1 Singular Value Decomposition

Let V, W be finite-dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation. Since the domain and range of φ are different, we cannot analyze it in terms of eigenvectors. However, we can use the spectral theorem to analyze the operators $\varphi^* \varphi : V \to V$ and $\varphi \varphi^* : W \to W$ and use their eigenvectors to derive a nice decomposition of φ. This is known as the singular value decomposition (SVD) of φ.

Proposition 1.1 Let $\varphi : V \to W$ be a linear transformation. Then $\varphi^* \varphi : V \to V$ and $\varphi \varphi^* : W \to W$ are positive semidefinite linear operators with the same non-zero eigenvalues.

In fact, we can notice the following from the proof of the above proposition.

Proposition 1.2 Let v be an eigenvector of $\varphi^* \varphi$ with eigenvalue $\lambda \neq 0$. Then $\varphi(v)$ is an eigenvector of $\varphi \varphi^*$ with eigenvalue λ. Similarly, if w is an eigenvector of $\varphi \varphi^*$ with eigenvalue $\lambda \neq 0$, then $\varphi^*(w)$ is an eigenvector of $\varphi^* \varphi$ with eigenvalue λ.

Using the above, we get the following.

Proposition 1.3 Let $\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_r^2 > 0$ be the non-zero eigenvalues of $\varphi^* \varphi$, and let v_1, \ldots, v_r be a corresponding orthonormal eigenbasis. For w_1, \ldots, w_r defined as $w_i = \varphi(v_i) / \sigma_i$, we have that

1. $\{w_1, \ldots, w_r\}$ form an orthonormal set.
2. For all $i \in [r]$ \[\varphi(v_i) = \sigma_i \cdot w_i \] and \[\varphi^*(w_i) = \sigma_i \cdot v_i. \]

The values $\sigma_1, \ldots, \sigma_r$ are known as the (non-zero) singular values of φ. For each $i \in [r]$, the vector v_i is known as the right singular vector and w_i is known as the left singular vector corresponding to the singular value σ_i.

Proposition 1.4 Let \(r \) be the number of non-zero eigenvalues of \(\varphi^* \varphi \). Then,
\[
\text{rank}(\varphi) = \dim(\text{im}(\varphi)) = r.
\]

Using the above, we can write \(\varphi \) in a particularly convenient form. We first need the following definition.

Definition 1.5 Let \(V, W \) be inner product spaces and let \(v \in V, w \in W \) be any two vectors. The outer product of \(w \) with \(v \), denoted as \(|w\rangle \langle v| \), is a linear transformation from \(V \) to \(W \) such that
\[
|w\rangle \langle v| (u) := \langle u, v \rangle \cdot w.
\]

Note that if \(||v|| = 1 \), then \(|w\rangle \langle v| (v) = w \) and \(|w\rangle \langle v| (u) = 0 \) for all \(u \perp v \). Also, note that the rank of the linear transformation defined above is 1. We can then write \(\varphi : V \to W \) in terms of outer products of its singular vectors.

Proposition 1.6 Let \(V, W \) be finite dimensional inner product spaces and let \(\varphi : V \to W \) be a linear transformation with non-zero singular values \(\sigma_1, \ldots, \sigma_r \), right singular vectors \(v_1, \ldots, v_r \) and left singular vectors \(w_1, \ldots, w_r \). Then,
\[
\varphi = \sum_{i=1}^{r} \sigma_i \cdot |w_i\rangle \langle v_i|.
\]

2 Singular Value Decomposition for matrices

Using the previous discussion, we can write matrices in convenient form. Let \(A \in \mathbb{C}^{m \times n} \), which can be thought of as an operator from \(\mathbb{C}^n \) to \(\mathbb{C}^m \). Let \(\sigma_1, \ldots, \sigma_r \) be the non-zero singular values and let \(v_1, \ldots, v_r \) and \(w_1, \ldots, w_r \) be the right and left singular vectors respectively. Note that \(V = \mathbb{C}^n \) and \(W = \mathbb{C}^m \) and \(v \in V, w \in W \), we can write the operator \(|w\rangle \langle v| \) as the matrix \(wv^* \), there \(v^* \) denotes \(\overline{v}^\top \). This is because for any \(u \in V, wv^*u = w(v^*u) = \langle u, v \rangle \cdot w \). Thus, we can write
\[
A = \sum_{i=1}^{r} \sigma_i \cdot w_i v_i^*.
\]

Let \(W \in \mathbb{C}^{m \times r} \) be a matrix with \(w_1, \ldots, w_r \) as columns, such that \(i^{th} \) column equals \(w_i \). Similarly, let \(V \in \mathbb{C}^{n \times r} \) be a matrix with \(v_1, \ldots, v_r \) as the columns. Let \(\Sigma \in \mathbb{C}^{r \times r} \) be a diagonal matrix with \(\Sigma_{ii} = \sigma_i \). Then, check that the above expression for \(A \) can also be written as
\[
A = W \Sigma V^*,
\]
where \(V^* = \overline{V}^\top \) as before.

