The primary goal of this course is to collect a set of basic mathematical tools which are often useful in various areas of computer science. We will mostly focus on various applications of linear algebra and probability. Please see the course webpage for a more detailed list of topics.

The course will be evaluated on the basis of the following:

- Homeworks: 40% (four homeworks contributing 10% each)
- Quizzes: 10% (two quizzes contributing 5% each)
- Midterm: 20%
- Final: 30%

We will spend 3-4 of lectures reviewing some of the basic concepts of linear algebra before we move on to some of the applications.

Here’s a couple of problems to think about if you are already familiar with the contents of this lecture. The first is taken from the excellent book “Thirty Three Miniatures” by Jiří Matoušek [Mat10], which I highly recommend for many more fun applications of Linear Algebra. The other problems are from earlier Putnam exams.

Problem 0.1 Show that a rectangle with sides 1 and $\sqrt{2}$ cannot be tiled with a finite number of non-overlapping squares. Prove that this is the case when $\sqrt{2}$ is replaced by any irrational number x.

Problem 0.2 Do there exist polynomials $p(x), q(x), r(y)$ and $s(y)$ (of any degree) such that

\[p(x) \cdot r(y) + q(x) \cdot s(y) = 1 + xy + x^2y^2 \]

Problem 0.3 Consider a set of n lights, each of which can be in an “on” or “off” state. Consider k switches, where the i^{th} switch simultaneously flips the state of all the lights in a set $S_i \subseteq [n]$ (here $[n]$ denotes $\{1,2,\ldots,n\}$). Moreover, we are given that for any set of lights $T \subseteq [n]$, there is a switch, say i such that $|S_i \cap T|$ is odd. Show that it is possible to go from any configuration of lights to any other configuration, by pressing an appropriate sequence of switches.
1 Fields

A field, often denoted by F, is simply a nonempty set with two associated operations $+$ and \cdot mapping $F \times F \rightarrow F$, which satisfy:

- **commutativity**: $a + b = b + a$ and $a \cdot b = b \cdot a$ for all $a, b \in F$.

- **associativity**: $a + (b + c) = (a + b) + c$ and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in F$.

- **identity**: There exist elements $0_F, 1_F \in F$ such that $a + 0_F = a$ and $a \cdot 1_F = a$ for all $a \in F$.

- **inverse**: For every $a \in F$, there exists an element $(-a) \in F$ such that $a + (-a) = 0_F$. For every $a \in F \setminus \{0_F\}$, there exists $a^{-1} \in F$ such that $a \cdot a^{-1} = 1_F$.

- **distributivity of multiplication over addition**: $a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

Example 1.1 \mathbb{Q}, \mathbb{R} and \mathbb{C} with the usual definitions of addition and multiplication over these fields.

Example 1.2 Consider defining addition and multiplication on \mathbb{Q}^2 as

$$(a, b) + (c, d) = (a + c, b + d) \quad \text{and} \quad (a, b) \cdot (c, d) = (ac + bd, ad + bc).$$

These operations do not define a field. While various properties of addition are indeed satisfied, inverses may not always exist for multiplication as defined above. Check that the multiplicative identity needs to be $(1, 0)$ but then the element $(1, -1)$ has no multiplicative inverse.

However, for any prime p, the following operations do define a field

$$(a, b) + (c, d) = (a + c, b + d) \quad \text{and} \quad (a, b) \cdot (c, d) = (ac + pbd, ad + bc).$$

This is equivalent to taking $F = \{ a + b \sqrt{p} \mid a, b \in \mathbb{Q} \}$ with the same notion of addition and multiplication as for real numbers. Alternatively, one can also define a field by taking $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$ (why?)

Example 1.3 For any prime p, the set $F_p = \{ 0, 1, \ldots, p - 1 \}$ (also denoted as $GF(p)$) is a field with addition and multiplication defined modulo p.

Exercise 1.4 Show that the set $\{ a + b \sqrt{2} + c \sqrt{4} \mid a, b, c \in \mathbb{Q} \}$ is a field.
2 Vector Spaces

A vector space V over a field F is a nonempty set with two associated operations $+: V \times V \to V$ (vector addition) and $\cdot : F \times V \to V$ (scalar multiplication) which satisfy:

- **commutativity of addition:** $v + w = w + v$ for all $v, w \in V$.
- **associativity of addition:** $u + (v + w) = (u + v) + w$ for all $u, v, w \in V$.
- **pseudo-associativity of scalar multiplication:** $a \cdot (b \cdot v) = (a \cdot b) \cdot v$ for all $a, b \in F, v \in V$.
- **identity for vector addition:** There exists $0_V \in V$ such that for all $v \in V$, $v + 0_V = v$.
- **inverse for vector addition:** For all $v \in V$, there exists $-(v) \in V$ such that $v + (-(v)) = 0_V$.
- **distributivity:** $a \cdot (v + w) = a \cdot v + a \cdot w$ and $(a + b) \cdot v = a \cdot v + b \cdot v$ for all $a, b \in F$ and $v, w \in V$.
- **identity for scalar multiplication:** $1_F \cdot v = v$ for all $v \in V$.

Example 2.1 Any field F is a vector space over itself.

Example 2.2 \mathbb{R} is a vector space over \mathbb{Q}.

Example 2.3 $\mathbb{R}[X]$ is a vector space over \mathbb{R}.

Example 2.4 $C([0, 1], \mathbb{R}) = \{f : [0, 1] \to \mathbb{R} | f$ is continuous$\}$ is a vector space over \mathbb{R}.

Example 2.5 $\text{Fib} = \{f \in \mathbb{R}^N | f(n) = f(n - 1) + f(n - 2) \forall n \geq 2\}$ is a vector space over \mathbb{R}.

Definition 2.6 (Linear Dependence) A set $S \subseteq V$ is linearly dependent if there exist distinct $v_1, \ldots, v_n \in S$ and $a_1, \ldots, a_n \in F$ not all zero, such that $\sum_{i=1}^n a_i \cdot v_i = 0_V$. A set which is not linearly dependent is said to be linearly independent.

Example 2.7 The set $\{1, \sqrt{2}, \sqrt{3}\}$ is linearly independent in the vector space \mathbb{R} over the field \mathbb{Q}.

Exercise 2.8 Let $a_1, \ldots, a_n \in \mathbb{R}$ be distinct and let $g(x) = \prod_{i=1}^n (x - a_i)$. Define

$$f_i(x) = \frac{g(x)}{x - a_i} = \prod_{j \neq i} (x - a_j),$$

where we extend the function at point a_i by continuity. Prove that f_1, \ldots, f_n are linearly independent in the vector space $\mathbb{R}[x]$ over the field \mathbb{R}.
Exercise 2.9 Prove that the set of functions

\[S = \{1\} \cup \{\sin(kx) \mid k \in \mathbb{N}, k \geq 1\} \cup \{\cos(kx) \mid k \in \mathbb{N}, k \geq 1\}, \]

is linearly independent in the vector space of continuous real-valued functions over \(\mathbb{R} \).

References