pr \left[\sum_{t=1}^{\infty} Y_t \geq \beta_{i+1} \right]}{\Pr \left[E_i \right]} \]

Note that the variables Y_t are still *not* independent, but satisfy that

\[\Pr \left[Y_t = 1 \mid Y_1, \ldots, Y_{t-1} \right] \leq \left(\frac{\beta_t}{n}\right)^2. \]
Prove that this implies

\[P \left[\sum_{t=1}^{n} Y_t \geq \beta_{i+1} \right] \leq P \left[\text{Bin} \left(n, \left(\frac{\beta_i}{n} \right)^2 \right) \geq \beta_{i+1} \right], \]

where Bin \((n, p)\) denotes a binomial random variable with \(n\) independent trials and success probability \(p\) for each trial. Using Chernoff bounds, we get

\[P \left[\text{Bin} \left(n, \left(\frac{\beta_i}{n} \right)^2 \right) \geq \beta_{i+1} \right] = P \left[e^{n \cdot \left(\frac{\beta_i}{n} \right)^2} \leq \frac{1}{n^2} \right] \]

when \(\beta^2 \geq 2n \ln n\). Thus,

\[P \left[\neg E_{i+1} \mid E_i \right] = P \left[E_{i+1} \land E_i \right] \leq \frac{P \left[\text{Bin} \left(n, \left(\frac{\beta_i}{n} \right)^2 \right) \geq e^{n \cdot \left(\frac{\beta_i}{n} \right)^2} \right]}{P \left[E_i \right]} \leq \frac{1}{n^2} \cdot \frac{1}{P \left[E_i \right]} \]

when \(\beta^2 \geq 2n \ln n\).

We can then use induction to show that for each \(i\) as above, the probability of the event \(E_i\) not happening is very low.

Claim 1.2 For all \(i\) such that \(\beta_i^2 \geq 2n \ln n\), we have

\[P \left[\neg E_{i+1} \right] \leq \frac{i + 1}{n^2}. \]

Proof: We prove the claim by induction on \(i\). We know from the definition of \(\beta_6\) that \(P \left[\neg E_6 \right] = 0\). Also, from the previous claim, we have that for any \(i\) as above,

\[P \left[\neg E_{i+1} \right] = P \left[E_i \right] \cdot P \left[\neg E_{i+1} \mid E_i \right] + P \left[\neg E_i \right] \cdot P \left[\neg E_{i+1} \mid \neg E_i \right] \leq P \left[E_i \right] \cdot \frac{1}{n^2} \cdot \frac{1}{P \left[E_i \right]} + \frac{i}{n^2} \leq \frac{i + 1}{n^2}. \]

We will need a slightly different analysis when \(\beta_i^2 < 2n \ln n\). Let \(i_0\) be the minimum \(i\) such that \(\beta_i^2 < 2n \ln n\). Because \(\beta_{i_0-1}^2 \geq 2n \ln n\), we have by the previous claim that \(B_{i_0} \leq \beta_{i_0}\)
with high probability. The probability that $B_{i_0 + 1}$ is large can be bounded as before using

$$
\mathbb{P} \left[(B_{i_0 + 1} \geq k) \land E_{i_0} \right] \leq \mathbb{P} \left[\text{Bin} \left(n, \left(\frac{B_{i_0}}{n} \right)^2 \right) \geq k \right] \\
\leq \mathbb{P} \left[\text{Bin} \left(n, \left(\frac{\beta_{i_0}}{n} \right)^2 \right) \geq k \right] \\
\leq \mathbb{P} \left[\text{Bin} \left(n, \left(\frac{2 \ln n}{n} \right)^2 \right) \geq k \right],
$$

where we use the fact that the probability of seeing a certain amount of heads increases as we increase the probability of heads. If we set $k = 6 \ln n$, then Chernoff bound gives

$$
\mathbb{P} \left[(B_{i_0 + 1} \geq 6 \ln n) \land E_{i_0} \right] \leq e^{-2 \ln n} = \frac{1}{n^2},
$$

which implies as before

$$
\mathbb{P} \left[(B_{i_0 + 1} \geq 6 \ln n) \right] \leq \mathbb{P} \left[(B_{i_0 + 1} \geq 6 \ln n) \land E_{i_0} \right] + \mathbb{P} \left[\neg E_{i_0} \right] \leq \frac{i_0 + 1}{n^2}.
$$

We further look at whether there even exists a bin with load more than $i_0 + 2$, and we see that

$$
\mathbb{P} \left[B_{i_0 + 2} \geq 1 \right] = \mathbb{P} \left[B_{i_0 + 2} \geq 1 \mid B_{i_0 + 1} > k \right] \cdot \mathbb{P} \left[B_{i_0 + 1} > k \right] + \mathbb{P} \left[B_{i_0 + 2} \geq 1 \mid B_{i_0 + 1} \leq k \right] \cdot \mathbb{P} \left[B_{i_0 + 1} \leq k \right].
$$

Because $B_{i_0 + 1}$ is small enough, it suffices to bound the only term left in the above equation with Markov’s inequality,

$$
\mathbb{P} \left[B_{i_0 + 2} \geq 1 \mid B_{i_0 + 1} \leq k \right] \leq \mathbb{E} \left[B_{i_0 + 2} \mid B_{i_0 + 1} \leq k \right] \leq \mathbb{E} \left[\text{Bin} \left(n, \left(\frac{k}{n} \right)^2 \right) \right] \leq \frac{k^2}{n}.
$$

Recalling the expression for β_i,

$$
\beta_i = \frac{n}{2^e e},
$$

we have

$$
i_0 = \frac{\ln \ln n}{\ln 2} + O(1).
$$

This completes the proof that if we choose two bins at random instead of one, we reduce the number of high-load bins from $O(\ln n)$ to $O(\ln \ln n)$ with high probability.
References