We can also complete the bases \(\{v_1, \ldots, v_r\} \) and \(\{w_1, \ldots, w_r\} \) to bases for \(\mathbb{C}^n \) and \(\mathbb{C}^m \) respectively and write the above in terms of unitary matrices.
Definition 2.1 A matrix $U \in \mathbb{C}^{n \times n}$ is known as a unitary matrix if the columns of U form an orthonormal basis for \mathbb{C}^n.

Proposition 2.2 Let $U \in \mathbb{C}^{n \times n}$ be a unitary matrix. Then $UU^* = U^*U = \text{id}$, where id denotes the identity matrix.

Let $\{v_1, \ldots, v_n\}$ be a completion of $\{v_1, \ldots, v_r\}$ to an orthonormal basis of \mathbb{C}^n, and let $V_n \in \mathbb{C}^{n \times n}$ be a unitary matrix with $\{v_1, \ldots, v_n\}$ as columns. Similarly, let $W_m \in \mathbb{C}^{m \times m}$ be a unitary matrix with a completion of $\{w_1, \ldots, w_r\}$ as columns. Let $\Sigma' \in \mathbb{C}^{m \times n}$ be a matrix with $\Sigma'_{ii} = \sigma_i$ if $i \leq r$, and all other entries equal to zero. Then, we can also write

$$A = W_m \Sigma' V_n^*.$$

2.1 SVD as a low-rank approximation for matrices

Given a matrix $A \in \mathbb{C}^{m \times n}$, we want to find a matrix B of rank at most k which “approximates” A. For now we will consider the notion of approximation in spectral norm i.e., we want to minimixe $\|A - B\|_2$, where

$$\| (A - B) \|_2 = \inf_{x \neq 0} \frac{\| (A - B)x \|_2}{\|x\|_2}.$$

SVD also gives the optimal solution for another notion of approximation: minimizing the Frobenius norm $\| A - B \|_F$, which equals $(\sum_{ij} (A_{ij} - B_{ij})^2)^{1/2}$. We will see this later. Let $A = \sum_{i=1}^r w_i v_i^*$ be the singular value decomposition of A and let $\sigma_1 \geq \cdots \geq \sigma_r > 0$. If $k \geq r$, we can simply use $B = A$ since rank$(A) = r$. If $k < r$, we claim that $A_k = \sum_{i=1}^k \sigma_i w_i v_i^*$ is the optimal solution. If is easy to check the following.

Proposition 2.3 $\| A - A_k \|_2 = \sigma_{k+1}$.

Thus, we know that the error of the best approximation B is at most σ_{k+1}. To show the lower bound, we need the following fact.

Exercise 2.4 Let V be a finite-dimensional vector space and let S_1, S_2 be subspaces of V. Then, $S_1 \cap S_2$ is also a subspace and satisfies

$$\dim(S_1 \cap S_2) \geq \dim(S_1) + \dim(S_2) - \dim(V).$$

We can now show the following.

Proposition 2.5 Let $B \in \mathbb{C}^{m \times n}$ have rank$(B) \leq k$ and let $k < r$. Then $\| A - B \|_2 \geq \sigma_{k+1}$.

3
Proof: By rank-nullity theorem \(\dim(\ker(A)) \geq n - k \). Thus, by the fact above

\[
\dim(\ker(A) \cap \text{Span}(v_1, \ldots, v_{k+1})) \geq (n - k) + (k + 1) - n \geq 1.
\]

Let \(z \in \ker(A) \cap \text{Span}(v_1, \ldots, v_{k+1}) \setminus \{0\} \). Then,

\[
\|(A - B)z\|_2^2 = \|Az\|_2^2 = \langle A^*A z, z \rangle \geq \min_{z \in \text{Span}(v_1, \ldots, v_{k+1}) \setminus \{0\}} \langle A^*A z, z \rangle \geq \left(\min_{z' \in \text{Span}(v_1, \ldots, v_{k+1}) \setminus \{0\}} \mathcal{R}_{A^*A}(z') \right) \cdot \|z\|_2^2 \geq \sigma_{k+1}^2 \cdot \|z\|_2^2.
\]

Thus, there exists a \(z \neq 0 \) such that \(\|(A - B)z\|_2 \geq \sigma_{k+1} \cdot \|z\|_2 \), which implies \(\|A - B\|_2 \geq \sigma_{k+1} \). \[\square\]